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Observation of the knot topology of non-Hermitian systems in a single spin
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The non-Hermiticity of the system gives rise to distinct knot topology that has no Hermitian counterpart. Here,
we report a comprehensive study of the knot topology in gapped non-Hermitian systems based on the universal
dilation method with a long-coherence-time nitrogen-vacancy center in a 12C isotope purified diamond. Both the
braiding patterns of energy bands and the eigenstate topology are revealed. Furthermore, the global biorthogonal
Berry phase related to the eigenstate topology has been successfully observed, which identifies the topological
invariance for the non-Hermitian system. Our method paves the way for further exploration of the interplay
among band braiding, eigenstate topology, and symmetries in non-Hermitian quantum systems.
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I. INTRODUCTION

The non-Hermitian (NH) Hamiltonian has drawn intensive
attention [1–7] due to its application in photonic [8–18] and
acoustic [19–21] systems with gain and loss, open quantum
systems [22–25], and condensed-matter systems of quasipar-
ticles with finite lifetimes [26–29]. In contrast to Hermitian
systems, topological structures that are exclusive to NH sys-
tems give birth to many intriguing phenomena like NH bulk
boundary correspondence [30] and NH skin effects [31]. The
emergence of NH nodal phases and gapped phases as well as
their interplay with symmetry also adds new ingredients for
NH topological band theory [1]. Understanding the topology
introduced by NH physics helps one to explore topologically
robust quantities and nontrivial edge states. All these uncom-
mon phenomena provide insights into NH systems.

More recently, researchers have found a framework based
on homotopy theory [32–34] to classify the non-Hermitian
topological phases. Compared with the K-theory [3], this clas-
sification method does not need to assume specific symmetries
and can reveal more topological invariants. To be precise,
the Hamiltonian can be regarded as a mapping from the
Brillouin zone to the space of energy bands and eigenstates.
Thus the classification is done by finding all topologically
nonequivalent mappings. Each class of mapping corresponds
to a topological phase with a specific topological invariant.
The non-Hermiticity of the Hamiltonian can generate complex
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eigenvalues, which can constitute the knot structures. The
whole classification set of NH systems with knot topology
is decomposed into several sectors, based on the braiding of
eigenvalues, and each sector can be further classified with the
eigenstate topology [34].

There are several experimental studies recently aiming at
revealing the knot topology of the NH systems. For example,
the braiding structure of energy bands has been observed in
optical [35], mechanical [36], and trapped ion [37] systems.
A comprehensive demonstration of the knot topology, espe-
cially the essential information from the eigenstate topology,
requires coherent evolution under the NH Hamiltonian. It is
difficult to realize NH Hamiltonians in quantum systems since
closed systems are generally governed by Hermitian Hamilto-
nians. Apart from the difficulty in realizing a NH Hamiltonian,
the inevitable decoherence of the quantum system tends to
destroy the coherent evolution. In order to overcome these
difficulties, we applied the universal dilation method [38–41]
to realize the NH Hamiltonians and fabricated a 99.999% 12C
isotope purified sample in which the decoherence had been
significantly suppressed. Taking the one-dimensional (1D)
NH lattice model as an example, we experimentally studied
the knot topology in the NH Hamiltonian by measuring not
only its energy eigenvalues but also the corresponding eigen-
states to reveal the global Berry phase. Compared with the
NH topology shown in previous work [39] on the NV center,
which stems from encircling varying numbers of exceptional
points, the knot topology investigated in our work arises from
both the braiding of all energy bands and the eigenstate topol-
ogy. Our platform is capable of dealing with other models and
our results shed light on the complexity of topological features
aroused by non-Hermiticity.

2469-9926/2023/108(5)/052409(10) 052409-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8236-9527
https://orcid.org/0000-0001-6232-7234
https://orcid.org/0000-0001-8085-8012
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.052409&domain=pdf&date_stamp=2023-11-09
https://doi.org/10.1103/PhysRevA.108.052409


YANG WU et al. PHYSICAL REVIEW A 108, 052409 (2023)

FIG. 1. The knot topology of eigenvalues and eigenstates in a 1D
NH lattice model. (a) Part of the lattice with on-site (green), nearest
(yellow), and next-nearest (red) interaction. (b–d) Band structure and
the corresponding knot diagrams of three phases under different pa-
rameter configurations. The projection of eigenvalues on the complex
plane (dashed lines) shows different topological structures. (b) Two
completely separated bands, which are similar to an insulator in the
Hermitian case. (c) Two bands exchange and the projection lines
merge into a whole circle. (d) Two bands encircle each other and
become the Hopf link. (e–g) The eigenstates show the same pattern
as the corresponding energy bands.

