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Near-term quantum devices generally suffer from shallow circuit depth and hence limited expressivity due
to noise and decoherence. To address this, we propose tensor-network-assisted parametrized quantum circuits,
which concatenate a classical tensor-network operator with a quantum circuit to effectively increase the circuit’s
expressivity without requiring a physically deeper circuit. We present a framework for tensor-network-assisted
variational quantum algorithms that can solve quantum many-body problems using shallower quantum circuits.
We demonstrate the efficiency of this approach by considering two examples of unitary matrix-product operators
and unitary tree tensor networks, showing that they can both be implemented efficiently. Through numerical
simulations, we show that the expressivity of these circuits is greatly enhanced with the assistance of tensor
networks. We apply our method to two-dimensional Ising models and one-dimensional time-crystal Hamiltonian
models with up to 16 qubits and demonstrate that our approach consistently outperforms conventional methods
using shallow quantum circuits.
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I. INTRODUCTION

Tensor networks (TNs) and parametrized quantum circuits
(PQCs) are powerful tools for representing quantum many-
body states in classical and quantum approaches, respectively.
The density-matrix renormalization-group algorithm, based
on TNs, has achieved great success in determining ground-
state properties for one-dimensional systems [1–3]. However,
the expressivity of TNs is limited by the area law with limited
bond dimensions. Parametrized quantum circuits, on the other
hand, offer a more natural representation of quantum states on
quantum computers, and many quantum algorithms [4,5] have
been proposed to take advantage of this. Nevertheless, near-
term quantum computers are inherently noisy, which could
also limit the circuit depth and expressivity of PQCs. There-
fore, finding systems with nontrivial entanglement structures,
such as strongly correlated matters and molecules, using either
TNs or PQCs, remains a challenging task.

Tensor networks and PQCs are commonly considered as
distinct classical and quantum computation methods, each
with its own set of advantages and limitations. While TNs
are relatively easy to implement, they have limited expres-
sivity due to the area law, while PQCs offer much larger
expressivity but are limited by noise and shallow circuit depth.
Nevertheless, TNs and PQCs have been shown to have close
interactions with each other. Parametrized quantum circuits,
for example, can be designed as classically unrealizable TNs
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with exponentially large bond dimensions [6–10]. At the same
time, TNs that are classically realizable can represent special
unitary operations and be used as a particular type of PQC.
This raises the question of whether we can integrate these two
methods under a unified framework.

Here we present a framework for tensor-network-assisted
variational quantum algorithms. Our proposal involves
a tensor-network–parametrized quantum circuit (TN-PQC)
framework, which consist of a standard PQC with an ap-
pended TN unitary operator. By augmenting the PQC with
the TN unitary operator, which mainly performs classi-
cal rotations of the Hamiltonian, the TN-PQC framework
can significantly enhance circuit depth and thereby improve
expressiveness without requiring the physical implementa-
tion of deeper circuits. We then proceed to examine three
key questions pertaining to our framework: (i) how to de-
sign the TN-PQC structure, (ii) optimization strategies for
the TN-PQC structure, and (iii) the comparative benefits
of this hybrid architecture. To address (i), we present two
examples of unitary matrix-product operator (uMPO) and
unitary tree tensor network (uTTN) and demonstrate their
efficacy. We address (ii) with various optimization strate-
gies and tackle (iii) through numerical experiments. We
implement our method to numerically estimate the ground
energy of the 2D Ising model with 16 qubits and the 1D
time-crystal Hamiltonian with 11–16 qubits. We compare
the performance of the TN-PQC (uMPO), TN-PQC (uTTN),
and VQE algorithms. Our numerical results highlight the
significant advantages of TN-PQC methods over conven-
tional methods, with the TN-PQC (uMPO) method exhibiting
the best performance, suggesting the benefits of uMPO
integration.
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This paper is organized as follows. In Sec. II we provide
an overview of the TN and VQE. In Sec. III we present our
TN-PQC framework, accompanied by a theoretical analysis
of its expressivity, and introduce two optimization strategies.
In Sec. IV we present numerical experiments involving two
specific TNs, which confirm the advantages of our proposed
framework in terms of expressiveness, reduction in the num-
ber of VQE layers, and robustness to noise. We summarize in
Sec. V.

Related work. Several hybrid networks have been proposed
to enhance the capabilities of the VQE [11,12]. Shang et al.
[11] proposed a hybrid algorithm that embedded the Clifford
circuit into the VQE algorithm. Since Clifford gates are uni-
tary and can be simulated in polynomial time, they can be
used to provide a unitary transformation to the Hamiltonian H ,
denoted by H → Uc(θ )HU †

c (θ ), where Uc(θ ) is selected from
the Clifford group, thus leading to a more powerful hybrid
Ansatz. Zhang et al. [12] enhanced the capability of the Ansatz
by combining a shallow parametrized quantum circuit with
classical neural networks. Rudolph et al. [13] introduced clas-
sical tensor networks to assist PQC initialization. Yuan et al.
[14] proposed hybrid tensor networks to enhance quantum
simulation.

