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Quantum coherence is one of the characteristic features of quantum mechanics and underpins many quantum
mysteries. To eliminate the influence of the reference basis on the coherence of a quantum state and uncover
its intrinsic properties, it is common to study coherence by averaging over different reference bases. Using
the metric-adjusted skew information, we explore three natural approaches to average coherence of a state:
average over all orthonormal bases, average over all elements of an operator orthonormal base, and average
over a complete family of mutually unbiased bases. We establish the equivalence among these three types of
average coherence and interpret the unified average coherence as the coherence of a quantum state relative to a
depolarizing channel. Additionally, we employ the unified average coherence to introduce a notion of quantum
f entropy (where f is an operator monotone function associated with the metric-adjusted skew information) and
demonstrate that quantum f entropy possesses properties analogous to the ubiquitous von Neumann entropy.
Furthermore, we illuminate some connections between quantum f entropy and quasientropy, and compare f
entropy with von Neumann entropy, Rényi entropy, and Tsallis entropy for some typical states.
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I. INTRODUCTION

Two fundamental and prominent features of quantum me-
chanics are coherence and entropy, which play crucial roles
in quantum formalism and experiments. Quantum coherence,
arising from the quantum superposition principle, is a signifi-
cant feature of quantum mechanics that distinguishes quantum
mechanics from classical physics [1–5]. With the rapid devel-
opment of quantum information, the study of coherence has
also evolved from the category of fundamental problems in
quantum mechanics to the paradigm of physical resource that
can be exploited. In fact, coherence is the cause of quantum in-
terference, quantum nonlocality, and quantum entanglement.
Moreover, with the aid of coherence, many tasks that are
impossible or difficult to complete by classical methods can
now be achieved via quantum information processing. For
example, coherence can greatly improve the accuracy of pa-
rameter estimation in quantum metrology [6,7], and is crucial
for quantum algorithms [8–10], quantum thermodynamics
[11–16], and quantum biology [17,18]. These results inspired
people to establish various resource theories of coherence
from many different angles [19–31]. Several quantifiers of
coherence based on relative entropy [20], Tsallis relative α en-
tropy [32,33], max-relative entropy [34], Wigner-Yanase skew
information [35,36], metric-adjusted skew information [37],
etc., have been introduced, subjected to physical requirements

*fanyajing@snnu.edu.cn
†linan@amss.ac.cn
‡luosl@amt.ac.cn

such as monotonicity under certain types of free operations
in the resource theory of coherence. In particular, the relative
entropy of coherence is a prominent measure of coherence
and plays an important role in the process of coherence
distillation [38].

As a measure of (missing) information, entropy is a key
concept in thermodynamics and information theory [39–42],
and is now playing an increasingly important role in quantum
information theory [43–48]. Even though Shannon entropy
is the most commonly used quantity in information theory,
there are still several generalized entropies such as Rényi en-
tropy [49], Havrda-Charvat entropy [50], and Tsallis entropy
[51], which have found interesting and important applica-
tions in some situations. In quantum theory, von Neumann
entropy [40,43], as the analog of classical Shannon entropy,
is widely used to quantify correlations and quantum entangle-
ment [43–48], while the corresponding generalized quantum
entropies are also powerful in various physical contexts such
as entanglement detection [52,53], steering detection [54],
quantum key distribution [55], and Bell inequalities [56–58].

Recently researchers take much effort to connect quan-
tum coherence with entanglement [22], quantum correlations
[26,59], and quantum uncertainty [29,60]. Considering the
fundamental importance and ubiquity of both coherence and
entropy, it is desirable to investigate their connections. The
present paper is devoted to this issue. Since the canonical
coherence quantifiers, such as the relative entropy of coher-
ence, the l1 norm of coherence, and the coherence based on
the Hilbert-Schmidt norm depend on the choice of a reference
basis [20], and the coherence measure based on the Wigner-
Yanase skew information and a family of coherence measures
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based on the metric-adjusted skew information are all relative
to a general channel [31,37], it is natural to study the average
coherence in order to get rid of the dependence of the basis or
channel and to reveal intrinsic features of coherence encoded
in the state. The average coherence based on the Hilbert-
Schmidt norm is related to the linear entropy, and the average
coherence based on the Wigner-Yanase skew information is
related to the unified-(r, s) quantum entropy for r = 1/2 and
s = 2 [61]. These observations and the enquiry on the rela-
tions between coherence and entropy inspire us to introduce
three versions of average coherence via the metric-adjusted
skew information and employ them to introduce quantum f
entropy. We reveal basic properties of quantum f entropy,
illuminate its connections with quasientropy, and compare
quantum f entropy with von Neumann entropy, Rényi en-
tropy, and Tsallis entropy through several typical examples.