II. THEORY AND METHODOLOGY

Here we consider a two-band NH 1D lattice model
[Fig. 1(a)] whose Hamiltonian may be written as

H(m) =
∑

j

[
�0+a jb

†
j + �0−a†

j b j

+
m∑

n=1

(
�n+

1 a jb
†
j+n + �n−

1 a†
j b j+n

+ �n+
2 a†

j+nb j + �n−
2 a j+nb†

j

)]
, (1)

where a j (b j ) is the annihilation operator of sublattice a (b) on
the jth site, and the �′s are complex numbers representing the
coupling strengths, i.e., �0± is the on-site interaction and �n±

1(2)
is the hopping between sublattice a (b) at site j and lattice
b (a) at site j + n. Under the periodic boundary condition, the
corresponding momentum space Hamiltonian is

H (m)(k) =
[

0 �0−

�0+ 0

]

+
m∑

n=1

[
0 �n−

1 eink + �n+
2 e−ink

�n+
1 e−ink + �n−

2 eink 0

]
.

(2)

This model holds plenty of topological phases under different
parameter configurations that ensure bands being separable.
For m = 1, i.e., the nearest coupling case, the system may be

in the unlink phase or the unknot phase. Because k = 0 and
2π are equivalent due to the periodic condition, the energy
bands form closed curves. When the parameters are set as
�0− = −0.45, �0+ = 0.79, �1−

1 = −0.30i, �1−
2 = 0.08i, and

�1+
1,2 = 0, the non-Hermitian system is in the unlink phase,

where the two circles are unrelated, as shown by Fig. 1(b). If
the parameters are changed to �0− = −0.21 and �0+ = 0.70,
the system will be in the unknot phase. There is only one
circle because the two bands exchange [Fig. 1(c)]. For m = 2,
the next-nearest coupling enriches the topological phases in
addition to the unlink phase and the unknot phase. When the
parameters are set as �0− = 0.04, �0+ = 0.49, �1−

1 = �1+
2 =

−0.13i, �1−
2 = �1+

1 = 0.02i, �2−
1 = −0.58i, �2+

2 = −0.21i,
�2+

1 = 0.03i, and �2−
2 = 0.09i, the two eigenvalues form a

nontrivial braiding structure. The energy bands braid around
each other exactly once and this gives the Hopf link phase
[Fig. 1(d)]. The eigenstates also exhibit behaviors similar
to those of the corresponding energy bands as shown in
Figs. 1(e), 1(f) and 1(g). For larger m, the energy bands may
braid more times, which leads to more phases. The classifica-
tion based on homotopy theory has shown that all phases of
this model are described by the braiding group B(2) [32,34].

We now study the topological phases of our model and
the corresponding topological invariants in a quantum system
based on the eigenvalues and eigenstates. Both the eigenvalues
and the eigenstates can be obtained from the evolution under
the NH Hamiltonian Hs(k) = H (m)(k). Let |ψ1,2(k)〉 (the k
dependence is omitted for simplicity in the following) be
the eigenstates with complex eigenvalues E1,2 = Er

1,2 + iE i
1,2,

where Er
n and Ei

n are real and imaginary parts of En, re-
spectively. For any initial state written as |ψ (0)〉 = c1 |ψ1〉 +
c2 |ψ2〉, the evolution governed by Hs(k) gives |ψ (t )〉 ∝
c1e−iEr

1 t+Ei
1t |ψ1〉 + c2e−iEr

2 t+Ei
2t |ψ2〉. Without loss of general-

ity, we assume Ei
1 > Ei

2. The eigenvalues can be extracted
from the time evolution of the populations of |ψ1,2〉, and the
steady state of NH evolution will be the eigenstate |ψ1〉 since
Ei

1 is larger than Ei
2. By implementing evolution governed by

−Hs, the eigenstate |ψ2〉 can be obtained, which is due to
−Ei

2 > −Ei
1 for −Hs.

The evolution under the NH Hamiltonian Hs(k) can be re-
alized based on the universal dilation method. The state of the
system |ψ (t )〉 needs to evolve as i∂t |ψ (t )〉 = Hs(k) |ψ (t )〉.
By introducing an ancilla, the NH evolution can be realized
in a subspace while the total Hamiltonian Htot is Hermitian.
The initial state that reads |0〉s |−〉a + η(0) |0〉s |+〉a evolves to
|ψ (t )〉s |−〉a + η(t ) |ψ (t )〉s |+〉a under the Hamiltonian Htot ,
where |±〉 are eigenstates of σy and η(t ) is a properly chosen
time-dependent operator. Thus, in the |−〉a subspace, apart
from a normalization constant, the evolution is strictly gov-
erned by Hs(k).