II. BACKGROUND

This section provides an introduction to the concepts that
are relevant to this paper, including the variational quantum
eigensolver, tensor networks, unitary tensor networks, and the
representation of Hamiltonians.

A. Variational quantum eigensolver

In order to harness the potential of noisy intermediate-scale
quantum (NISQ) devices, the variational quantum eigensolver
has received widespread attention [15–18]. The VQE relies on
the Rayleigh-Ritz variational principle [19] to enable quantum
computers to optimize the lowest possible expectation value
of the trial wave function as an approximation to the ground-
state energy of a quantum system.

As a hybrid quantum-classical approach, VQE algorithms
follow the typical paradigm of updating a parametrized quan-
tum circuit using classical optimization methods to minimize
a given loss function. In recent years, there has been sig-
nificant development of VQE techniques, both theoretically
and experimentally, especially for applications in quantum
chemistry and physics within the NISQ era [18].

The scalability of NISQ quantum computing is currently
hindered by the presence of various types of noise, including
coherent and incoherent noise as well as measurement errors,
which accumulate as the quantum circuit depth increases. As
a result, the limited depth of quantum circuits restricts their
expressive power, preventing them from capturing nontrivial
ground-state entanglement structures for complex quantum
systems such as strongly correlated materials or molecules.
This dilemma can be framed as a trade-off between circuit
fidelity and expressivity, where the latter refers to a circuit’s
ability to generate a sufficient number of quantum states to
encompass the solution to a given problem. To overcome
these limitations, classical resources are becoming increas-

FIG. 1. Illustration of several common tensor networks.
(a) Matrix-product operator with N = 5. (b) Projected entangled-pair
operator. (c) Unitary matrix-product operator and its equivalent
MPO form. The left figure shows the structure of a uMPO, while
the right figure decomposes each block on the left using singular
value decomposition (SVD), resulting in an MPO with three layers.
(d) Structure of a unitary tree tensor network and its SVD form.

ingly necessary, and one such example is the use of tensor
networks in hybrid Ansätze [14] to aid in addressing these
recent obstacles to quantum computing.

B. Tensor network

Tensor networks are structured tensors constructed from
networks of smaller tensors. They are widely used to represent
quantum states or operators in quantum many-body systems
[20,21]. Legs in a network without connection are called
dangling legs. When all dangling legs represent distinct qubit
sites, the TN is called a tensor-network state. Alternatively,
if all dangling legs are divided into row and column indices,
the TN can be defined as a tensor-network operator. In this
paper, we focus on the latter case. There are several types
of TN structures, but we will mainly focus on matrix-product
operators (MPOs), which are used to represent lattice model
Hamiltonians, and unitary tensor networks (uTNs).

A matrix-product operator is a chain of interconnected
tensors, each with two dangling legs, as illustrated in Fig. 1(a).
Each block represents a (d × d × D × D)-dimensional tensor
with order 4, where d is the Hilbert space dimension of each
site and D is the bond dimension. In this paper we consider
qubit systems, where d = 2. Additionally, the bond dimension
D measures the complexity of the contraction of the MPO,
which can be estimated with O(ND3) time complexity, where
N is the length of the chain [22]. Figure 1(b) shows a graphical
representation of the projected entangled-pair operator [23],
where each layer is a 1D MPO with the same form as shown
in Fig. 1(a).

Tensor networks can also be used to represent transforma-
tions. A unitary tensor network (uTN) is a TN that becomes
an identity tensor when contracted with its complex conjugate
TN [24,25]. With the uTN structure, we can express the simi-
larity transformation of a unitary operator U on a Hamiltonian
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H , i.e., H ′ = U †HU , in tensor-network diagrams. One way to
construct a uTN is to use unitary tensors as building blocks,
as a network consisting of unitary tensors would automatically
be a uTN. Following this approach, we can construct several
types of uTN structures. For example, two well-known TN
structures, the MPO and tree tensor network (TTN), can be
extended to uTNs.

One uTN structure is derived from an MPO, as shown in
Fig. 1(c). If a singular value decomposition (or other decom-
position methods) is performed on each block, it becomes
evident that this uTN originates from an MPO. However,
it does not possess the global entanglement of a traditional
MPO, but only an O(l ) local entanglement, where l is the
number of layers. Therefore, it is better to regard it only as
a brick-wall TN with a regular layer structure.

Another uTN structure is shown in Fig. 1(d), which we
refer to as a unitary tree tensor network. It performs coarse-
grained processing on the system. Unlike the traditional tree
structure tensor network where each tensor has three legs,
each tensor in the uTTN has four legs, with one leg serving
as the output. The output of this uTTN consists of different
layers of coarse-grained structures.

