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Single-qubit measurement of two-qubit entanglement in generalized Werner states
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Conventional methods of measuring entanglement in a two-qubit photonic mixed state require detection of
both qubits. We generalize a recently introduced method which does not require detection of both qubits, by
extending it to cover a wider class of entangled states. Specifically, we present a detailed theory that shows how
to measure entanglement in a family of two-qubit mixed states, obtained by generalizing Werner states, without
detecting one of the qubits. Our method is interferometric and does not require any coincidence measurement or
postselection. We also perform a quantitative analysis of anticipated experimental imperfections. We show that
the method is resistant to a decrease in the interference visibility resulting from such imperfections.
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I. INTRODUCTION

Traditional methods of characterizing entanglement in
two-photon mixed states (e.g., the violation of Bell’s in-
equalities [1–4] and quantum state tomography [5]) require
detection of both photons (see, for example, [6,7] and refer-
ences therein). These methods therefore involve coincidence
measurement or postselection. Methods that do not require
detection of both photons rely on the assumption that the
quantum state is pure (see, for example, [8–13]).

Recently, a quantum interferometer, first demonstrated by
Zou, Wang, and Mandel [14,15], was employed in measuring
entanglement of photonic states [16,17]. It has been demon-
strated theoretically [16] and experimentally [17] that it is
possible to measure entanglement of a special class of two-
photon mixed states, obtained by generalizing Bell states,
without detecting one of the photons and without employing
coincidence measurement or postselection. Density matrices
representing such states have two generally nonvanishing
coherence terms (off-diagonal elements). The states are en-
tangled if and only if these coherence terms are nonzero.
Furthermore, these two coherence terms are complex con-
jugates of each other. Therefore, entanglement of the states
considered in Refs. [16,17] is fully characterized by one co-
herence term of the corresponding density matrix. However,
entanglement of most two-qubit states does not depend on
their density matrix elements in such a trivial manner, e.g.,
the Werner state that can be entangled without violating Bell’s
inequalities [18]. Whether the entanglement of any two-qubit
photonic mixed state can be verified by detecting one qubit
remains an open question of fundamental importance.

Here we take an important step toward answering this
question by extending the method to two-qubit mixed states
that can be obtained by generalizing Werner states. We find
that although the same principle introduced in Refs. [16,17]
applies, the measurement procedure requires considerable
modifications. Our results also suggest that the method to ac-
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count for experimental losses and imperfections would require
significant adaptation.

The article is organized as follows. In Sec. II we discuss the
class of quantum states we address and their entanglement.
In Sec. III we provide an outline of the entanglement mea-
surement scheme. In Sec. IV we present a detailed theoretical
analysis and our main results. We also illustrate the results
by numerical examples. In Sec. V we compare our results
with existing ones. Finally, we summarize and conclude in
Sec. VII.

II. TWO-QUBIT GENERALIZED WERNER STATE
AND ITS ENTANGLEMENT

We work with a two-photon polarization state that is a com-
mon test bed for two-qubit systems. Throughout this paper,
we call the two photons forming a pair to be signal (S) and
idler (I ). We use H , V , D, A, R, and L to represent hor-
izontal, vertical, diagonal, antidiagonal, right-circular, and
left-circular polarization, respectively. The ket |μI , νS〉 repre-
sents a photon pair where the idler photon has polarization μ

and the signal photon has polarization ν.
The quantum state considered here is obtained

by generalizing the Werner state. The density matrix
takes the following form in the computational basis
{|HI HS〉, |HIVS〉, |VI HS〉, |VIVS〉}:

ρ̂ =

⎛
⎜⎜⎜⎝

ηIH + 1−η

4 0 0 ηI
√

IH IV e−iφ

0 1−η

4 0 0
0 0 1−η

4 0
ηI

√
IH IV eiφ 0 0 ηIV + 1−η

4

⎞
⎟⎟⎟⎠. (1)

Here 0 � IH � 1, IV = 1 − IH , 0 � η � 1, 0 � I � 1, and
φ represents a phase. It can be immediately checked that this
state becomes a Werner state when IH = IV = 1

2 and I =
1. For IH = IV = 1

2 , I = 1, and η = 1, it reduces to Bell
states |�+〉 = (|HIHS〉 + |VIVS〉)/

√
2 and |�−〉 = (|HI HS〉 −

|VIVS〉)/
√

2 when φ = 0 and φ = π , respectively. Therefore,
the state given by Eq. (1) can also be obtained by the convex
combination of a fully mixed state with the generalization of
Bell states considered in Refs. [16,17].
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FIG. 1. Illustration of the PPT criterion applied to generalized Werner states. The state is entangled when the eigenvalue α1 < 0 (shaded
regions). The black circle and the red diamond represent a Bell state (|�+〉 or |�−〉) and a Werner state, respectively. (a) Plot of α1 against η

for I = 1 and IH = 0.5 (solid line), for I = 0.8 and IH = 0.3 (dashed line), and for I = 0.3 and IH = 0.8 (dash-dotted line). (b) Plot of α1

against IH for I = 1 and η = 1 (solid line), for I = 0.8 and η = 0.8 (dashed line), and for I = 1 and η = 0.45 (dash-dotted line). (c) Plot
of α1 against I for IH = 0.5 and η = 1 (solid line), IH = 0.5 and η = 0.8 (dashed line), and IH = 0.6 and η = 0.5 (dash-dotted line).

The entanglement of this state can be verified by testing the
positive partial transpose (PPT) criterion [19]. A partial trans-
position of the density matrix ρ̂ is a transposition taken with
respect to only one of the photons. The density matrix has a
positive partial transpose if and only if its partial transposition
does not have any negative eigenvalues. Since we have a 2 × 2
system, according to the PPT criterion the state is entangled if
and only if it does not have a positive partial transpose [20].

By determining the eigenvalues of a partial transpose of the
density matrix given by Eq. (1), we find that three of them are
always positive (see Appendix A). The only eigenvalue that
can be negative is given by

α1 = 1 − η − 4ηI
√

IH IV
4

. (2)

Figure 1 illustrates entanglement of generalized Werner states
ρ̂ characterized by the PPT criterion for various choices of
state parameters η, IH , and I .

The amount of entanglement present in the quantum state
can be quantified by the concurrence [21]. We find that the
concurrence of the state given by Eq. (1) is (see Appendix B)

C(ρ̂) = max

{
η − 1 + 4ηI

√
IH IV

2
, 0

}
. (3)

We show below how to test the PPT criterion and determine
the concurrence without detecting one of the photons.

III. OUTLINE OF THE ENTANGLEMENT
MEASUREMENT SCHEME

The principle of our method is based on a unique quan-
tum interference phenomenon that was first demonstrated by
Zou, Wang, and Mandel [14,15] and is sometimes called the
interference by path identity [22]. The method employs a
nonlinear interferometer [23] that contains two identical twin-
photon sources. Each source produces the same quantum state
[Eq. (1)].

A conceptual arrangement of the entanglement measure-
ment scheme is illustrated in Fig. 2. The two photon-pair
sources are denoted by Q1 and Q2. A photon pair is in su-
perposition of being created at the two sources; for sources
made of nonlinear crystals, such a situation can be achieved
by weakly pumping them with mutually coherent laser beams.
The sources do not produce the states simultaneously, i.e.,

the probability of having more than one photon pair in the
system between an emission and a detection is negligible.
Specifically, in this situation the effect of stimulated (induced)
emission is negligible [14,15,24–26].