We use a single nitrogen-vacancy (NV) center in diamond
to experimentally realize the momentum space NH Hamilto-
nian for different phases with k ∈ [0, 2π ] (see Appendix A for
details of the experimental setup). The NV center is a type of
point defect in diamond that is composed of a nitrogen atom
and a neighbor vacancy as shown in Fig. 2(a). The ground
state of the NV center is a triplet state with an electronic
spin S = 1 that interacts with the nuclear spin I = 1 of the
substitutional 14N. We construct the dilated Hamiltonian Htot
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FIG. 2. Realization of the NH Hamiltonian in the NV center.
(a) Simplified atomic structure of an NV center. Light cyan balls are
carbon atoms, the yellow ball is a nitrogen atom, and the purple one
is a vacancy. (b) Four used energy levels of the NV ground state with
hyperfine and nuclear quadrupolar interaction. Microwave pulses
with different frequencies can be applied to selectively drive the elec-
tron spin in the |mI = 1, 0〉 subspace. Similarly, the radio-frequency
(rf) field is used to selectively control the nuclear spin. (c) Dephasing
time of the NV center in our experiment. Fitting of luminescence
in the Ramsey experiment shows that T �

2 = 78(7) µs, which is long
enough to maintain coherence in our experiment. (d) The pulse
sequence of our experiment. State preparation is realized by laser
pumping and an rf π/2 pulse Rφ (π/2) with the phase φ depending on
η0. The evolution under Htot is realized by two selective MW pulses
with time-dependent amplitude, frequency, and phase. Experimental
results for the Hopf link phase; k = 0.6π are shown in panels (e) and
(f). (e) Dynamics of the population. (f) Real and imaginary parts of
the MLE results for the final state of evolution. Green (light gray)
bars are theoretical predictions and blue (dark gray) bars with error
bars are experimental results.

in the subspace spanned by the states |mS, mI〉 = |0, 1〉, |0, 0〉,
|−1, 1〉, and |−1, 0〉 as shown in Fig. 2(b). The energy levels
are relabeled as |1〉e |1〉n, |1〉e |0〉n, |0〉e |1〉n, and |0〉e |0〉n, re-
spectively. The electron spin is chosen to be the system and
nuclear spin serves as the ancilla.

The pulse sequence used to realize the evolution under the
NH Hamiltonian is shown in Fig. 2(d). The external static
magnetic field was set to be 506 G. The state of the NV
center was polarized to |0〉e |1〉n by 532-nm laser pulses [42].
After polarization, the initial state is prepared by the rf π/2
pulse Rφ (π/2), where the rotation axis lies in the XY plane
and φ = atan[(η2

0 − 1)/2η0] + π/2 is the angle between the
rotation axis and the x axis. Here we have chosen η(0) = η0I .
The evolution under Htot is realized by applying two selective
microwave (MW) pulses, and the coherent evolution should
be long enough to drive the system to a steady state. To this
end, Hs is multiplied by an overall coefficient λ to speed up the
evolution and preserve the coherence. The strength of the MW
pulses is proportional to the value of λ. However, too strong
MW pulses may cause strong crosstalk between different sub-
spaces. One possible solution is to use a strongly coupled 13C

nuclear spin. For the NV centers in diamond with 12C natural
abundance, if one chooses λ to maintain coherence, the system
cannot reach the steady state because of crosstalk. Or if one
overcomes the crosstalk by using weak MW pulses, the re-
quired evolution time is so long that the coherence will greatly
decrease during evolution (see Appendix C). Therefore, it is
challenging to study the knot topological features of NH sys-
tems with a 12C natural abundance diamond. To address this
issue, we synthesized a diamond with 99.999% 12C isotope
abundance by the chemical vapor deposition method. With
this sample, the dephasing time of the NV center utilized in
our experiment is T �

2 = 78(7) µs, as shown in Fig. 2(c). Such
a long coherence time enables us to realize evolution under the
NH Hamiltonian during which the coherence is preserved and
the crosstalk is suppressed. To realize the evolution under Htot ,
we choose a proper rotating frame and use two selective mi-
crowave sequences with time-dependent amplitude and phase
(see Appendix B). The eigenvalues are extracted from the
population information by setting Ri = I in the measurement
sequence. The eigenstates of the NH Hamiltonian are recon-
structed by applying Ri = I , R−y(π/2), and R−x(π/2) to the
final state of evolution. Before readout of the photolumines-
cence ratio, we apply an rf π/2 pulse, which changes the basis
of the ancilla from |±〉n to |0, 1〉n. Finally, selective π pulses
are applied to reverse the population of electrons or nuclear
spin to get a set of equations that relate photoluminescence
intensities to populations of each level. Solving this equation,
the populations are obtained.

Both eigenvalues and eigenstates can be obtained from the
measurement sequences. When Ri = I , we obtain a set of pop-
ulations at different times by varying the evolution time under
Htot . Renormalizing the population as P1 = P|1〉e|1〉n

/(P|1〉e|1〉n
+

P|0〉e|1〉n
) gives the evolution of P1 under the NH Hamiltonian.