In addition to quantum states and operations, k-
local Hamiltonians can also be represented by MPOs
[26]. For instance, the MPO for the transverse Ising
model, H = −J

∑
i(ZiZi+1 + gXi ), can be constructed as

JW [1]W [2] · · ·W [n], where n is the number of qubits in the
chain and J and g are the parameters in the transverse Ising
model. The MPO representation for the transverse Ising model
consists of n blocks, each of which is a 3 × 3 matrix with
2 × 2 matrices as elements, and is denoted by W [i] for i =
1, 2, . . . , n. Specifically,

W [1] = (I1 −Z1 gX1), (1)

W [n] = (gXn −Zn In)T , (2)

W [i] =

⎛
⎜⎝Ii −Zi gXi

0 0 Zi

0 0 Ii

⎞
⎟⎠ for i = 2, 3, . . . , n − 1, (3)

where Ii, Xi, Yi, and Zi are the identity and Pauli-X , Pauli-Y ,
and Pauli-Z operators on the ith qubit, respectively. Each
W [i] represents a 3 × 3 × 2 × 2 tensor (3 × 2 × 2 for W [1]

and W [n]) with two dangling legs and two contracted legs
that connect to the neighboring blocks. The MPO represen-
tation of the Hamiltonian serves as a building block for the
density-matrix renormalization-group algorithm and provides
an intuitive way to use tensor networks to assist the VQE.

III. THE TN-PQC FRAMEWORK

The problem of finding the ground state and ground energy
of the Hamiltonian H can be expressed as the minimization
problem

arg min
ψ

〈ψ |H |ψ〉, (4)

where different parametrizations of ψ result in different meth-
ods. One example is to set |ψ〉 = U (φ)|0〉, where U (φ) is
a PQC with tunable parameters φ. This method is known

as a traditional VQE. In the framework of this article, we
set |ψ〉 = U (θ)U (φ)|0〉, which transforms the minimization
problem into

min
θ,φ

〈0|U †(φ)U †(θ)HU (θ)U (φ)|0〉, (5)

where U (φ) represents a quantum circuit with parameters φ

and U (θ) represents a unitary tensor network with parame-
ters θ. By optimizing both classical and quantum parameters,
the limited circuit depth of U (φ) can be compensated by
the higher expressive power of U (θ). We aim to disentangle
Hamiltonian H using the similarity transformation U (θ) and
make the VQE circuit more efficient.

When both U (θ) and H are expressed in TNs, the
parametrized Hamiltonian H (θ) := U †(θ)HU (θ) in Eq. (5)
can be considered as a TN with some legs contracted. The
entire parametrized TN H (θ) is referred to as the TN part in
the following sections, while U (φ)|ψ0〉 in Eq. (5) is referred
to as the VQE part. When the parameter θ is fixed, Eq. (5)
reduces to a traditional VQE method, whereas when φ is fixed,
it becomes a classical parameter optimization method. The
entire process described above is illustrated in Figs. 2(a)–2(c).

One issue to consider is how to choose the PQC U (φ) and
the TN U (θ). In principle, the structure of the PQC U (φ)
can be arbitrary, and in this paper we utilize some existing
VQE Ansätze [18]. However, designing the TN requires more
expertise to avoid the explosion of the Pauli decomposition
of the TN part H (θ), since the VQE requires measuring the
Pauli basis. With the Pauli expansion form of the TN part, the
resulting energy can be expressed as a linear combination of
expectation values

E (θ,φ) =
∑

P

cP(θ)〈P〉φ, (6)

where cP(θ) = Tr[PU †(θ)HU (θ)] is the Pauli decomposition
coefficient of the classical part and the summation iterates
over all operators P with nonzero coefficients. The 〈P〉φ de-
notes the measurement results of the operator P on the PQC,
with the subscript indicating the parameter in the PQC.

Next we will discuss how to choose the TN, the optimiza-
tion strategy, and the expressivity of this framework.

A. Choosing the TN

We propose three conditions for selecting an appropriate
TN U (θ) in the classical part.

(i) U †(θ)HU (θ) must share the same ground state and
energy as H .

(ii) Either the number of Pauli decomposition terms re-
mains small, which is a polynomial in terms of the qubit
number, or the Pauli operators can be effectively sampled.

(iii) The coefficients cP(θ) must be able to be computed
efficiently.

Condition (i) can be satisfied by using a unitary U (θ), i.e.,
a uTN, which is utilized in this paper. An alternative approach
to fulfill (i) is to use a nonunitary Hermitian U (θ) and dividing
by a normalization factor 〈ψ0|U †(φ)U †(θ)U (θ)U (φ)|ψ0〉 in
the minimization problem (5) [12,27].