Signal beams S1 and S2 from the two sources are su-
perposed by a balanced beam splitter and the single-photon
counting rate (intensity) is measured at one of the outputs of
the beam splitter. The idler beam from Q1 is sent through Q2

and is aligned with the idler beam generated by Q2. (Such
an alignment was originally suggested by Ou [14].) This
alignment makes it impossible to know from which source
the signal photon originated. Consequently, a single-photon
interference pattern appears at a detector placed at an output
of the beam splitter. Details of experimental conditions to

FIG. 2. Entanglement measurement scheme. Two coherently
emitting sources (Q1 and Q2) can individually generate the two-qubit
photonic state ρ̂ [Eq. (1)]. Source Q1 emits a photon pair, signal
and idler, into propagation modes S1 and I1. Likewise, Q2 emits
signal and idler photons into modes S2 and I2. Modes S1 and S2 are
combined by a beam splitter (BS) and the signal photon emerging
from the BS is sent to a detector after projecting it onto a chosen
polarization state (μ = H , V , D, A, R, or L). Modes I1 and I2 are
made identical by aligning the corresponding beams without the use
of a beam splitter. This alignment makes it impossible to know from
which source a signal photon originated and consequently a single-
photon interference pattern appears at the detector. The idler photon
is never detected and no postselection is considered to obtain the
interference pattern. A unitary transformation U (θ, δ) is performed
on the idler photon between the two sources. The information about
the entanglement is extracted from the interference patterns with the
knowledge of this transformation.
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obtain the interference pattern have been discussed in numer-
ous publications (see, for example, Refs. [15,27,28]).

We apply a unitary transformation on the field representing
the idler photon between the two sources. Such transforma-
tions can readily be implemented in a laboratory using quarter
and half waveplates. We choose a unitary transformation that
is characterized by two controllable parameters δ and θ and
has the following form in the {|H〉, |V 〉} basis:

U (θ, δ) =
(

e−iδ cos 2θ e−iδ sin 2θ

eiδ sin 2θ −eiδ cos 2θ

)
. (4)

Here 0 � θ � π and 0 � δ/2 � π can be understood as two
half-waveplate angles.

The fact that we can fully control the choice of θ and δ

plays a crucial role in our measurement scheme. We show
below that the effect of this unitary transformation appears in
the interference patterns generated by the signal photon after
it is projected onto appropriate polarization states. We also
show how the entanglement of ρ̂ can be fully characterized
from these single-photon interference patterns with the knowl-
edge of the unitary transformation. For simplicity, we initially
assume that there is no experimental loss. In Appendix G
we provide a detailed description of how to treat dominant
experimental losses and imperfections. We discuss the effects
of experimental imperfections in Sec. VI.

We emphasize that the signal photon never interacts with
the device performing the unitary transformation and the idler
photon is never detected. These are two unique features of our
entanglement measurement scheme in addition to the fact that
no postselection or coincidence measurement is required.

IV. THEORETICAL ANALYSIS

A. Determining the quantum state

We use the standard bra-ket notation for the convenience of
analysis. The generalized Werner state [Eq. (1)] in the bra-ket
notation takes the form

ρ̂ =
H,V∑
μ,ν

H,V∑
μ′,ν ′

〈μIνS|ρ̂|μ′
Iν

′
S〉|μIνS〉〈μ′

Iν
′
S|, (5)

where 〈μIνS|ρ̂|μ′
Iν

′
S〉 represents a matrix element, for exam-

ple, 〈HI HS|ρ̂|HI HS〉 = ηIH + (1 − η)/4.
Equation (5) [or, equivalently, Eq. (1)] is the state gener-

ated by an individual source. While determining the quantum
state generated by the two sources jointly, one needs to use
the fact that the probability of emission of more than one
photon pair is negligible, that is, the total occupation number
of photons in the state is always two.

We first consider the scenario in which the idler beams are
not aligned. In this case, a signal photon is in a superposition
of being in modes S1 and S2 that emerges from two sources.
Likewise, an idler photon is in a superposition of being in
modes I1 and I2. Consequently, the density matrix represent-
ing the quantum state produced jointly by the two sources
becomes an 8 × 8 matrix. We determine this matrix following
the approach introduced in Ref. [16] and represent it in bra-ket
notation [Appendix C, Eq. (C4)].

We now analytically represent the alignment of idler
beams. Modes I1 and I2 becomes identical due to this align-
ment. The alignment, together with the unitary transformation
[Eq. (4)] applied on the idler photon, results in the transfor-
mations of kets [31]

|HI2〉 = e−iφI (eiδ cos 2θ |HI1〉 + eiδ sin 2θ |VI1〉), (6a)

|VI2〉 = e−iφI (e−iδ sin 2θ |HI1〉 − e−iδ cos 2θ |VI1〉), (6b)

where φI is the phase acquired by propagation from Q1 to Q2.
Finally, we obtain the density matrix ρ̂ ( f ) representing the

photon pair in our system [before arriving at the beam splitter
(BS)] by substituting from Eqs. (6a) and (6b) into the 8 × 8
density matrix [Appendix C, Eq. (C4)] mentioned above. An
expression for ρ̂ ( f ) is given by Eq. (C6) in Appendix C. The
probability of detecting a signal photon at one of the outputs
of the BS (Fig. 2) can be determined using this density matrix
or from the reduced density matrix ρ̂S obtained by taking a
partial trace of ρ̂ ( f ) over the subspace of the idler photon.
Here we take the latter approach. The reduced density matrix
representing a signal photon before arriving at the BS is given
by

ρ̂S = K (η, IH )(|b1|2|HS1〉〈HS1 | + |b2|2|HS2〉〈HS2 |) + K (η, IV )(|b1|2|VS1〉〈VS1 | + |b2|2|VS2〉〈VS2 |)

+ (b1b∗
2eiφI {[L (η, IH , δ)|HS1〉〈HS2 | + L ′(η, IV , δ)|VS1〉〈VS2 |] cos 2θ

+ ηI
√

IH IV [�(δ)|HS1〉〈VS2 | + �′(δ)|VS1〉〈HS2 |] sin 2θ} + H.c.), (7)

where |b j |2 is the relative probability of emission from
source Qj , H.c. represents the Hermitian conjugation,
K (η, I ) = ηI + (1 − η)/2, �(δ) = exp[i(φV2,V2

H1,H1
+ δ)],

�′(δ) = exp[i(φH2,H2
V1,V1

− δ)], and

L (η, IH , δ) = M(η, IH ) exp
[
i
(
φ

H2,H2
H1,H1

− δ
)]

−N (η) exp
[
i
(
φ

V2,H2
V1,H1

+ δ
)]

, (8a)

L ′(η, IV , δ) = N (η) exp
[
i
(
φ

H2,V2
H1,V1

− δ
)]

−M(η, IV ) exp
[
i
(
φ

V2,V2
V1,V1

+ δ
)]

, (8b)

with M(η, I ) = (4ηI + 1 − η)/4 and N (η) = (1 − η)/4. We
observe that all state parameters (η, IH , and I ) and the unitary
transformation parameters (θ and δ) appear in the density
matrix representing a signal photon.
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B. Information of entanglement in interference patterns

As mentioned in Sec. III, signal beams S1 and S2 are su-
perposed by a balanced beam splitter (BS); one of the outputs
of BS is projected onto a particular polarization state and then
sent to a detector. Therefore, the positive-frequency part of the
quantized electric field at the detector is given by

Ê (+)
μS

= 1√
2

(âμS1 + ieiφS âμS2 ), (9)

where μ = H,V, D, A, R, L and âμS j is the annihilation oper-
ator corresponding to the signal photon with polarization μ

emitted by source Qj . The probability of detecting a signal
photon with polarization μ is obtained by the standard for-
mula [29]

Pμ = tr
(
ρ̂SÊ (−)

μS
Ê (+)

μS

)
, (10)

where Ê (−)
μS

= (Ê (+)
μS

)† and ρ̂S is given by Eq. (7). The single-
photon counting rate (intensity) at the detector is linearly
proportional to the probability Pμ. We show below that these
photon counting rates represent interference patterns. The
state parameters (η, IH , and I ) that characterize the entangle-
ment appear in the expressions for these interference patterns.

We first determine the photon counting rate at the detector
when the signal photon is projected onto the horizontally
polarized (H) state. It follows from Eqs. (7)–(10) that
(Appendix D)

PH |θ=0 = 1
2 {P1 + P2 + 2|b1||b2| sin(φin + φ0)

× [
P2

1 + P2
2 − 2P1P2 cos(χ + 2δ)

]1/2}, (11)

where φin = arg(b1) − arg(b2) + φI − φS , P1 = ηIH + (1 −
η)/4, P2 = (1 − η)/4, χ = φ

V2H2
V1H1

− φ
H2H2
H1H1

, and φ0 = φ
H2H2
H1H1

−
δ + ε1; the explicit form of ε1 is not required for our purposes.
It is evident from Eq. (11) that the value of PH |θ=0 changes
sinusoidally as φin is varied [32], i.e., Eq. (11) represents an
interference pattern. Here we have chosen θ = 0 to maximize
the contribution from the interference term (general expres-
sions are given in Appendix D).