The corresponding quasimomentum k can be extracted by
fitting P1 under fixed model parameters. Figure 2(e) shows
the result for the Hopf link phase with k = 0.6π . The pop-
ulation evolution agrees with the theoretical prediction and
gives kfit = 0.59(7)π . The eigenvalues can thus be computed
from kfit and model parameters. By measuring the populations
under different bases, we obtain the expectation 〈σx,y,z〉. Then
we can reconstruct the steady state by ρ = (I + 〈�σ 〉 �σ )/2,
but the direct result may give a mixed state or even an
unphysical state. Thus, we use the maximum likelihood esti-
mation (MLE) to obtain a pure state close to the eigenstate
(see Appendix D). Figure 2(f) shows the real and imagi-
nary parts of the measured state and theoretical results for
k = 0.6π in the Hopf link phase. Here ρ1 = |ψ1〉 〈ψ1| is the
density matrix corresponding to |ψ1〉. The fidelity is 99% for
this state. All other states are obtained by following the same
procedure and the fidelities are all higher than 97%.

III. RESULTS

The experimentally measured eigenvalues of different
phases for various k are plotted in Fig. 3. The B(2) braiding
behavior is characterized by the following definition of the
winding number [35]:

ν =
∫ 2π

0

dk

2π i

d

dk
lnDet

{
H (m)(k) − 1

2
Tr[H (m)(k)]

}
. (3)
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(a) (b) (c)

FIG. 3. Experimental results of energy eigenvalues for different
phases. Green (light gray) and blue (dark gray) points are experimen-
tal results for each band. Lines correspond to theoretical predictions.
(a) Unlink phase with wingding number ν = 0. (b) Unknot phase
with ν = 1. (c) Hopf link phase with ν = 2.

This number ν reflects how many times the energy bands
are braided. The term Tr[H (m)(k)]/2 here can eliminate the
dependence on the choice of reference energy [35]. So, the
winding number defined in Eq. (3) only captures the mu-
tual braiding of the eigenvalues under investigation. Every
element of B(2) can be expressed as τ n, where n is an in-
teger and τ is the generator. The one-to-one correspondence
of ν = n exactly describes the B(2) behavior. When m = 1,
�0− = −0.45, �0+ = 0.79, �1−

1 = −0.30i, �1−
2 = 0.08i, and

�1+
1,2 = 0, the system is in the unlink phase [Fig. 3(a)]. The

eigenvalues form two separated curves and ν = 0 in this
phase. The two circles can be separated by a line, Im(E ) = 0,
for example. This is just like a normal insulator in the Her-
mitian case. If we set the parameters as �0− = −0.21 and
�0+ = 0.70, the system will be in the unknot phase, as shown
by Fig. 3(b). The two bands interchange as k goes from 0
to 2π and in this phase ν = 1. Note that k = 0 and 2π are
equivalent points and in this phase E1(0) = E2(2π ). Thus, two
energy bands form a whole circle instead of two circles. For
m = 2 and �0− = 0.04, �0+ = 0.49, �1−

1 = �1+
2 = −0.13i,

�1−
2 = �1+

1 = 0.02i, �2−
1 = −0.58i, �2+

2 = −0.21i, �2+
1 =

0.03i, and �2−
2 = 0.09i, the eigenvalues form a nontrivial

braiding pattern [Fig. 3(c)] and in this phase ν = 2. The two
bands encircle each other and form a structure called the Hopf
link. Although in this phase each band forms a circle, they
cannot be separated by any line in the complex energy plane
as done in the unlink phase.

Apart from the nontrivial topology of the energy bands, the
global Berry phase determined by the eigenstates was also ob-
served. The global Berry phase is Q = ∫ 2π

0 Tr[A(k)]dk, where
the non-Abelian Berry connection is defined as Amn(k) =
i 〈χm(k)|∂k|ψn(k)〉 [43]. Here |ψn(k)〉 (|χm(k)〉) are right (left)
eigenstates of an NH Hamiltonian and satisfy the biorthogonal
relation 〈χm(k)|ψn(k)〉 = δmn. The global Berry phase Q can
identify topological invariance in our model [43]. For the
unlink, unknot, and Hopf link phases, Qideal = 0, π , and 2π ,
respectively. Figure 4 shows the measured eigenstates pro-
jected on the XY plane and they show the same behavior as the
eigenvalues. In the unlink phase, |ψ1,2(k)〉 form two separated
circles on the Bloch sphere, and so are the projections on the
XY plane. In the unknot phase, the eigenstates form an end-
to-end circle instead, just as the energy bands exchange each
other. While in the Hopf link phase, each eigenstate forms
a closed loop, and the two loops intersect each other. After
obtaining |ψ1,2(k)〉 from MLE, |χ1,2(k)〉 can be solved from
the biorthogonal relation. The experimental value of Q can