Condition (ii) is critical to ensure that the number of
Pauli measurements is manageable. Two methods to fulfill
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FIG. 2. The TN-PQC framework. (a) A classical tensor network can represent part of the parametrized circuits and the Hamiltonian
U †(θ )HU (θ ). (b) The quantum processor measures the remaining parametrized circuits using an effective Hamiltonian represented by a TN.
(c) The gradient descent method is employed to find classical and quantum parameters corresponding to the lowest measurement results.
(d) Contraction strategies for the 1D uMPO and uTTN when combined with the Hamiltonian in a TN form. (e) Two optimization strategies
for different parameters. (i) The iteration of the quantum parameter φ1 is obtained by computing the gradient from the previous classical and
quantum parameters θ0 and φ0, while the parameter θ1 is obtained from θ0 and φ1. (ii) The parameter updating process is similar, but with the
introduction of nC > 1 intermediate steps between the initial and final classical parameters θ0 and θ1 to update classical parameters. (f) The
2D uMPO and uTTN combined with the Hamiltonian in a 2D TN form.

condition (ii) are (a) restricting the depth of the uTN U (θ) and
(b) designing a specific uTN U (θ) that maps Pauli operators
to another single or a few Pauli operators. Both approaches
will be discussed below.

For condition (iii), an efficient contraction strategy for
Tr[U †(θ)HU (θ)P], where P is a Pauli operator in the con-
text of a tensor network, is necessary. We will discuss these
conditions in specific cases, particularly (ii) and (iii).

In Fig. 2(d) we illustrate two structures in the 1D Hamil-
tonian case, which are derived from the uMPO and uTTN,
respectively.

Let us first consider condition (ii) in the uMPO-guided
structure. We define an m-neighboring Pauli string as a Pauli
string with the distance of each of its two nonidentity terms
less than m. For example, an XIXIII string is a 3-neighboring
Pauli string, and simple Hamiltonians like the transverse Ising
model consist of all 1- or 2-neighboring strings. Because
each layer of the uMPO only contains blocks that entangle
neighboring sites, any 2-neighboring Pauli string will be-
come the superposition of several (2 + 2)-neighboring Pauli
strings after commuting with this layer. After the similarity
transformation, an l-layer uTN is transformed into (2 + 2l)-
neighboring Pauli strings. It is easy to check that the number
of general (2 + 2l)-neighboring Pauli strings is limited to
42+2l . Taking the transverse Ising model as an example,
U †HU only contains less than n42+2l Pauli strings, where
n is the number of qubits. When l ∼ O(ln n), this satisfies
condition (ii).

The contraction strategy is as follows: Tensors are divided
into groups by row, tensors in each group are contracted first,
and then groups are contracted with each other. According to
the fact that the contraction complexity is equal to O(D3),
where D is the bond dimension, the time complexity for
contracting the uTN in the uMPO case is O(n × 2l × 23 +

n × (42l × d )3) = O(n46l ), where n is the number of qubits, l
is the number of layers, and d is the bond dimension for the
Hamiltonian. This satisfies condition (iii) as well.

We can apply the results obtained earlier to verify con-
ditions (ii) and (iii) in the uTTN case. Since the number of
layers equals l = ln n in the uTTN, the number of Pauli strings
equals n42+2l = O(n5). Similarly, the contraction complexity
is O(n13). Both results are polynomial in the number of qubits
n, indicating that conditions (ii) and (iii) are satisfied.

For a 2D Hamiltonian, we can devise a corresponding 2D
uMPO and the coarse-grained structure in the 2D case, as
shown in Fig. 2(f). The 2D uMPO building block is the same
as that for the 1D uMPO, a four-leg unitary tensor. The lower
layer entangles sites aligned in one direction and the upper
layer entangles sites in another. We call this structure an MPO
for the same reason as mentioned in the 1D MPO and it can
be considered a 2D MPO when each block is singular value
decomposed. As in the previous analysis, each site of the
2D Ising model has (4 + 2l)-neighboring Pauli strings. For
the 2D uMPO, the number of Pauli strings is limited to a
constant O(44+2l ) and the time complexity of contraction is
O(n46l ). Hence, the 2D uTTN corresponds to a number O(n5)
of Pauli strings and the contraction complexity is also O(n13).
Therefore, the 2D cases of these two TNs similarly satisfy
conditions (ii) and (iii).

B. Optimization strategy

Here we propose two optimization strategies for solving
the minimization problem in Eq. (5). The first strategy is
to alternate the optimization of θ and φ while keeping the
other parameter fixed. Figure 2(ei) illustrates each step of this
optimization strategy, where the optimization of each parame-
ter is obtained by computing the gradient based on a set of
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quantum and classical parameter combinations, represented
by the arrows in the figure.