Equation (11) shows that the visibility depends on the
parameter δ that one can fully control in an experiment. We
set δ = δH such that the visibility attains its minimum nonzero
value, i.e., cos(χ + 2δH ) = 1. The expression for PH then
becomes

PH |δ=δH
θ=0 = 1 − η

4
+ ηIH

2
+ |b1||b2|ηIH sin(φin + φ0), (12)

and consequently the visibility is given by [33]

VH |δ=δH
θ=0 = 4|b1||b2|ηIH

2ηIH + 1 − η
. (13)

Likewise, we find that the visibility of the single-photon inter-
ference pattern for V polarization is

VV |δ=δV
θ=0 = 4|b1||b2|η(1 − IH )

1 + η − 2ηIH
, (14)

where δV plays the same role as δH in Eq. (13).
We now consider the remaining cases where the sig-

nal photon is projected onto diagonal (D), antidiagonal (A),
right-circular (R), and left-circular (L) polarizations. General
expressions for single-photon counting rates for all these

cases are given in Appendix D. Using those expressions
[Eqs. (D5a)–(D5d)], we obtain the corresponding formulas for
visibility as

VD|θ=π/4 = VA|θ=π/4

= 2|b1||b2|ηI
√

IH IV
√

2 + 2 cos(χ ′ − 2δ) (15)

and

VR|θ=π/4 = VL|θ=π/4

= 2|b1||b2|ηI
√

IH IV
√

2 − 2 cos(χ ′ − 2δ), (16)

where χ ′ is given in Appendix D (its explicit form is not
required for our purposes).

Equations (13)–(16) show that all parameters that charac-
terize the entanglement appear in the expressions for visibility
for H , V , D, A, R, and L polarizations. In other words, the
information about the entanglement is contained in the single-
photon interference patterns obtained by detecting one of the
qubits only.

C. Entanglement verification and measurement

We now show how to test the PPT criterion and to measure
the concurrence from the single-photon interference patterns.
It follows from Eqs. (2) and (3) that it is enough to repre-
sent η and ηI

√
IH IV in terms of experimentally measurable

quantities. We show below that these two quantities can be
directly obtained from the expressions for visibilities given in
Sec. IV B. In other words, we do not need to determine all
state parameters (η, IH , and I ) individually.

We first express |b1||b2| in terms of experimentally measur-
able quantities. We recall that |b1|2 and |b2|2 are probabilities
of emission from sources Q1 and Q2, respectively. Suppose
that P(1)

μ is the probability of detecting a signal photon with
polarization μ (μ = H,V ) when the signal beam S2 emerging
from Q2 is blocked. Likewise, P(2)

μ is the detection probability
when signal beam S1 is blocked. We thus have

|b1||b2| =
√

P(1)
μ P(2)

μ

P(1)
μ + P(2)

μ

. (17)

We now apply Eqs. (13) and (14) to determine η and find
that

η =
VV |δ=δV

θ=0 + VH |δ=δH
θ=0 − 1

|b1||b2|VH |δ=δH
θ=0 VV |δ=δV

θ=0

4|b1||b2| − VV |δ=δV
θ=0 − VH |δ=δH

θ=0

. (18)

It can be checked that when |b1| = |b2| = 1/
√

2, the right-
hand side of Eq. (18) becomes equal to 1 in the limit
VH |δ=δH

θ=0 → 1− and VV |δ=δV
θ=0 → 1−. In this limit, the gener-

alized Werner state [Eq. (1)] reduces to the generalization of
Bell states considered in Refs. [16,17], for which η = 1.

Using Eqs. (17) and (18), one can immediately express η

in terms of experimentally measurable quantities.
To determine the quantity ηI

√
IH IV , we eliminate the

cosine terms from Eqs. (15) and (16) by squaring and adding
them. It then immediately follows that

ηI
√

IH IV = 1

4|b1||b2|
√

(VD|θ=π/4)2 + (VR|θ=π/4)2. (19)
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TABLE I. Numerical results illustrating entanglement verification for five quantum states through single-photon interference.

State (η,I , IH ) VR|θ=π/4 VD|θ=π/4 VV |δ=δV
θ=0 VH |δ=δH

θ=0 PPT criterion Concurrence

ρ̂1 (0.0, −, −) 0.00 0.00 0.00 0.00 separable 0.00
ρ̂2 (0.2, 1.0, 0.5) 0.08 0.18 0.20 0.20 separable 0.00
ρ̂3 (0.6, 0.8, 0.3) 0.17 0.41 0.67 0.47 entangled 0.24
ρ̂4 (0.7, 1.0, 0.5) 0.27 0.64 0.70 0.70 entangled 0.55
ρ̂5 (1.0, 1.0, 0.5) 0.38 0.92 1.00 1.00 entangled 1.00

Using Eqs. (17) and (19), we can readily express ηI
√

IH IV
in terms of photon counting rates and visibilities of single-
photon interference patterns.

To test the PPT criterion, we express the eigenvalue α1

[Eq. (2)] in terms of experimentally measurable quantities.
Using Eqs. (2) and (17)–(19), we find that

α1 = 1 − VHV − 4VDR

4
, (20)

where we have denoted the right-hand sides of Eqs. (18) and
(19) by VHV and VDR, respectively. According to the PPT
criterion, the state ρ̂ [Eq. (1)] is entangled if and only if
α1 < 0, that is, the state is entangled if and only if

VHV + 4VDR > 1. (21)

We illustrate the PPT criterion by choosing five quantum
states (ρ̂1, . . . , ρ̂5) in Table I. The criterion is tested using
Eq. (21). For simplicity, we assume that |b1| = |b2| = 1/

√
2.

To compute visibilities for D and R polarizations, we choose
χ ′ − 2δ = π/4. It should be noted that the entanglement does
not depend on the value of χ ′ − 2δ [see Eqs. (15)–(19)].

The state ρ̂1 is chosen to be fully mixed. (Note that in this
case η = 0 and values of I and IH are irrelevant.) Applying
Eq. (21), we find that ρ̂1 is separable, as one would expect.
The state ρ̂2 is chosen as a Werner state with η = 0.2 < 1

3 and
this state is found to be separable, as expected. We choose
ρ̂3 as an entangled mixed state and we find that Eq. (21)
verifies that it is entangled. The density matrix ρ̂4 represents
a Werner state for which η = 0.7 > 1

3 . We find this state to
be entangled. Finally, the state ρ̂5 is chosen to be the Bell
state |�+〉 = (|HIHS〉 + |VIVS〉)/

√
2. As expected, the state is

entangled according to Eq. (21).
In order to express the concurrence in terms of experimen-

tally measurable quantities, we substitute from Eqs. (18) and
(19) into Eq. (3) and find that

C(ρ̂ ) = max

{
0,

VHV + 4VDR − 1

2

}
, (22)

where VHV and VDR represent right-hand sides of Eqs. (18)
and (19), respectively. Equation (22) shows that the concur-
rence of the two-qubit mixed state can be determined from
visibilities of the interference patterns obtained by detecting
only one of the qubits.

To illustrate Eq. (22), we consider the five quantum states
(ρ̂1, . . . , ρ̂5) given in Table I and choose |b1| = |b2| = 1/

√
2

for simplicity. We determine the concurrence of these states
using two methods: (i) using the state parameters [i.e., using
Eq. (3); the corresponding values of the concurrence are given
in Table I] and (ii) using the values of visibilities [i.e, the

formula max{0, (VHV + 4VDR − 1)/2}]. In Fig. 3 we plot the
values of concurrence obtained by method (i) against the
values obtained by method (ii) and find that they lie on the
straight line predicted by Eq. (22).

We have thus shown that it is possible to test the PPT
criterion and measure concurrence for a two-qubit generalized
Werner state without detecting one of the qubits.