The remainder of the paper is structured as follows. In
Sec. II, we use the metric-adjusted skew information to inves-
tigate three versions of average coherence: the average over all
orthonormal bases, the average over all elements of an opera-
tor orthonormal basis, and the average over a complete family
of mutually unbiased bases (MUBs). In Sec. III, we introduce
quantum f entropy related to an operator monotone function
f by means of average coherence, discuss its fundamental
properties, and show that it indeed possesses many desirable
properties intuitively required for a measure of entropy. We
further establish a relation between quantum f entropy and
quasientropy. We make a comparative study among quantum
f entropy, von Neumann entropy, Rényi entropy, and Tsallis
entropy in Sec. IV. Finally we conclude with a summary in
Sec. V. For simplicity, we assume that the quantum systems
are finite dimensional, although many results can be readily
extended to infinite dimensional cases. The detailed proofs of
the main results are put in the Appendix.

II. AVERAGE COHERENCE IN TERMS OF
METRIC-ADJUSTED SKEW INFORMATION

In this section, after recalling the definition of metric-
adjusted skew information and some coherence measures of a
state (relative to an operator, a reference basis, and a quantum
channel, respectively) in terms of metric-adjusted skew infor-
mation [62], we evaluate three versions of average coherence
and establish their equivalence.

Metric-adjusted skew information is a considerable gen-
eralization of the Wigner-Yanase-Dyson skew information
along the line of quantum Fisher information [62–64]. To
illuminate this, we review some basic notions. A function
f : (0,+∞) → R is said to be operator monotone if for
any natural number n and A, B ∈ Mn,+(C) (the set of non-
negative definite n × n complex matrices), 0 � A � B implies
0 � f (A) � f (B). An operator monotone function is said to
be symmetric if f (x) = x f (x−1), normalized if f (1) = 1, and
regular if f (0) ≡ limx→0 f (x) �= 0. We denote the set of all
symmetric normalized regular operator monotone functions
by Fr [65,66]. Following Refs. [65–68], for f ∈ Fr, let

f̃ (x) = 1

2

(
(x + 1) − (x − 1)2 f (0)

f (x)

)
, x > 0, (1)

and the associated (numerical) mean is defined as

m f (x, y) = y f (xy−1), x, y > 0. (2)

There exists a bijective correspondence between monotone
metrics (quantum Fisher information) and f ∈ Fr, which is
given by [69]

〈A, B〉ρ, f = tr[A†m f (Lρ, Rρ )−1(B)] (3)

for operators A and B (not necessarily Hermitian) on the
system Hilbert space. Here LX (B) = XB and RX (B) = BX are
the left and right multiplication by an operator X, respectively.

Notice that the right-hand side of Eq. (3) can be calculated
explicitly as follows. Let ρ be a state on a d-dimensional sys-
tem with the spectral decomposition ρ = ∑

i λi|φi〉〈φi|, where
λi > 0 are the eigenvalues with corresponding eigenvectors
|φi〉, and then for any reasonable function s : [0,+∞) ×
[0,+∞) → R, by use of functional calculus, the correspond-
ing operator function of Lρ and Rρ can be expressed as [66]

s(Lρ, Rρ ) =
∑
i, j

s(λi, λ j )L�i R� j ,

where �i = |φi〉〈φi|, i = 1, 2, . . . , m. In particular,

m f (Lρ, Rρ ) =
∑
i, j

m f (λi, λ j )L�i R� j ,

m f (Lρ, Rρ )−1 =
∑
i, j

1

m f (λi, λ j )
L�i R� j .