When the classical parameter θ is frozen, the system re-
duces to a traditional VQE and we can perform gradient
descent using the parameter shift rule. When the quantum
parameter φ is frozen, we can also perform gradient descent
using the gradient computed by the formula

∂E (θ,φ)

∂θ
=

∑
P

∂cP(θ)

∂θ
〈P〉φ, (7)

where the coefficient gradient can be computed by the Pauli
expansion coefficient of the gradient of the classical part

∂cP(θ)

∂θ
= Tr

(
P

∂U †(θ)HU (θ)

∂θ

)
. (8)

The second optimization strategy takes advantage of the
fact that φ and θ are separated in Eq. (6), allowing these pa-
rameters to be updated in parallel. Specifically, we start each
optimization cycle with initial quantum parameters φ0 and up-
date it for nQ steps while keeping initial classical parameters
θ0 constant. At the same time, we update θ for nC steps while
keeping φ0 constant. After both threads have finished, we
evaluate Eq. (6) to determine whether the TN-PQC algorithm
has converged. This evaluation produces a set of measurement
results 〈P〉φ, which can be reused to compute gradients for the
next cycle, as shown in Fig. 2(e ii).

A natural choice for nQ and nC is to keep both threads run-
ning at the same time, which means setting nC/nQ = τQ/τC .
Since NISQ devices are typically slower than classical com-
puters, we can let nQ = 1 and choose a relatively large value
for nC , which allows classical computers to intervene and help
speed up the computation.

C. Expressivity

In this section we analyze the expressivity of the TN-PQC
framework and demonstrate the trade-off between computa-
tional complexity and expressivity. Expressivity refers to the
ability of a model to represent a wide range of functions. Here
we compare the expressivity of the TN-PQC framework with
that of a Haar random circuit, which is known to have an
intense expressivity. A Haar random circuit can represent any
quantum state.

To measure the distance between the states generated
by the TN-PQC framework and the Haar random circuit,
we use the logarithmic difference of entanglement entropy
[11,28,29]. The measure is defined as

�t (ϒ) = ln

(
Eρ∼Haar

[
Tr

(
ρt

n/2

)]
Eρ∼ϒ

[
Tr

(
ρt

n/2

)]
)

, (9)

where t ∈ N+ and ρn/2 represents the partial trace of
ρ on the first n/2 qubits. From Iaconis [28] we have
Eρ∼Haar[Tr(ρt

n/2)] = Eρ∼μk [Tr(ρt
n/2)], where μk is the k-

design. Reference [29] gives the bounds for �t (ϒ), where
ϒ is an ε approximation of the t-design, as shown in Ap-
pendix A. Hence we expect that the distribution of the Ansätze
forms an ε-approximation t-design and �t is negatively cor-
related to ε. For the TN-PQC method, the distribution ϒ is
chosen as the distribution of the Ansatz space. We will utilize

the approximations of �2 and �3 to compare numerically
how well the TN-PQC and VQE methods approximate the
2-design and 3-design, respectively, in the next section.

IV. NUMERICAL RESULTS AND COMPARISON

In this section we present a series of numerical experiments
to demonstrate the effectiveness and versatility of our TN-
PQC method. First, we investigate the expressiveness of the
TN-PQC and VQE methods by measuring their logarithmic
difference. Second, we analyze the scalability and accuracy
advantages of the TN-PQC method over classical methods. Fi-
nally, we evaluate the noise resistance of the TN-PQC method
by assessing its performance for noise models. Through these
experiments, we aim to provide a comprehensive evaluation of
the TN-PQC method’s capabilities and potential applications
in practical quantum computing tasks.

A. Outperformance of the TN-PQC method in expressivity

We first analyze the expressivity of the TN-PQC and VQE
methods using the logarithmic difference of entanglement
entropy, as defined in Eq. (9). To conduct our analysis, we
choose a layer of parametrized circuit consisting of a layer of
Ry(θ ), followed by n layers of controlled-Z gates (CZi,i+1 for
1 � i � n − 1). For the TN-PQC method, we select four or
six layers of a parametrized MPO, and the depth of TN-PQC
algorithm is represented as the cumulative sum of the PQC
and MPO layers.

Figure 3 illustrates the logarithmic difference in entan-
glement entropy, denoted by �t , as the depth of the PQC
algorithm increases for both the VQE and TN-PQC algo-
rithms. The numerical results for both the VQE and TN-PQC
algorithms, with the depth being m + 4 (or m + 6), clearly
demonstrate that as the number of PQC layers m increases,
the TN-PQC algorithm achieves a significantly larger �t com-
pared to the VQE algorithm. This observation underscores the
enhanced expressiveness of the TN-PQC algorithm and sug-
gests that our approach effectively boosts the expressiveness
of shallow quantum circuits through the integration of tensor
networks.

On the other hand, it has gradually become recognized
that in variational quantum algorithms, high expressivity of-
ten brings about the so-called barren plateaus [30]. To study
this phenomenon, we conducted experiments to observe the
gradient of classical and quantum parameters in the TN-PQC
algorithm with the depth of the quantum circuit and the size
of the quantum system. The TN-PQC algorithm cannot com-
pletely avoid the barren plateau phenomenon, but the classical
part of the hybrid algorithm is more trainable than the cor-
responding part of the pure quantum algorithm. A detailed
analysis of these observations is provided in Appendix C.