We have expressed the PPT criterion and the concurrence
in terms of interference visibilities to be consistent with ex-
isting results [16]. We note that they can be equivalently
expressed in terms of detection probabilities [see Appendix E,
Eqs. (E6) and (E7)]. The latter approach results in simpler
theoretical treatment of the problem in the presence of exper-
imental losses (Appendix G).

We stress that all state parameters (η, IH , and I ) are
not required to be determined for verifying and measuring
entanglement, although they can be determined from the
single-photon interference patterns. Equation (18) [or, equiv-
alently, Eq. (E2) of Appendix E] provides an expression for η.
Expressions for IH and I are given by Eqs. (F1) and (F2) in
Appendix F.

FIG. 3. Concurrence of five generalized Werner states (Table I)
determined using single-photon visibilities. Simulated data points
(circles) represent the concurrence computed using state parameters
[Eq. (3)] and the formula max{0, (VHV + 4VDR − 1)/2}. (Data points
for ρ̂1 and ρ̂2 coincide.) All simulated data points lie on the straight
line predicted by Eq. (22), showing that the concurrence can be
determined from single-photon visibilities.
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TABLE II. Numerical results illustrating entanglement measurement in the presence of experimental imperfections. Imperfections are
characterized by choosing TH = 0.25 and TV = 0.35. See Appendix G for notations and further details.

State (η, I , IH ) P̃HV P̄DR PPT criterion Concurrence

ρ̂1 (0.0,−, −) 0.00 0.00 separable 0.00
ρ̂2 (0.2, 1.0, 0.5) 0.20 0.10 separable 0.00
ρ̂3 (0.6, 0.8, 0.3) 0.6 0.22 entangled 0.24
ρ̂4 (0.7, 1.0, 0.5) 0.69 0.35 entangled 0.55
ρ̂5 (1.0, 1.0, 0.5) 1.00 0.50 entangled 1.00

V. COMPARISON WITH EXISTING RESULTS

In order to put our work into context with existing
work, we now compare our results to those presented in
Refs. [16,17]. The entanglement of quantum states considered
in Refs. [16,17] is fully characterized by one coherence term
(off-diagonal element) of the density matrix. Consequently,
such states are entangled if VD|θ=π/4 �= 0 or VR|θ=π/4 �= 0 and
vice versa [16,17]. This is no longer the case for generalized
Werner states, as illustrated by state ρ̂2 in Table I. State ρ̂2 is
characterized by state parameters η = 0.2, I = 1, and IH =
0.5. We find that this state is separable (not entangled) even
if VD|θ=π/4 �= 0 and VR|θ=π/4 �= 0. Furthermore, for the states
considered in Refs. [16,17], one does not require measuring
visibilities for H and V polarized signal photons to charac-
terize entanglement in a lossless scenario: Measurements in
the H/V basis are required only to account for experimental
losses. On the contrary, our results show that measurements in
the H/V basis are absolutely essential for characterizing en-
tanglement of a generalized Werner state even in the absence
of experimental losses.

VI. TREATING EXPERIMENTAL IMPERFECTIONS

In an experiment, numerous imperfections may appear.
However, results of Ref. [17] show that most dominant ones
are the misalignment of idler beams and loss of idler photons
between the two sources. These imperfections need separate
attention because they result in the loss of interference visi-
bility that cannot be compensated in any way. They can be
effectively modeled by the action of an attenuator (e.g., neu-
tral density filter or any absorptive plate) that has polarization-
dependent transmissivity, characterized by TH and TV .

In Appendix G we provide a detailed analysis showing how
to treat such experimental imperfections. We represent the
PPT criterion and the concurrence in terms of experimentally
measurable quantities by taking these imperfections into ac-
count. Equations (G20) and (G21) of Appendix G display the
corresponding formulas. Considering the five quantum states
given by Table I, we test the PPT criterion and determine
their concurrence in the presence of high experimental loss
(see Table II) and find that the results are identical to those
presented in Table I and Fig. 3. Our analysis thus shows that
the proposed method is experimentally implementable and
resistant to experimental losses.

VII. SUMMARY AND CONCLUSIONS

It is a common perception that one must detect both pho-
tons to measure entanglement of a two-photon mixed state.

Only recently has it been demonstrated that by the application
of quantum indistinguishability by path identity [22] it is pos-
sible to measure entanglement in a special class of two-qubit
mixed states without detecting one of the qubits [16,17]. We
have generalized the method to cover a wider class of states.
In particular, we have shown how to measure entanglement in
a two-qubit generalized Werner state without detecting one of
the qubits and without employing coincidence measurement
or postselection. Our analysis shows that the generalization
requires nontrivial adaptation of the previously introduced
measurement procedure, especially when experimental imper-
fections are present. Our work also marks an important step
toward the generalization of this unique method to an arbitrary
two-qubit mixed state.

To demonstrate our method, we have chosen generalized
Werner states that are obtained by generalizing and adding
noise to two Bell states |�+〉 and |�−〉 (see Sec. II). It is
straightforward to show that our method also applies to gener-
alized Werner states obtained from the other two Bell states.

In a recent publication [30] Zhan proposed to extend the
measurement procedure introduced in Refs. [16,17] to mixed
high-dimensional Bell states. We expect that our work will
inspire novel proposals to measure entanglement (without
detecting all entangled particles) of high-dimensional gen-
eralized Werner states. We hope that the resulting methods
will contribute toward reducing the resource requirement for
entanglement measurement of high-dimensional entangled
states.

Finally, since our analysis is based on quantum field the-
ory, it can in principle be extended to nonphotonic quantum
states. As the method relies on detection of only one of the
two entangled particles, it can be practically advantageous
when adequate detectors are not available for both entangled
particles.
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APPENDIX A: THE PPT CRITERION EIGENVALUES

We obtain a partial transposition of the density matrix ρ̂

[Eq. (1)] by taking the transposition with respect to only one
of the photons. It can be readily found that the eigenvalues of
the resulting matrix are

α1 = 1 − η − 4ηI
√

IH IV
4

, (A1a)
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α2 = 1 − η + 4ηI
√

IH IV
4

, (A1b)

α3 = 1 + 3η − 4ηIH

4
, (A1c)

α4 = 1 − η + 4ηIH

4
. (A1d)

We show below that only α1 can take negative values and the
remaining eigenvalues must be non-negative.

Since 0 � IH � 1 and IV = 1 − IH , we must have 0 �√
IH IV � 1

2 . Furthermore, since 0 � I � 1, we obtain the
condition

0 � I
√

IH IV � 1
2 . (A2)

Applying the condition (A2) to Eq. (A1a), we immediately
find that

1 − 3η

4
� α1 � 1 − η

4
. (A3)

The expression on the left-hand side of the inequality (A3) is
negative when η > 1

3 , that is, the lower bound of α1 can be
negative. For example, if one sets IH = 1

2 , I = 1, and η = 2
3 ,

one finds from Eq. (A1a) that α1 = − 1
4 .

We now consider eigenvalue α2. We note that 1 − η � 0
and 4ηI

√
IH IV � 0. It now becomes evident from Eq. (A1b)

that α2 � 0.
Using Eq. (A1c), we can express α3 in the form

α3 = 1 − ηIH

4
+ 3η(1 − IH )

4
. (A4)

Since 0 � η � 1 and 0 � IH � 1, it immediately follows that
α3 � 0.

Finally, since 1 − η � 0 and 4ηIH � 0, we readily obtain
from Eq. (A1d) that α4 � 0.