Consequently,

〈A, B〉ρ, f =
∑
i, j

1

m f (λi, λ j )
tr(A†�iB� j ).

Metric-adjusted skew information of ρ relative to an oper-
ator A (not necessarily Hermitian) is defined as [62]

I f (ρ, A) = f (0)

2
〈[ρ, A], [ρ, A]〉ρ, f , (4)

which can be viewed as a coherence measure of ρ relative to
the operator A. By simple calculation, we have

I f (ρ, A) = 1
2 tr[ρ(A†A + AA†)] − tr[A†m f̃ (Lρ, Rρ )(A)].

Metric-adjusted skew information I f (ρ, A) defined by
Eq. (4) has the following properties, which follow from
Refs. [37,62,63], or can be directly verified.

(i) 0 � I f (ρ, A) � V (ρ, A). Moreover, I f (ρ, A) = 0 if and
only if [ρ, A] = 0, and I f (ρ, A) = V (ρ, A) if ρ is a pure state,
where V (ρ, A) = 1

2 tr(ρ(A†A + AA†)) − |tr(ρA)|2 is the gen-
eralized variance. In particular, for any pure state ρ, I f (ρ, A)
is independent of f .

(ii) I f (UρU †,UAU †) = I f (ρ, A), and I f (UρU †, A) =
I f (ρ,U †AU ) for any unitary operator U .

(iii) I f (ρ, A) is convex in ρ.
(iv) I f (ρ, A) is additive under tensoring in the sense that

I f (ρ ⊗ σ, A ⊗ 1b + 1a ⊗ B) = I f (ρ, A) + I f (σ, B) (5)

for any quantum states ρ and σ , and any operators A and B on
parties a and b, respectively. Here 1a and 1b are the identity
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operator on parties a and b, respectively. In particular,

I f (ρ ⊗ σ, A ⊗ 1b) = I f (ρ, A). (6)

(v) I f (ρ, A) is additive under direct sum in the sense that

I f

⎛⎝⊕
j

p jρ j,
⊕

j

A j

⎞⎠ =
∑

j

p jI f (ρ j, Aj ), (7)

for any quantum states ρ j , any operators Aj , and any proba-
bility distribution {p j}.

(vi) For any bipartite state ρab shared by parties a and b and
any operator Aa on party a,

I f (ρab, Aa ⊗ 1b) � I f (ρa, Aa), (8)

with ρa = trbρ
ab the reduced state on party a of the bipartite

state ρab.
Let {|i〉 : i = 1, 2, . . . , d} be an orthonormal basis of the

system Hilbert space. A simple and natural measure of coher-
ence of ρ relative to the reference basis {|i〉 : i = 1, 2, . . . , d},
or equivalently, relative to the corresponding von Neumann
measurement � = {�i = |i〉〈i| : i = 1, 2, . . . , d}, can be de-
fined as [37]

Cf (ρ|�) =
∑

i

I f (ρ,�i ) =
∑

i

I f (ρ, |i〉〈i|), (9)

which can be naturally generalized to the coherence of ρ

relative to a quantum channel E as [37]

Cf (ρ|E ) =
∑

j

I f (ρ, Ej ). (10)

Here Ej are Kraus operators of E, i.e., E (ρ) =∑
j E jρE†

j ,
∑

j E†
j E j = 1 (identity operator).

The coherence measure Cf (ρ|E ) enjoys many desirable
properties required for a reasonable coherence quantifier.
However, it depends crucially on the channel E . To reveal
intrinsic features of coherence encoded in the state ρ, one may
take certain average of Cf (ρ|E ) with respect to the channel E .
We will consider the following three averaging procedures:
Average coherence over all orthonormal bases, average co-
herence over all elements of an operator orthonormal basis,
and average coherence over a complete family of MUBs. We
will further demonstrate their equivalence, and employ them
to study relations between coherence and entropy.