B. Advantage of the TN-PQC method in accuracy
and scalability

We test the efficacy of the TN-PQC method for deter-
mining the ground states of 2D spin-lattice systems with
nearest-neighbor interactions, specifically the Ising model.
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FIG. 3. Comparison of the logarithmic difference of the entanglement entropy �t [defined in Eq. (9)] for conventional parametrized
quantum circuits and our matrix-product-operator–assisted PQC. Here �t serves as an indicator of the expressive power of quantum circuits.
The following denotations are used: m-PQC, a conventional VQE with m layers of PQC; (m + k)-PQC, a conventional VQE with m + k layers
of PQC; and m-PQC & k-MPO, a TN-PQC structure with m layers of the PQC and k layers of the MPO (k = 4, 6).

The Ising model Hamiltonian is generally given by

H = −
∑
〈i j〉

Ji jσiσ j −
∑

j

g jσ j, (10)

where 〈i j〉 denotes the summation over nearest neighbors
and g represents the interaction strength between the system
and the external magnetic field. We choose the Hamiltonian
as H = −J

∑
〈i j〉 ZiZ j − g

∑
j Xj , which is the well-known

transverse field Ising model, where Zi and Xj are local Pauli
operators. The parameter set we use is {J = 0.1, g = 1}, and
numerical experiments are performed on a 4 × 4 qubit 2D
Ising model. We experimentally compare the performance
of the VQE-only circuit, the TN-PQC algorithm with the
TN being a uTTN, and the TN-PQC algorithm with the
TN being a uMPO (two layers) in determining the ground
state of these models, as shown in Fig. 4(a). All of these
algorithms have the same parametrized quantum circuit, con-
sisting of a layer of parametrized rotations in Pauli-Y -basis
gates and n similar layers of CZ gates for entanglement,
as before.

We optimize these circuits using the gradient descent al-
gorithm and set the convergence threshold of energy as 10−3.
We find that the TN-PQC algorithm has a much better conver-
gence estimation value of the ground energy, and the TN-PQC
algorithm with the TN being a uMPO performs better than a
uTTN. This suggests that MPOs may be more appropriate for
the Hamiltonians with the spin-lattice model.

We compare the performance of the VQE, the TN-PQC
algorithm with a uTTN, and the TN-PQC algorithm with
an MPO for various parameter models of the time-crystal

Hamiltonian, which is given by

H = −
∑

k

(JkZk−1XkZk+1 + VkXkXk+1 + hkXk ). (11)

In particular, we vary the parameter J from 0.7 to 1.3
with fixed V = 0.1 and h = 0.1, as shown in Fig. 4(b). To
handle this more complex Hamiltonian, we use a deeper
circuit consisting of two layers of parametrized rotation in
Pauli-Y -basis gates and Pauli-X -basis gates, and n layers of
controlled-NOT (CNOT) gates (CNOTi,i+1 for 1 � i � n − 1)
to induce more entanglement. The figure demonstrates that
the TN-PQC method maintains a distinct advantage as J
varies.

While previous experiments have shown the advantages of
the TN-PQC method over other methods, these experiments
generally used shallow Ansätze and did not achieve high
accuracy in the ground-state energy estimation. To better un-
derstand the capabilities of different approaches in improving
accuracy, we investigate the achievable energy accuracy by
increasing the number of layers in a parametrized quantum
circuit with repeating structures. We employ the 1D 16-qubit
time-crystal Hamiltonian to compare the ability of different
methods to reduce the number of layers in parametrized quan-
tum circuits. We set the parameter values to {J = 1,V =
0.1, g = 0.1} and use a layer of rotation in Y -basis gates,
followed by n layers of CNOT gates (CNOTi,i+1 for 1 � i �
n − 1) in our parametric quantum circuit. Figure 4(c) shows
the estimated ground energy for different algorithms as the
number of layers increases. Our results demonstrate that a
pure VQE circuit with seven repetitions of the original struc-
ture performs as well as the uTTN-assisted VQE circuit with
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FIG. 4. The numerical results demonstrate the superior accuracy and scalability of the TN-PQC structure. The number of layers is chosen
to be 2 for uMPO and ln(n) for uTTN with the number of parameters for both being 3(n − 1). (a) Performance comparison of the pure VQE,
uTTN-assisted VQE, and uMPO-assisted VQE on a (4 × 4)-qubit 2D transverse field Ising model. All methods have the same PQC, consisting
of a layer of parametrized rotations in Pauli-Y -basis gates and n similar layers of CZ gates for entanglement. (b) Lowest-energy error achieved
by the pure VQE, uTTN-assisted VQE, and uMPO-assisted VQE as the time-crystal model parameter J varies. All methods have the same
PQC, consisting of two layers of parametrized rotation in Pauli-Y -basis gates and Pauli-X -basis gates, and n layers of CNOT gates (CNOTi,i+1 for
1 � i � n − 1) to induce more entanglement. (c) Estimated ground-state energy of a 16-qubit time-crystal model using different algorithms
with an increasing number of layers of the PQC. All methods have the same PQC, consisting of a layer of rotation in Y -basis gates, followed
by n layers of CNOT gates (CNOTi,i+1 for 1 � i � n − 1). (d) Estimated energy after 1–100 optimization steps for the iterative experiment of the
pure VQE, uTTN-assisted VQE, and uMPO-assisted VQE on a noisy 16-qubit time-crystal model. The same PQC is maintained in various
methods as in (c).