APPENDIX B: DERIVATION OF EQ. (3)

The concurrence is determined following the prescription
given in [21]. First, the spin-flipped density matrix ˆ̃ρ is
determined using the formula

ˆ̃ρ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y), (B1)

where σ̂y is the second Pauli matrix, ⊗ represents the Kro-
necker product, the asterisk implies complex conjugation, and
ρ̂ is given by Eq. (1). It is well known that ρ̂ ˆ̃ρ has only
non-negative eigenvalues [21]. We denote these eigenvalues
by λ2

1, λ2
2, λ2

3, and λ2
4. We find these eigenvalues to be given by

λ2
1 = λ2

2 = (1 − η)2

16
, (B2a)

λ2
3 = (1 − η)2

16
+ c1 − c2, (B2b)

λ2
4 = (1 − η)2

16
+ c1 + c2, (B2c)

where

c1 = η

4
(1 − η) + η2IH IV (1 + I 2), (B3a)

c2 = ηI

2

√
IH IV [1 + 2η − η2(3 − 16IH IV )]. (B3b)

It is evident from Eqs. (B3a) and (B3b) that c1 � 0 and
c2 � 0. Therefore, we have from Eqs. (B2a)–(B2c) that λ4 �
λ3 and λ4 � λ1 = λ2. Consequently, the standard formula
for the concurrence C(ρ̂ ) = max{λ4 − λ3 − λ2 − λ1, 0} [21]
becomes

C(ρ̂ ) = max{λ4 − λ3 − 2λ1, 0}, (B4)

where λ1, . . . , λ4 are positive square roots of λ2
1, . . . , λ

2
4.

We now observe from Eqs. (A1a) and (B2) that the follow-
ing relation holds:[

λ2
4 + λ2

3 − 4(λ1 − α1)2]2 = 4λ2
4λ

2
3. (B5)

It immediately follows from Eq. (B5) that

λ4 − λ3 − 2λ1 = −2α1. (B6)

Combining Eqs. (A1a), (B4), and (B6), we immediately ob-
tain the concurrence formula given by Eq. (3).

APPENDIX C: TWO-PHOTON DENSITY MATRIX

We briefly discuss the procedure of obtaining the two-
photon density matrix generated by our system. We start with
the generalized Werner state [Eq. (5)]

ρ̂ =
H,V∑
μ,ν

H,V∑
μ′,ν ′

〈μIνS|ρ̂|μ′
Iν

′
S〉|μIνS〉〈μ′

Iν
′
S|. (C1)

Without any loss of generality, an arbitrary element of this
density matrix can be expressed in the form

〈μIνS|ρ̂|μ′
Iν

′
S〉 = CμνCμ′ν ′Jμ′ν ′

μν exp
(
iφμ′ν ′

μν

)
, (C2)

where each quantity on the right-hand side is defined
as follows. The real and non-negative quantity Cμν =√〈μIνS|ρ̂|μIνS〉 represents the square root of a diagonal el-
ement of ρ̂. The quantity Jμ′ν ′

μν is also non-negative and given
by the following properties: (i) Jμ′ν ′

μν = Jμν

μ′ν ′ ; (ii) Jμ′ν ′
μν = 1 for

all diagonal elements, i.e., for μ = μ′ and ν = ν ′; (iii) for
μ �= μ′, ν �= ν ′, μ = ν, and μ′ = ν ′, it takes the form

JVV
HH = JHH

VV = 4I η
√

IH IV√
(1 − η + 4ηIH )(1 − η + 4ηIV )

; (C3)

and (iv) Jμ′ν ′
μν = 0 for the remaining cases. Phases φμ′ν ′

μν in
Eq. (C2) obey the relations φμ′ν ′

μν = −φ
μν

μ′ν ′ and φVV
HH = −φ;

the values of φμ′ν ′
μν for other choices of μ, ν, μ′, and ν ′ are

irrelevant since the corresponding matrix elements are zero.
The quantum state given by Eqs. (C1)–(C3) is generated by
an individual source.

We first consider the case in which the idler beams are not
aligned. In our system, the two sources are mutually coherent
and they emit in such a way that there is never more than one
photon pair simultaneously. A prescription to write down the
quantum state in such a scenario is given in Ref. [16]. Follow-
ing this prescription, we find that the state jointly generated
by the two sources is represented by the 8 × 8 density matrix

ρ̂ ′′ =
1,2∑
j,k

b∗
jbk

H,V∑
μ,ν

H,V∑
μ′,ν ′

CμνC∗
μ′ν ′Jμ′ν ′

μν exp
(
iφ

μ′
jν

′
j

μkνk

)
× |μIk νSk 〉〈μ′

I j
ν ′

S j
|, (C4)
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where j = 1, 2 and k = 1, 2 label the two sources, |bj |2 is the
probability of emission from source Qj (i.e., |b1|2 + |b2|2 =
1), quantities Cμν and Jμ′ν ′

μν are defined below Eq. (C2),

φ
μ′

jν
′
j

μkνk = −φ
μkνk

μ′
jν

′
j
, and φ

μ′
jν

′
j

μ jν j = φμ′ν ′
μν .

When the idler beams are aligned and the unitary transfor-
mation [Eq. (4)] is performed on the state of the idler photon
between Q1 and Q2, the transformations of kets are given by

Eqs. (6a) and (6b). We rewrite these equations in the form

|μI2〉 = e−iφI

H,V∑
λ

U ∗
μλ|λI1〉, (C5)

where Uμλ represents matrix elements of the unitary trans-
formation given by Eq. (4). The two-photon quantum state
ρ̂ ( f ) generated by our system is obtained by substituting from
Eq. (C5) into Eq. (C4) and it is given by

ρ̂ ( f ) = |b1|2
H,V∑
μ,ν

[
ηIμ|μI1 , μS1〉〈μI1 , μS1 | + (

I η
√

IH IV e−iφ |HI1 , HS1〉〈VI1 ,VS1 | + H.c.
) + 1 − η

4
|μI1 , νS1〉〈μI1 , νS1 |

]

+ |b2|2
H,V∑
μ,ν

[
ηIμ

H,V∑
λ,λ′

U ∗
μλUμλ′ |λI1 , μS2〉〈λ′

I1, μS2 | +
(

H,V∑
λ,λ′

I η
√

IH IV e−iφU ∗
HλUV λ′ |λI1 , HS2〉〈λ′

I1,VS2 | + H.c.

)

+ 1 − η

4

H,V∑
λ,λ′

U ∗
μλUμλ′ |λI1 , νS2〉〈λ′

I1, νS2 |
]

+
{

eiφI b1b∗
2

[
H,V∑
μ,ν

(
H,V∑
λ

ηIμeiφ
μ2μ2
μ1μ1 Uμλ|μI1 , μS1〉〈λI1 , μS2 |

+ 1 − η

4

H,V∑
λ

eiφ
μ2ν2
μ1ν1 Uμλ|μI1 , νS1〉〈λI1 , νS2 |

)
+ I η

√
IH IV

H,V∑
μ �=ν

H,V∑
λ

eiφ
ν2ν2
μ1μ1 Uνλ|μI1 , μS1〉〈λI1 , νS2 |

]
+ H.c.

}
. (C6)

APPENDIX D: GENERAL EXPRESSIONS FOR SIGNAL
PHOTON DETECTION PROBABILITIES (PHOTON

COUNTING RATES)

We obtain the detection probability Pμ of a signal photon
with polarization μ (where μ = H,V, D, A, R, L) at an output
of the BS (Fig. 2) using Eqs. (7)–(10). When the signal photon
is projected onto the |HS〉 polarization state, we have from
these equations

PH = 1 − η

4
+ ηIH

2
+ |b1||b2|

[
sin

(
φin + φ

H2H2
H1H1

− δ
)

×
(

ηIH + 1 − η

4

)
−

(
1 − η

4

)
sin

(
φin + φ

V2H2
V1H1

+ δ
)]

× cos(2θ ), (D1)

where φin = arg(b1) − arg(b2) + φI − φS . We now note the
trigonometric identity

u sin x + v sin(x + α)

= (u2 + v2 + 2uv cos α)1/2 sin(x + β ), (D2)

where tan β = u sin α/(u + v cos α). Now using Eqs. (D1)
and (D2), we find that

PH = 1 − η

4
+ ηIH

2
+ |b1||b2| cos(2θ )

[(
ηIH + 1 − η

4

)2

+
(

1 − η

4

)2

− 2

(
ηIH + 1 − η

4

)(
1 − η

4

)

× cos(χ + 2δ)

]1/2

sin(φin + φ0), (D3)

where χ = φ
V2H2
V1H1

− φ
H2H2
H1H1

, φ0 = φ
H2H2
H1H1

− δ + ε1, and ε1 is
analogous to β in Eq. (D2). It can readily checked that
Eq. (D3) reduces to Eq. (11) when θ = 0.