A. Average coherence over all orthonormal bases

The first averaging procedure is to consider channels
induced by von Neumann measurements (or equivalently,
orthonormal bases) and take the average of Cf (ρ|�) with
respect to all von Neumann measurements (reference bases)
�. Since any reference basis can be obtained by a unitary
operation on a fixed basis, this averaging procedure amounts
to integration over the unitary orbit of a fixed basis, and is
equivalent to the integration over the unitary group equipped
with the normalized Haar measure. Thus let us define

CU
f (ρ) =

∫
U

Cf (ρ|U�U †)dU, (11)

where dU denotes the normalized Haar measure on the full
unitary group U of the system Hilbert space, and U�U † =
{U |i〉〈i|U † : i = 1, 2, . . . , d}.

Proposition 1. For any state ρ in a d-dimensional system
and f ∈ Fr, it holds that

CU
f (ρ) = d − tr[m f̃ (Lρ, Rρ )]

d + 1
. (12)

Let λi be the eigenvalues of ρ, then tr[m f̃ (Lρ, Rρ )] =∑
i j m f̃ (λi, λ j ).
For the proof, see Appendix A 1.
Equation (12) has two interesting interpretations: The first

is as an exact uncertainty relation concerning all von Neu-
mann measurements, and the second is as an intrinsic measure
of quantum uncertainty of ρ. In contrast to the results involv-
ing the l1 norm and relative entropy of coherence obtained in
Ref. [70], we have derived an exact complementary relation
for coherence based on the metric-adjusted skew informa-
tion. This indicates that the coherence measure based on
metric-adjusted skew information enjoys some nice geometric
features.

B. Average coherence over all elements of an operator
orthonormal basis

The second natural averaging procedure is the average
coherence

Cob
f (ρ) = 1

d + 1

d2∑
α=1

I f (ρ, Xα ) (13)

of ρ with respect to all elements of an operator orthonormal
basis. Here {Xα : α = 1, 2, . . . , d2} is a family of d2 opera-
tors, which constitutes an operator orthonormal basis of the
Hilbert space L(H ), the set of all bounded linear operators on
H with the Hilbert-Schmidt inner product 〈A, B〉 = tr(A†B).
This quantity, as a measure of information content in the
state ρ, is actually independent of the choice of the operator
orthonormal basis, as can be proved in a similar fashion to
Ref. [71].

Proposition 2. For any state ρ in a d-dimensional system
and f ∈ Fr, it holds that

Cob
f (ρ) = d − tr[m f̃ (Lρ, Rρ )]

d + 1
. (14)

In particular, this average coincides with CU
f (ρ) given by

Eq. (12).
For the proof, see Appendix A 2.
Equation (14) relates coherence of ρ relative to elements

of an operator orthonormal basis, and can also be interpreted
as an exact uncertainty relation for operators. In particular, for
any pure state ρ = |ψ〉〈ψ | in a d-dimensional system, noting
that tr(m f̃ (Lρ, Rρ )) = 1, we have

Cob
f (|ψ〉〈ψ |) = d − 1

d + 1
.

C. Average coherence over a complete family of MUBs

The third averaging procedure is over a complete family
of MUBs. Recall that two orthonormal bases B1 = {|b1i〉 :
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i = 1, 2, . . . , d} and B2 = {|b2i〉 : i = 1, 2, . . . , d} of a d-
dimensional system are mutually unbiased if [72,73]

|〈b1i|b2 j〉|2 = 1

d
, i, j = 1, 2, . . . , d.

When the dimension d is a prime power (i.e., d = pk for a
prime number p and a positive integer k), there always exists
a complete family of d + 1 MUBs {Bν : ν = 1, 2, . . . , d + 1}
with Bν = {|bνi〉 : i = 1, 2, . . . , d} [72,73]. In general, the ex-
istence of a complete family of MUBs in any dimension is an
outstanding open issue, even in dimension 6 [74].

Let

Cmub
f (ρ) = 1

d + 1

d+1∑
ν=1

Cf (ρ|Bν ) (15)

be the average coherence of ρ with respect to a complete
family of MUBs {Bν : ν = 1, 2, . . . , d + 1}, which is actually
independent of the choice of the complete family of MUBs, as
will be seen in the proof of the following result.