five repetitions and the MPO-assisted original VQE circuit,
with all three approaches approaching the theoretical value of
the time-crystal Hamiltonian ground-state energy within an
error of 1 × 10−2.

C. Robustness of the TN-PQC method under noise

We assess the robustness of the TN-PQC method to noise
by introducing depolarization noise to the single-qubit and
two-qubit gates. Multiple fixed 100-step iterative experiments
are conducted on the same initial quantum state to obtain
the estimation and error bar. The error is estimated using the

formula ε = 3
√∑S

i=1(vi − v̄)2/S2, where vi denotes the ith
estimate, v̄ denotes the mean, and S denotes the total number
of times the experiment is performed.

In practice, the depolarization noise probability for the
single-qubit and two-qubit gates (specifically, the rotation Y
and CNOT gate) is set at 2 × 10−5 and 5 × 10−5, respectively.

The same set of parameters is chosen, and the experiment is
repeated S = 40 times. The mean values and error bars are
calculated for each step. Figure 4(d) shows the estimation
results with increasing optimization steps. We observe that
while the TN assistance amplifies the noise fluctuation, the
TN-PQC algorithm still outperforms the pure VQE even when
considering the effect of the estimation error bar.

V. CONCLUSION

In this work we proposed a hybrid framework that com-
bines the strengths of tensor networks and quantum circuits
for quantum variational simulation algorithms. By incorporat-
ing tensor networks with logarithmic or constant layers into
the classical optimization process, we demonstrated that the
expressiveness of shallow quantum circuits can be signifi-
cantly enhanced without compromising the accuracy of the
simulation. Our numerical experiments also showed that the
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FIG. 5. Comparison of the logarithmic differences of entangle-
ment entropy. Here we randomly discard half of the qubits, and the
simulation results indicate that the maximum difference of the metric
corresponds to the removal of the first n/2 qubits.

proposed framework is robust to noise, highlighting its poten-
tial for practical applications in noisy quantum devices. We
also discussed the general requirements for choosing tensor
networks in this class of hybrid frameworks. As future work,
we envision the possibility of combining tensor networks with
other quantum simulation algorithms, such as imaginary-time
evolution algorithms [31]. Moreover, we expect that similar
hybrid frameworks can be developed by incorporating classi-
cal methods, such as neural networks [32,33] and quantum
Monte Carlo algorithms [34,35], into quantum algorithms.
We hope that our work can inspire further studies in this
direction. Our work utilizes quantum error correction [36] to
push recent quantum hardware to solve static and dynamic
quantum problems, as well as quantum optimization [18,37]
for a diverse range of nontrivial applications. By leveraging

FIG. 6. Illustration of how parameters enter the tensor-network
building blocks. (a) For the uMPO and uTTN structures as shown in
Figs. 1(c) and 1(d), there are three tunable parameters in each build-
ing block: θ1, θ2, and θ3. (b) and (c) For the 2D uMPO and uTTN,
as shown in Fig. 2(f), parametrization for each block is similar. In
(c) the index j2 is a dangling leg, which we do not draw explicitly.

Quantum Classical

FIG. 7. Quantum and classical setups for measuring gradients.
Each layer of the quantum circuit consists of single-qubit RX and
RY gates and CNOT gates for entanglement, with the classical part
being uMPO blocks. Four particular parametrized blocks are iden-
tified with different colors indicating the variance analysis of the
derivatives of these parameters.

the complementary strengths of tensor networks and quantum
circuits, our hybrid framework provides a promising approach
for solving challenging quantum problems in a noisy, near-
term quantum computing era.
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APPENDIX A: EXPRESSIVITY EVALUATION

The following theorem evaluates if a distribution is close
to the Haar measure by the partial trace.
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FIG. 8. Variances of partial derivatives for different circuit depths and system sizes, where the variance is taken over an ensemble of 1000
unitaries. The colors of the curves correspond to the settings in Fig. 7.