Following the same procedure, we determine the detection
probability (i.e., the single-photon counting rate) when the
signal photon is projected onto the |VS〉 polarization state. We
find it to be given by

PV = 1 − η

4
+ ηIV

2
+ |b1||b2| cos(2θ )

[(
ηIV + 1 − η

4

)2

+
(

1 − η

4

)2

− 2

(
ηIV + 1 − η

4

)(
1 − η

4

)

× cos(χ ′′ + 2δ)

]1/2

sin(φin + φ1), (D4)

where χ ′′ = φ
V2V2
V1V1

− φ
H2V2
H1V1

, φ1 = φ
H2V2
H1V1

− δ + ε2, and ε2 is
analogous to β in Eq. (D2).

Likewise, using Eqs. (7)–(10), we determine the photon
counting rates corresponding to the polarization states |DS〉,
|AS〉, |RS〉, and |LS〉,

PD = 1

4
+ |b1||b2|

2

[
ηI

√
IH IV

√
2 + 2 cos(χ ′ − 2δ)

× sin
(
φin + φ

V2V2
H1H1

+ δ + ε3
)

sin 2θ + W cos 2θ
]
,

(D5a)

PA = 1

4
+ |b1||b2|

2

[−ηI
√

IH IV
√

2 + 2 cos(χ ′ − 2δ)

× sin
(
φin + φ

V2V2
H1H1

+ δ + ε3
)

sin 2θ + W cos 2θ
]
,

(D5b)
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PR = 1

4
+ |b1||b2|

2

[−ηI
√

IH IV
√

2 − 2 cos(χ ′ − 2δ)

× cos
(
φin + φ

V2V2
H1H1

+ δ + ε4
)

sin 2θ + W cos 2θ
]
,

(D5c)

PL = 1

4
+ |b1||b2|

2

[
ηI

√
IH IV

√
2 − 2 cos(χ ′ − 2δ)

× cos
(
φin + φ

V2V2
H1H1

+ δ + ε4
)

sin 2θ + W cos 2θ
]
,

(D5d)

where φin = arg(b1) − arg(b2) + φI − φS , χ ′ = φ
H2H2
V1V1

−
φ

V2V2
H1H1

, ε3 and ε4 are analogous to β in Eq. (D2), and

W =
(

ηIH + 1 − η

4

)
sin

(
φin + φ

H2H2
H1H1

− δ
)

− 1 − η

4

[
sin

(
φin + φ

V2H2
V1H1

+ δ
) − sin

(
φin + φ

H2V2
H1V1

− δ
)]

−
(

ηIV + 1 − η

4

)
sin

(
φin + φ

V2V2
V1V1

+ δ
)
. (D6)

Expressions for visibility for D, A, R, and L polarizations
[Eqs. (15) and (16)] are obtained by setting θ = π/4 in
Eqs. (D5a)–(D5d), followed by application of the standard
formula for visibility.

APPENDIX E: ALTERNATIVE EXPRESSIONS FOR THE
PPT CRITERION AND CONCURRENCE

Here we express the PPT criterion and concurrence in
terms of single-photon detection probabilities. In Eqs. (D3)
and (D4) we set θ = 0 to maximize the contribution from the
interference term and choose δH and δV such that cos(χ +
2δH ) = 1 and cos(χ ′′ + 2δV ) = 1. Let us define

P(+)
μ = (

Pμ|δ=δμ

θ=0

)
max + (

Pμ|δ=δμ

θ=0

)
min, (E1a)

P(−)
μ = (

Pμ|δ=δμ

θ=0

)
max − (

Pμ|δ=δμ

θ=0

)
min, (E1b)

where μ = H,V and the maximum and minimum values of
Pμ|δ=δμ

θ=0 are obtained by varying the interferometric phase φin.
It readily follows from Eqs. (D3), (D4), (E1a), and (E1b) that

η = P(−)
H

|b1||b2| − 2P(+)
H + 1, (E2)

where H can be replaced by V and an expression for |b1||b2|
in terms of single-photon detection probabilities is given by
Eq. (17).

Likewise, for D, A, R, and L polarizations, we define

P(−)
ν = (Pν |θ=π/4)max − (Pν |θ=π/4)min, (E3)

where ν = D, A, R, L. Using Eqs. (D5a)–(D5d) and (E3), we
find that

ηI
√

IH IV = 1

2|b1||b2|
√(

P(−)
D

)2 + (
P(−)

R

)2
, (E4)

where |b1||b2| is given by Eq. (17). From Eqs. (2), (E2), and
(E4) we have

α1 = 1 − P̃H − 4P̄DR

4
, (E5)

where we have denoted the right-hand sides of Eqs. (E2) and
(E4) by P̃H and P̄DR, respectively. According to the PPT cri-
terion, the state ρ̂ [Eq. (1)] is entangled if and only if α1 < 0,
that is, if and only if

P̃H + 4P̄DR > 1, (E6)

where H , D, and R can be replaced by V , A, and L respectively.
In order to express the concurrence in terms of single-photon
detection probabilities, we substitute from Eqs. (E4) and (E2)
into Eq. (3) and find that

C(ρ̂) = max

{
0,

P̃H + 4P̄DR − 1

2

}
, (E7)

where H , D, and R can be replaced by V , A, and L, respec-
tively.

We have thus represented the PPT criterion and concur-
rence in terms of single-photon detection probabilities. We
stress that Eqs. (E6) and (E7) are equivalent to Eqs. (21) and
(22), respectively.

APPENDIX F: EXPRESSIONS FOR IH AND I

In this Appendix we express state parameters IH and
I in terms of experimentally measurable quantities. Using
Eqs. (D3), (E1a), and (E1b), we find that

IH = P(−)
H

2P(−)
H + |b1||b2|

(
2 − 4P(+)

H

) , (F1)

where an expression for |b1||b2| in terms of experimentally
measurable quantities is given by Eq. (17).

Using Eqs. (E2) and (E4), we find that

I = P̄DR

P̃H
√

IH (1 − IH )
, (F2)

where P̃H and P̄DR are the right-hand sides of Eqs. (E2) and
(E4), respectively, and we have used the relation IV = 1 − IH .
Now substituting from Eq. (F1) into Eq. (F2), we can obtain an
expression for I in terms of experimentally measurable quan-
tities. Equation (F2) shows that when P̃H = 0 (i.e., η = 0)
and/or IH = 0, 1, no meaningful value of I can be obtained.
This is because in these cases all off-diagonal terms of the
density matrix [Eq. (1)] are zero for all values of I , that is,
obtaining a value for I becomes irrelevant in these cases.

APPENDIX G: EFFECTS OF EXPERIMENTAL
IMPERFECTIONS

1. Modeling experimental imperfections

Both the misalignment of idler beams and polarization-
dependent loss of idler photons between the two sources
can be effectively modeled by the action of an attenuator
(e.g., neutral density filter or any absorptive plate) that has
polarization-dependent transmissivity (Fig. 4). Suppose that
the amplitude transmission coefficient of the attenuator for
horizontal (H) and vertical (V ) polarizations are TH and TV ,
respectively. Without any loss of generality it can be assumed
that TH and TV are real quantities obeying relations 0 � TH �
1 and 0 � TV � 1. We show below (see Appendix G 5) that
both TH and TV can be determined from experimental data.
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FIG. 4. Entanglement measurement scheme in the presence of
experimental imperfections. The misalignment of idler beams and
loss of idler photons between the two sources (Q1 and Q2) is modeled
by an attenuator with polarization dependent transmissivity. Here
TH and TV are amplitude transmission coefficients of the attenuator
corresponding to H and V polarizations. The remaining symbols are
identical to those in Fig. 2.