(a) (b) (c)

FIG. 4. Experimental results of the eigenstates projected on the
XY plane and the global Berry phase for each phase. Dashed lines
are theoretical predictions. (a) The eigenstates are separated in two
regions for the unlink phase. The measured global Berry phase is
Q = 0.00(2)π . (b) The eigenstates form a circle for the unknot phase
with Q = 1.03(2)π . (c) Each eigenstate forms a closed loop, and the
two loops intersect each other for the Hopf link phase. The Berry
phase is measured to be Q = 2.00(3)π .

be obtained with the method in Ref. [44] via Q = ∑
i,n ImDn

i ,
where Dn

i = ln 〈χn(ki+1)|ψn(ki )〉 and n = 1 and 2 is the band
index. The experimental results of Q for the unlink, unknot,
and Hopf link phases are 0.00(2)π , 1.03(2)π , and 2.00(3)π ,
respectively, which agree well with theoretical predictions.
Generally speaking, for n-band models with eigenvalues {Ei}
and starting at k = 0, the ordered set (E1, E2, . . . , En) goes
to (Eσ (1), Eσ (2), . . . , Eσ (n) ) as k varies to 2π . Then we have
eiQ = (−1)P(σ ), where P(σ ) is the parity of the permutation.
For our case, both the unlink phase and the Hopf link phase
have even parity since each band returns to itself as k goes
from 0 to 2π . Thus, in these two phases Q = 0 (mod 2π ).
Since the energy bands of the unknot phase exchange each
other, the parity is odd with Q = π (mod 2π ).

IV. CONCLUSION

In conclusion, we have experimentally investigated the
knot topology in a 1D NH model based on both eigenvalues
and eigenstates. The knot structures of eigenvalues, including
the unlink, unknot and Hopf link phases, were successfully
observed, which manifest the B(2) braid group behavior. The
global Berry phase was measured via high-fidelity eigenstates,
which served as the knot invariant to identify the parity of
band braiding. Our work makes the NV center a desirable
platform for investigating important non-Hermitian topology.
The universality of our dilation method for arbitrary dimen-
sional cases and the ground-state three-level structure of the
NV center make it possible to explore the knot topology
of three-band models. For 1D models with three bands, the
knotted topological phases are described by the conjugate
classes of B(3) [33], which host richer topological behaviors
since B(N ) is not commutative when N > 2. By introducing
more momentum space parameters such as �k = (kx, ky, kz ),
our platform can be utilized to investigate the knot topology
of higher-dimensional NH models [32,34].
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FIG. 5. The hardware setup in our experiment. Both MW and rf
pulses were generated by the AWG and an IQ modulator was utilized
to adjust the frequency of MW pulses to the transition frequency we
needed. The pulses were fed by the same coplanar waveguide after
being amplified by amplifiers. The 532-nm laser was used to polarize
and readout the spin state of the NV center. The on/off of the laser
beam was controlled by an AOM. The fluorescence (650–800 nm)
from the NV center passed the objective and was collected by an
APD. The timing for our experiment was controlled by the arbitrary
sequence generator (ASG).
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APPENDIX A: EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 5. The diamond
was mounted on a confocal setup, and the static magnetic
field of 506 G was provided by a permanent magnet along
the NV symmetry axis. The initialization and the readout of
the NV center spin were realized with a 532-nm green laser
controlled by an acousto-optic modulator (AOM) (ISOMET,
AOMO 3200-121). The laser beam traveled twice through the
acousto-optic modulator before going through an oil objective
(Olympus, PLAPON 60*O, NA 1.42) and then focusing on
the NV center. The phonon sideband fluorescence (wave-
length, 650–800 nm) went through the same oil objective
and was collected by an avalanche photodiode (PerkinElmer,
SPCM-AQRH-14) with a counter card (NI, PCIe-6612).

The radio-frequency (rf) pulses were generated by an ar-
bitrary wave-form generator (CIQTEK AWG4100) and were
amplified by a power amplifier (Mini-Circuits, LZY-22+). The
microwave (MW) pulses were generated by the same arbitrary

wave-form generator (AWG). The bandwidth of the arbi-
trary wave-form generator is 0–330 MHz, which is far from
the resonant frequency (about 1.47 GHz). Thus, the pulses
were mixed with continuous 1.6-GHz output from a wave
source (RIGOL, DSG3065B) using an IQ modulator (Marki,
IQ1545LMP). Then the pulses passed a PIN (Mini-Circuits,
ZASWA-2-50DRA+) and an amplifier (Mini-Circuits, ZHL-
15W-422-S+). Finally both the MW and rf pulses were fed
by the same coplanar waveguide after passing the diplexer
(Marki, DPX-0R5). The wave forms of MW and rf pulses
were prepared in advance and were downloaded to the AWG.
An arbitrary sequence generator (CIQTEK ASG8100) was
utilized to control the timing in experiment by the trigger
signals designed in advance.