Theorem 1 (Theorem 15 in Ref. [29]). Let ϒ be an ε-
approximation t-design. Then

Eρ∼ϒ

[
tr
(
ρt

A

)]
� Eρ∼Haar

[
tr
(
ρt

A

)] + 2ntε, (A1)

Eρ∼ϒ

{
ln

[
tr
(
ρt

A

)]}
� Eρ∼Haar

{
ln

[
tr
(
ρt

A

) + 2ntε
]}.

(A2)

We illustrate the logarithmic difference of entanglement
entropies for all partitions of a parametrized quantum state
generated as in Fig. 3(a) in Fig. 5.

APPENDIX B: TENSOR-NETWORK PARAMETRIZATION

Here we outline the methodology used to parametrize
our unitary tensor networks to ensure the reproducibility of
our numerical experiments. Figure 6 illustrates the process
of incorporating parameters into the tensor-network building
blocks. Specifically, for the uMPO and uTTN structures, as
depicted in Figs. 1(c) and 1(d), respectively, each building
block contains three adjustable parameters denoted by θ1, θ2,
and θ3, embedded in the form ei(θ1X̂ X̂+θ2Ŷ Ŷ +θ3ẐẐ ). Addition-
ally, for the 2D uMPO and uTTN configurations, as shown
in Fig. 2(f) of the framework, the parametrization approach
for each block is similar. Notably, in Fig. 2(f), the index j2
represents a dangling leg, which is not explicitly drawn for
clarity.

By employing this well-defined parametrization scheme,
we ensure the consistency and transparency of our tensor-
network setup, thereby enabling other researchers to replicate
our numerical experiments effectively.

APPENDIX C: GRADIENT ANALYSIS

The phenomenon of barren plateaus in variational quantum
algorithms has been gradually recognized recently [30]. The
phenomenon of barren plateaus is recognized by the exponen-
tial decay of the gradient of the cost function, denoted by C,
pertaining to an expressive Ansatz, U (θ), as the number of
qubits, denoted by n, increases. Here we have the cost function
of the energy expectation form

C(θ) = Tr[HU (θ)ρU (θ)†], (C1)

where H is the Hamiltonian, ρ is an n-qubit input state, and
U (θ) is a parametrized quantum circuit with parameters θ.

The gradient of the cost function C consists of partial
derivatives ∂kC := ∂C(θ)/∂θk , while for a universal Ansatz
the average of partial derivatives ∂kC with respect to all pa-
rameters θ should vanish,

〈∂kC〉 = 0 ∀ k, (C2)

due to the fact that the Ansatz is uniform in any gradi-
ent direction. However, an unbiased unitary Ansatz does not
necessarily mean that it is untrainable. If one considers the
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probabilistic definition, i.e., the gradient has a certain proba-
bility of deviating from the mean value 0, this comes from the
Chebyshev inequality

Pr(|∂kC| � δ) � Var(∂kC)

δ2
, (C3)

where we define the variance as

Var(∂kC) = 〈(∂kC)2〉 − 〈∂kC〉2, (C4)

in which the average is over all possible parameters θ.
In order to observe the phenomenon of barren plateaus in

our TN-PQC Ansatz, we experimentally obtained the deriva-
tives of the first quantum and classical parameters of their first
layer, as shown in Fig. 7, and calculated their variance from
1000 randomly and uniformly chosen parameters, varying
with the number of quantum line layers and the size of the
system. As a comparison, we further investigate whether (i)
the inclusion of a tensor network would alleviate the problem
of vanishing derivatives of the quantum parameters and (ii) the
derivatives of a parametrized classical tensor network would
be more trainable than the same quantum parameters. Hence
we also collected the variance of the derivatives of the quan-
tum parameters for the VQE circuit with the tensor-network

portion removed and the variance of the derivatives of the
parameters of the quantum circuit with the classical portion
replaced by the quantum part with the same number of pa-
rameters, as illustrated in Fig. 7.

As shown in Fig. 8, we find that the variance curve for
quantum circuits with shallow layers has a flat long tail as the
number of qubits increases, and the curve gradually adheres to
an exponentially vanishing curve as the number of quantum
circuit layers increases. This suggests that although the TN-
PQC algorithm can improve the expressivity of Ansätze to a
certain extent, it is still not able to completely avoid the barren
plateau phenomenon as a variational quantum algorithm.

Nonetheless, the combination of the PQC and TN allevi-
ates the awkwardness of disappearing gradients in some ways.
In the shallow layers, when combining the quantum circuit
with tensor networks, there is a certain advantage in terms
of the variance of quantum parameter gradients compared
to the original quantum setting. However, as the quantum
depth increases, this advantage gradually diminishes. Further-
more, the variance of the classical part of the parameters with
overwhelmingly large derivatives with respect to the quan-
tum parameters of the same parameters at the same positions
seems to imply a potential advantage of combining tensor
networks with parametrized quantum circuits.
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