2. Alignment of idler beams

It was shown in Ref. [14] that the action of an attenuator on
the idler field is mathematically equivalent to that of a beam
splitter with a single input. Therefore, the imperfections in
idler beam alignment together with the unitary transformation
[Eq. (4)] result in the transformation of the quantum field
representing an idler photon (see also [16])

âHI2
= eiφI

[
TH e−iδ

(
âHI1

cos 2θ + âVI1
sin 2θ

)] + RH âH0 ,

(G1a)

âVI2
= eiφI

[
TV eiδ

(
âHI1

sin 2θ − âVI1
cos 2θ

)] + RV âV0 ,

(G1b)

where â represents a photon annihilation operator such that
â†

μI j
|vac〉 = |μI j 〉, with μ = H,V and j = 1, 2, the operator

âμ0 can be interpreted as the field of a lost photon, Rμ =√
1 − T 2

μ , and φI is the phase change due to propagation from
Q1 to Q2. Equations (G1a) and (G1b) result in the transforma-
tion of kets

|HI2〉 = e−iφI [TH eiδ (|HI1〉 cos 2θ + |VI1〉 sin 2θ )] + RH |H0〉,
(G2a)

|VI2〉 = e−iφI [TV e−iδ (|HI1〉 sin 2θ − |VI1〉 cos 2θ )] + RV |V0〉,
(G2b)

where |μ0〉 = â†
μ0

|vac〉 represents the absorbed photon with
polarization μ. It can be readily checked that Eqs. (G2a)
and (G2b) reduce to Eqs. (6a) and (6b), respectively, when
TH = TV = 1 and RH = RV = 0, i.e., when there are no ex-
perimental imperfections.

3. Determining the density matrix

In order to obtain the quantum state ρ̂ ( f ) generated by
our system (before reaching the BS) we substitute from
Eqs. (G2a) and (G2b) into Eq. (C4) (i.e., the density ma-
trix in the case with unaligned idler beams) and we find
that

ρ̂ ( f ) = |b1|2
H,V∑
μ,ν

(
ηIμ|μI1 , μS1〉〈μI1 , μS1 | + (

I η
√

IH IV e−iφ |HI1 , HS1〉〈VI1 ,VS1 | + H.c.
) + 1 − η

4
|μI1 , νS1〉〈μI1 , νS1 |

)

+ |b2|2
H,V∑
μ,ν

[
ηIμ

(
H,V∑
λ,λ′

U ∗
μλUμλ′T 2

μ |λI1, μS2〉〈λ′
I1
, μS2 | +

H,V∑
λ′

TμRμ(Uμλ′ |μ0, μS2〉〈λ′
I1
, μS2 | + H.c.)

+ R2
μ|μ0, μS2〉〈μ0, μS2 |

)
+

(
H,V∑
λ,λ′

I η
√

IH IV e−iφ (U ∗
HλUV λ′TH TV |λI1, HS2〉〈λ′

I1
,VS2 |

+ U ∗
HλTH RV |λI1, HS2〉〈V0,VS2 | + UV λ′RH TV |H0, HS2〉〈λ′

I1,VS2 | + RH RV |H0, HS2〉〈V0,VS2 |) + H.c.

)

+ 1 − η

4

(
H,V∑
λ,λ′

U ∗
μλUμλ′T 2

μ |λI1, νS2〉〈λ′
I1
, νS2 | +

H,V∑
λ′

TμRμ(Uμλ′ |μ0, νS2〉〈λ′
I1
, νS2 | + H.c.) + R2

μ|μ0, νS2〉〈μ0, νS2 |
)]

+
{

eiφI b1b∗
2

[
H,V∑
μ,ν

(
H,V∑
λ

ηIμeiφ
μ2μ2
μ1μ1 (TμUμλ|μI1 , μS1〉〈λI1 , μS2 | + Rμ|μI1 , μS1〉〈μ0, μS2 |)

+ 1 − η

4

H,V∑
λ

eiφ
μ2ν2
μ1ν1 (TμUμλ|μI1 , νS1〉〈λI1 , νS2 | + Rμ|μI1 , νS1〉〈μ0, νS2 |)

)

+ I η
√

IH IV

H,V∑
μ �=ν

eiφ
ν2ν2
μ1μ1

H,V∑
λ

(TνUνλ|μI1 , μS1〉〈λI1 , νS2 | + Rν |μI1 , μS1〉〈ν0, νS2 |)
]

+ H.c.

}
. (G3)

It can be verified that when TH = TV = 1 and RH = RV = 0, Eq. (G3) reduces to Eq. (C6).
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The reduced density matrix ρ̂S , representing a signal photon before reaching the BS, is obtained by taking the partial trace of
ρ̂ ( f ) over the subspace of the idler photon and the loss modes. The reduced density matrix is found to be

ρ̂S = K (η, IH )(|b1|2|HS1〉〈HS1| + |b2|2|HS2〉〈HS2|) + K (η, IV )(|b1|2|VS1〉〈VS1| + |b2|2|VS2〉〈VS2|)
+ (b1b∗

2eiφI {[L (η, IH , δ, TH , TV )|HS1〉〈HS2| + L ′(η, IV , δ, TH , TV )|VS1〉〈VS2|] cos 2θ

+ ηI
√

IH IV [�(δ)TV |HS1〉〈VS2| + �′(δ)TH |VS1〉〈HS2|] sin 2θ} + H.c.), (G4)

where H.c. represents the Hermitian conjugation, K (η, I ) = ηI + (1 − η)/2, �(δ) = exp[i(φV2,V2
H1,H1

+ δ)], �′(δ) = exp[i(φH2,H2
V1,V1

−
δ)], and

L (η, IH , δ, TH , TV ) = M(η, IH )TH exp
[
i
(
φ

H2,H2
H1,H1

− δ
)] − N (η)TV exp

[
i
(
φ

V2,H2
V1,H1

+ δ
)]

, (G5a)

L ′(η, IV , δ, TH , TV ) = N (η)TH exp
[
i
(
φ

H2,V2
H1,V1

− δ
)] − M(η, IV )TV exp

[
i
(
φ

V2,V2
V1,V1

+ δ
)]

, (G5b)

with M(η, I ) = (4ηI + 1 − η)/4 and N (η) = (1 − η)/4. It
can once again be checked that Eqs. (G4) and (G5) reduce to
Eqs. (7) and (8), respectively, when there are no experimental
imperfections (i.e., TH = TV = 1 and RH = RV = 0).

4. Obtaining detection probability of a signal photon

The probability of detecting a signal photon emerging from
the BS is obtained by applying Eqs. (9) and (10) and using
Eq. (G4) for the expression for the density matrix. When the
signal photon is projected onto the |HS〉 polarization state, the
probability of its detection is given by

PH = 1 − η

4
+ ηIH

2
+ |b1||b2|

{[
TH

(
ηIH + 1 − η

4

)]2

+
[

TV

(
1 − η

4

)]2

− 2TH TV

(
ηIH + 1 − η

4

)(
1 − η

4

)

× cos(χ + 2δ)

}1/2

cos(2θ ) sin(φin + φ0), (G6)

where φin = arg(b1) − arg(b2) + φI − φS , χ = φ
V2H2
V1H1

−
φ

H2H2
H1H1

, and φ0 = φ
H2H2
H1H1

− δ + ε1, with ε1 analogous to β in
Eq. (D2). It can be readily checked that Eq. (G6) reduces
to Eq. (D3) when TH = TV = 1. Similarly, when the signal
photon is projected onto the |VS〉 polarization state, the
probability of its detection is given by

PV = 1 − η

4
+ ηIV

2
+ |b1||b2|

[
T 2

V

(
ηIV + 1 − η

4

)2

+ T 2
H

(
1 − η

4

)2

− 2TH TV

(
ηIV + 1 − η

4

)(
1 − η

4

)

× cos(χ ′′ + 2δ)

]1/2

cos(2θ ) sin(φin + φ1), (G7)

where φin is given below Eq. (G6), χ ′′ = φ
V2V2
V1V1

− φ
H2V2
H1V1

, and

φ1 = φ
H2V2
H1V1

− δ + ε2, with ε2 analogous to ε1. For D, A, R,
and L polarizations, we get likewise

PD = 1

4
+ |b1||b2|

2

[
W̃ cos 2θ + ηI

√
IH IV sin 2θ

×
√

T 2
H + T 2

V + 2TH TV cos(χ ′ − 2δ)

× sin
(
φin + φ

V2V2
H1H1

+ δ + ε3
)]

, (G8a)