APPENDIX B: UNIVERSAL DILATION METHOD

We use the universal dilation method to construct the NH
Hamiltonian [38]. Intuitively, by introducing an ancilla system
and tuning their interaction in a time-dependent way, the target
system obeys the evolution governed by the NH Hamiltonian
Hs. The detail can be found in Ref. [38]. For an NH Hamilto-
nian Hs, the dilated Hamiltonian Hs,a takes the form

Hs,a = �(t ) ⊗ I + �(t ) ⊗ σz, (B1)

where I is the identity matrix and σz is the Pauli operator
on the ancilla. �(t ) and �(t ) are operators on the system
written as �(t ) = {Hs(t ) + [i d

dt η(t ) + η(t )Hs(t )]η(t )}M−1(t )
and �(t ) = i[Hs(t )η(t ) − η(t )Hs(t ) − i d

dt η(t )]M−1(t ). Here
M(t ) = η(t )†η(t ) + I , and M(t ) satisfies the following equa-
tion:

i
d

dt
M(t ) = H†

s (t )M(t ) − M(t )Hs(t ). (B2)

Now we focus on the realization of Hs,a in the NV center.
The ground state of the NV center can be described by the
Hamiltonian

HNV = 2π
(
DS2

z + ωeSz + QI2
z + ωnIz + ASzIz

)
, (B3)

where Sz (Iz ) is the spin-1 operator of the electron (nuclear)
spin, D = 2.87 GHz is the zero field splitting for the elec-
tron, ωe (ωn) is the electron (nuclear) Zeeman term induced
by the magnetic field applied along the NV symmetry axis,
Q = −4.95 MHz is the nuclear quadrupolar interaction, and
A = −2.16 MHz is the hyperfine interaction. We construct the
dilated Hamiltonian Htot in the subspace spanned by the states
|mS, mI〉 = |0, 1〉, |0, 0〉, |−1, 1〉, and |−1, 0〉. The Hamilto-
nian in this subspace can be simplified to

H0 = π

[
−

(
D − ωe − A

2

)
σz ⊗ I

+
(

Q + ωn − A

2

)
I ⊗ σz + A

2
σz ⊗ σz

]
. (B4)

To facilitate the construction of Hs,a(t ), we further decompose
Hs,a(t ) as

Hs,a = B1I ⊗ I + A1σx ⊗ I + B2σy ⊗ I + B3σz ⊗ I

+ A2I ⊗ σz + B4σx ⊗ σz + A3σy ⊗ σz + A4σz ⊗ σz,

(B5)
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where Ai and Bi are time-dependent coefficients. We apply
selective MW pulses to cast the control Hamiltonian:

Hc(t ) = 2π�1(t ) cos

[∫ t

0
ω1(τ )dτ + φ1(t )

]
σx ⊗ |1〉n 〈1|

+ 2π�2(t ) cos

[∫ t

0
ω2(τ )dτ + φ2(t )

]
σx ⊗ |0〉n 〈0| .

(B6)

In order to realize Hs,a, we choose the rotating frame with the
following form:

Urot = ei
∫ t

0 H0−B1(τ )I⊗I−B3(τ )σz⊗I−A2(τ )I⊗σz−A4(τ )σz⊗σzdτ . (B7)

Thus, the Hamiltonian in the rotating frame can be
written as

Htot = Urot (H0 + Hc)U †
rot − iUrot

dU †
rot

dt

= B1I ⊗ I + B3σz ⊗ I + A2I ⊗ σz + A4σz ⊗ σz

+ 2π�1 cos

(
φ1 +

∫ t

0
ω1

)
cos

(∫ t

0
ω̃1 + 2B3 + 2A4

)
σx ⊗ |1〉n 〈1|

+ 2π�1 cos

(
φ1 +

∫ t

0
ω1

)
sin

(∫ t

0
ω̃1 + 2B3 + 2A4

)
σy ⊗ |1〉n 〈1|

+ 2π�2 cos

(
φ2 +

∫ t

0
ω2

)
cos

(∫ t

0
ω̃2 + 2B3 − 2A4

)
σx ⊗ |0〉n 〈0|

+ 2π�2 cos

(
φ2 +

∫ t

0
ω2

)
sin

(∫ t

0
ω̃2 + 2B3 − 2A4

)
σy ⊗ |0〉n 〈0| . (B8)