PA = 1

4
+ |b1||b2|

2

[
W̃ cos 2θ − ηI

√
IH IV sin 2θ

×
√

T 2
H + T 2

V + 2TH TV cos(χ ′ − 2δ)

× sin
(
φin + φ

V2V2
H1H1

+ δ + ε3
)]

, (G8b)

PR = 1

4
+ |b1||b2|

2

[
W̃ cos 2θ − ηI

√
IH IV sin 2θ

×
√

T 2
H + T 2

V − 2TH TV cos(χ ′ − 2δ)

× cos
(
φin + φ

V2V2
H1H1

+ δ + ε4
)]

, (G8c)

PL = 1

4
+ |b1||b2|

2

[
W̃ cos 2θ + ηI

√
IH IV sin 2θ

×
√

T 2
H + T 2

V − 2TH TV cos(χ ′ − 2δ)

× cos
(
φin + φ

V2V2
H1H1

+ δ + ε4
)]

, (G8d)

where

W̃ =
(

ηIH + 1 − η

4

)
TH sin

(
φin + φ

H2H2
H1H1

− δ
) − 1 − η

4

× [
TV sin

(
φin + φ

V2H2
V1H1

+ δ
) − TH sin

(
φin + φ

H2V2
H1V1

− δ
)]

−
(

ηIV + 1 − η

4

)
TV sin

(
φin + φ

V2V2
V1V1

+ δ
)
. (G9)

It can be checked that all the expressions for detection prob-
abilities are fully consistent with those obtained assuming no
experimental imperfections.

5. Determination of TH and TV

We set θ = 0 in Eqs. (G6) and (G7) to maximize the con-
tribution from the interference term. We then choose δ = δH

and δ = δV for these two equations so that cos(χ + 2δH ) = 1
and cos(χ ′′ + 2δV ) = 1, respectively. Let us now define

P(+)
μ = (

Pμ|δ=δμ

θ=0

)
max + (

Pμ|δ=δμ

θ=0

)
min, (G10a)

P(−)
μ = (

Pμ|δ=δμ

θ=0

)
max − (

Pμ|δ=δμ

θ=0

)
min, (G10b)

where μ = H,V and the maximum and minimum values of
Pμ|δ=δμ

θ=0 are obtained by varying the interferometric phase φin.
Likewise, we can choose δ = δ′

H and δ = δ′
V so that cos(χ +
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2δ′
H ) = −1 and cos(χ ′′ + 2δ′

V ) = −1 and then define

P′(−)
μ = (

Pμ|δ=δ′
μ

θ=0

)
max − (

Pμ|δ=δ′
μ

θ=0

)
min, (G11)

where μ = H,V . Using Eqs. (G6), (G7), (G10a), (G10b), and
(G11), we obtain

P(+)
H = 1 − η

2
+ ηIH , (G12a)

P(−)
H = 2|b1||b2|

∣∣∣∣(TH − TV )
1 − η

4
+ THηIH

∣∣∣∣, (G12b)

P(+)
V = 1 − η

2
+ ηIV , (G12c)

P(−)
V = 2|b1||b2|

∣∣∣∣(TV − TH )
1 − η

4
+ TV ηIV

∣∣∣∣, (G12d)

P′(−)
H = 2|b1||b2|

(
(TH + TV )

1 − η

4
+ THηIH

)
, (G12e)

P′(−)
V = 2|b1||b2|

(
(TV + TH )

1 − η

4
+ TV ηIV

)
, (G12f)

where we recall that IV = 1 − IH .
From the set of equations (G12a)–(G12f), we can al-

ways find four linearly independent equations [e.g., (G12b),
(G12d), (G12e), and (G12f)] that involve four unknowns TH ,
TV , η, and IH . Therefore, it is always possible to obtain unique
solutions for TH and TV , i.e., experimental imperfections can
be quantitatively characterized from the measurement data.
We however do not go into the details of finding TH and TV

since it is an experimental problem. The fact that TH and TV

can be determined is enough for our purposes. We treat TH

and TV as experimentally measurable quantities.

6. Testing the PPT criterion and determining the concurrence

If TH � TV , we find, using Eqs. (17), (G12a), and (G12b),
that

η = 2P(−)
H + |b1||b2|

(
TH + TV − 4P(+)

H TH
)

|b1||b2|(TV + TH )
. (G13)

Similarly, if TH � TV , we obtain the following expression
using Eqs. (17), (G12c), and (G12d):

η = 2P(−)
V + |b1||b2|

(
TV + TH − 4P(+)

V TV
)

|b1||b2|(TH + TV )
. (G14)

It can be checked using Eqs. (G12a)–(G12d) that when TH =
TV , Eqs. (G13) and (G14) become identical to each other.
Combining Eqs. (G13) and (G14), we express η in terms of
experimentally measurable quantities as

η =

⎧⎪⎨
⎪⎩

2P(−)
H +|b1||b2|(TH +TV −4P(+)

H TH )
|b1||b2|(TV +TH ) if TH � TV

2P(−)
V +|b1||b2|(TV +TH −4P(+)

V TV )
|b1||b2|(TH +TV ) if TH � TV ,

(G15)

where an expression for |b1||b2| in terms of experimentally
measurable quantities is given by Eq. (17).

We now set θ = π/4 in Eqs. (G8a)–(G8d). In analogy with
Eq. (G10b), we define

P(−)
ν = (Pν |θ=π/4)max − (Pν |θ=π/4)min, (G16)

where ν = D, A, R, L. Now from Eqs. (G8a)–(G8d) and (G16)
we have

P(−)
D = P(−)

A =
√

T 2
H + T 2

V + 2TH TV cos(χ ′ − 2δ)

× |b1||b2|ηI
√

IH IV , (G17a)

P(−)
R = P(−)

L =
√

T 2
H + T 2

V − 2TH TV cos(χ ′ − 2δ)

× |b1||b2|ηI
√

IH IV . (G17b)

Solving using Eqs. (G17a) and (G17b), we get

ηI
√

IH IV =
√

2
[(

P(−)
D

)2 + (
P(−)

R

)2]
2|b1||b2|

√
T 2

H + T 2
V

, (G18)

where |b1||b2| is given by Eq. (17).
To test the PPT criterion, we express the eigenvalue α1

[Eq. (2)] in terms of experimentally measurable quantities.
Using Eqs. (2), (17), (G15), and (G18), we find that

α1 = 1 − P̃HV (TH , TV ) − 4P̄DR

4
, (G19)

where P̃HV and P̄DR are right-hand sides of Eqs. (G15) and
(G18), respectively. According to the PPT criterion, the state
ρ̂ [Eq. (1)] is entangled if and only if α1 < 0, that is, the state
is entangled if and only if

P̃HV (TH , TV ) + 4P̄DR > 1. (G20)

It can be readily checked that Eq. (G20) reduces to Eq. (E6)
when TH = TV = 1. In other words, it becomes equivalent to
Eq. (21) when there are no experimental imperfections.

To numerically illustrate our results, we choose the same
five quantum states (ρ̂1, . . . , ρ̂5) considered in Table I. We
consider a high-loss scenario in which TH = 0.25 and TV =
0.35. We test whether these states are entangled using
Eq. (G20) and present the results in Table II. We find that the
results are identical to those found assuming the absence of
experimental imperfections.

In order to express the concurrence in terms of experi-
mentally measurable quantities, we substitute from Eqs. (17),
(G18), and (G15) into Eq. (3) and find that

C(ρ̂ ) = max

{
0,

P̃HV (TH , TV ) + 4P̄DR − 1

2

}
, (G21)

where P̃HV and P̄DR are right-hand sides of Eqs. (G15) and
(G18) respectively. It can be readily checked that when TH =
TV = 1, Eq. (G21) reduces to Eq. (E7). In other words, it is
fully equivalent to Eq. (22) in the absence of experimental
imperfections.

We numerically illustrate the formula for the concurrence
using the same five quantum states used for testing the PPT
criterion. Using Eq. (G21), we determine the concurrence of
these states for TH = 0.25 and TV = 0.35. The results are dis-
played in the rightmost column of Table II. They are identical
to those obtained assuming no experimental imperfections in
the main text.

The results of this Appendix thus establish that the tech-
nique is resistant to experimental imperfections.
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