We have omitted the t dependence and the integral variable for simplicity, and ω̃1 (ω̃2) is the transition frequency of between
|0, 1〉 and |−1, 1〉 (|0, 0〉 and |−1, 0〉). In order to reduce Htot to Hs,a under the rotating-wave approximation, the amplitudes,
frequencies, and phases should satisfy ω1 = ω̃1 + 2B3 + 2A4, ω2 = ω̃2 + 2B3 − 2A4, and

π

2
(�1 cos φ1 + �2 cos φ2) = A1,

π

2
(�1 cos φ1 − �2 cos φ2) = B4,

π

2
(−�1 sin φ1 − �2 sin φ2) = B2,

π

2
(−�1 sin φ1 + �2 sin φ2) = A3. (B9)

The solution reads

�1 =
√

(A1 + B4)2 + (B2 + A3)2

π
,

�2 =
√

(A1 − B4)2 + (−B2 + A3)2

π
,

φ1 = atan2(−B2 − A3, A1 + B4),

φ2 = atan2(A3 − B2, A1 − B4).

(B10)

As an example, the result for the Hopf link phase with k = 1.65π is shown in Fig. 6. The target NH Hamiltonian is

H (2)(k) =
[

0 �0−

�0+ 0

]
+

2∑
n=1

[
0 �n−

1 eink + �n+
2 e−ink

�n+
1 e−ink + �n−

2 eink 0

]
, (B11)

where �0− = 0.04, �0+ = 0.49, �1−
1 = �1+

2 = −0.13i, �1−
2

= �1+
1 = 0.02i, �2−

1 = −0.58i, �2+
2 = −0.21i, �2+

1 = 0.03i,
�2−

2 = 0.09i, and k = 1.65π. Since the eigenvalues of the
Hamiltonian are complex, the state evolution shows a damp-
ing behavior and finally reaches one of the eigenstates of
the NH Hamiltonian Hs. The dilation procedure gives �i(t )
and φi(t ) to realize the dilated Hamiltonian Htot , as shown in

Fig. 6. For an intuitive interpretation, both �i(t ) and φi(t ) first
show a decay behavior and then almost remain unchanged.
When �i(t ) and φi(t ) are almost equal to their steady value,
they effectively act as a rotation along a specific axis deter-
mined by the eigenstate of the NH Hamiltonian in the target
subspace. The beginning decay part of the control Hamilto-
nian exactly drives the initial state to be parallel with this
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FIG. 6. The time-dependent amplitudes and phases of the control
pulses and the corresponding experimental result of the population
evolution. The results correspond to the Hopf link phase with k =
1.65π .

rotation axis. The final state thus remains unchanged (in the
target subspace) though �i is not zero. The measured popula-
tion evolution agrees well with this picture and the theoretical
predictions.

APPENDIX C: EFFECTS OF DEPHASING
AND CROSSTALK

The evolution under the NH Hamiltonian is mainly affected
by the dephasing and the crosstalk. Equation (B8) shows the
ideal case when the two MW pulses are selective. However,
in practice the operators in the control Hamiltonian Hc have
the form σx ⊗ I instead of σx ⊗ |1〉n 〈1|, and the decoherence
inevitably undermines the evolution. As mentioned in the
main text, one way is to use a strongly coupled 13C nuclear
spin. For a natural abundance diamond, the dephasing time
T �

2 ranges from 1 to 3 µs. We take T �
2 = 1.5 µs as a typical

value. The coupling strength AC between the 13C nuclear spin
and the electron spin is on the order of 10 MHz generally
and we take |AC | = 15 MHz. The simulation results of the
evolution under the σx basis for the Hopf link phase with
k = 0.85π and different λ′s are shown in Fig. 7. If one uses
weak driving to suppress the crosstalk, the evolution time
is 1.5 µs, which is comparable to the coherence time. The
decoherence drastically destroys the coherent evolution. The
population evolution under σx,y bases is shown in Figs. 7(a)
and 7(b), which greatly deviates from the ideal case. We

FIG. 7. Simulation results of population evolution corresponding
to the Hopf link phase with k = 0.85π in the σx (a, c, e) basis and
the σy (b, d, f) basis. (a–d) NV centers in diamond with 12C natural
abundance and different λ′s. (e, f) Our parameters and the NV center
in 12C purified diamond. The parameters are as follows: (a, b) λ =
2π × 850 kHz, T �

2 = 1.5 µs; (c, d) λ = 2π × 2550 kHz, T �
2 = 1.5

µs; and (e, f) A = −2.16 MHz, T �
2 = 78 µs, and λ = 2π × 85 kHz.

FIG. 8. Measurement sequences to reconstruct the state. Counts
C1–C9 are measured counts for each sequence.
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FIG. 9. Examples for measured states in each phase. (a, b) The Hopf link phase with k = 0.1π . Panel (a) shows the real and imaginary
parts for the one eigenstate, and panel (b) shows the real and imaginary parts of the other eigenstate of the same Hamiltonian. The arrangement
of other subfigures is similar. (c, d) The unknot phase with k = π . (e, f) The unlink phase with k = 0.6π .

use c = 〈σx〉2 + 〈σy〉2 to characterize the coherence. In this
parameter configuration, for the final state we have c = 0.65
and for the ideal case we have c = 0.97. Only about 67%
coherence is left. One may try to set a large value of λ under
which the time needed to reach the steady state is within the
coherence time. When λ/2π varies from 850 to 2550 kHz,
λ/|AC | increases from 0.057 to 0.17, and the evolution time
needed decreases from 1.7 to 0.6 µs. The pulses are no longer
selective and the evolution is significantly affected by the
crosstalk. As can be seen from Figs. 7(c) and 7(d), the system
can barely reach a steady state.

Another way is to use samples in which the NV center has
a long coherence time. For our sample, fitting of the lumi-
nescence in the Ramsey experiment shows that T �

2 = 78(7)
µs (see main text). Figures 7(e) and 7(f) show the simulation
results for our parameters where we take T �

2 = 78 µs. Here
A = −2.16 MHz is a typical value for the coupling strength
between the 14N nuclear spin and the electron spin. For this
parameter configuration, λ/|A| = 0.039. The deviation caused
by decoherence and crosstalk is about 0.03 and these effects
on the fidelity between the final states in experiments and the
ideal eigenstates can be ignored.

APPENDIX D: EXPERIMENTAL ACQUISITION
OF THE EIGENSTATES

For the final state of the evolution, nine different measure-
ment sequences are applied to reconstruct the state (Fig. 8).
Here Re(π ) is the π pulse on the electron spin in the |1〉n
subspace and Rn(π ) is the π pulse on the nuclear spin in the

|0〉e subspace. Re(π ) and Rn(π ) correspond to the transition
MW1 and RF2, respectively, in Fig. 2(d) of the main text.
The π/2 pulses rotate the electron spin in both spaces. We
use normalization sequences to obtain the photoluminescence
(PL) rate for each of the four levels [45]. The contribution
for the counts of each level is the PL rate multiplied by the
corresponding population. The count of each measurement
sequence equals the summation of the contribution over each
level. By solving the equations that relate the populations of
each level under different bases and counts for each measure-
ment sequence, we can obtain the expectation values 〈σx,y,z〉
of the final state.

From 〈σx,y,z〉 of the final state, we can directly recon-
struct ρ by ρ = (I + 〈�σ 〉 �σ )/2, but the direct result may
give a mixed state or even an unphysical state. Thus,
the maximum likelihood estimation has been utilized to
obtain the pure states from the experimental results. We
parametrize the pure state as (α |0〉e + βeiγ |−1〉e) |1〉n +
(δ |0〉e + εeiζ |−1〉e) |0〉n, where all parameters are real and
satisfy the normalization condition. Note that the measure-
ment result of each sequence is determined by the population
on each level. Since Rn(π ) and Re(π ) reverse the population
of the corresponding levels, the phase difference between the
two subspaces does not manifest in the measurement result.
Here we fix the coefficients of |0〉e to be real to eliminate the
irrelevant phase freedom, since we only need the results in the
|1〉n subspace. Then the expectation values for the nine counts
can be obtained from the PL rates p1,2,3,4 and the parameters
of the pure state, where we label the levels |mS, mI〉 = |0, 1〉,
|−1, 1〉, |0, 0〉, and |−1, 0〉 as 1, 2, 3, and 4 for simplicity.
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For example, the expectation values for the counts of the first
and second sequences read C̃1 = α2 p1 + β2 p2 + δ2 p3 + ε2 p4

and C̃2 = β2 p1 + α2 p2 + δ2 p3 + ε2 p4. Then the loss function
is chosen to be

L(α, β, γ , δ, ε, ζ ) =
9∑

i=1

(Ci − C̃i )
2, (D1)

where Ci are the measured counts for each sequence. Optimize
these parameters to minimize L and we obtain the pure state

αmin |0〉e + βmineiγmin |−1〉e up to a normalization factor. Here
the subscript means the parameters that minimize L. The
experimentally obtained fidelities of all the eigenstates exceed
0.97. Based on the model parameters given in the main text,
we show the results of some eigenstates ψ1,2 as examples in
Fig. 9. The corresponding fidelities are as follows: Hopf link,
1.00(7) and 1.00(6) for ψ1 and ψ2 (same below) at k = 0.1π ;
unknot, 1.00(2) and 1.00(3) at k = π ; and unlink, 1.00(3) and
1.00(3) at k = 0.6π .
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