Proposition 3. For any state ρ in a d-dimensional system
with d a prime power and f ∈ Fr, it holds that

Cmub
f (ρ) = d − tr[m f̃ (Lρ, Rρ )]

d + 1
. (16)

For the proof, see Appendix A 3.
We remark that the above result holds for any dimension as

long as a complete family of MUBs exists in this dimension.

D. Equivalence

By inspecting Eqs. (12), (14), and (16), we have the fol-
lowing result.

Proposition 4. For any state ρ of any prime power dimen-
sional system and any operator monotone function f ∈ Fr, we
have

CU
f (ρ) = Cob

f (ρ) = Cmub
f (ρ).

This shows that average coherences over the unitary group,
over all elements of any operator orthonormal basis, and over
any complete family of MUBs are equivalent. Due to the
equivalence among the three kinds of average coherence, we
henceforth denote the unified average coherence by Cf (ρ) for
simplicity. To emphasize this notation, we write the following
equation for the convenience of reference:

Cf (ρ) = CU
f (ρ) = Cob

f (ρ) = Cmub
f (ρ). (17)

Next, we explain this equivalence from the perspective of
the quantum channel. According to the proof of Proposition
3, we find that

Cmub
f (ρ) = Cf (ρ|EDe),

where the depolarizing quantum channel EDe is defined as

EDe(X ) = 1

d + 1
X + 1

d + 1
tr(X )1. (18)

By substituting Eq. (9) into Eq. (11), we have

CU
f (ρ) =

∫
U

∑
i

I f (ρ,U�iU
†)dU .

Notice that∫
U

∑
i

(U�iU
†)X (U�iU

†)dU = 1

d + 1
X + 1

d + 1
tr(X )1

by using Eq. (A1) which is given in Appendix A 1. Hence,
the average coherence over the unitary group is precisely the
coherence relative to the channel EDe defined by Eq. (18). By
the definition of average coherence over all elements of an
operator orthonormal basis, it follows that

Cob
f (ρ) =

d2∑
α=1

I f

(
ρ,

1√
d + 1

Xα

)
+ I f

(
ρ,

1√
d + 1

)
,

which is also the coherence of ρ relative to the channel EDe

since {1/
√

d + 1, Xα/
√

d + 1 : α = 1, 2, . . . , d2} is a family
of Kraus operators of EDe.

To sum up, the average coherences over the unitary group,
over elements of any operator orthonormal basis, and over
any complete family of MUBs are all equal to the coherence
relative to the depolarizing channel, which is a mixture of
the identity channel with probability 1/(d + 1) and the com-
pletely depolarizing channel with probability d/(d + 1).

We further specialize to two important cases.
(a) For

f (x) = fWY(x) =
(√

x + 1

2

)2

, (19)

we have

CfWY (ρ) = d − (tr
√

ρ )2

d + 1
, (20)

which is precisely the average coherence based on the Wigner-
Yanase skew information [61].

(b) For

f (x) = fWYD(x) = α(1 − α)(x − 1)2

(xα − 1)(x1−α − 1)
(21)

with α ∈ (0, 1), we have the average coherence

CfWYD (ρ) = d − tr(ρα )tr(ρ1−α )

d + 1
,

which is related to the Wigner-Yanase-Dyson skew
information.

A general coherence measure Cf (ρ|E ) of a quantum state
ρ relative to a quantum channel E is studied in Ref. [37],
which has many nice properties such as unitary invariance,
convexity, and monotonicity. Since these three versions of
average coherence are equivalent and equal to the coherence
Cf (ρ|EDe) of the quantum state ρ relative to the depolarizing
channel EDe, the average coherence also has the above nice
properties and thus is indeed a coherence measure.

III. QUANTUM f ENTROPY IN TERMS OF OPERATOR
MONOTONE FUNCTIONS

In this section, we first discuss a complementary rela-
tion between the average coherence CU

HS(ρ) based on the
Hilbert-Schmidt norm and the linear entropy S2(ρ) as well
as that between the average coherence CfWY (ρ) based on

052406-4



AVERAGE COHERENCE AND ENTROPY PHYSICAL REVIEW A 108, 052406 (2023)

Wigner-Yanase skew information and the unified-(r, s) quan-
tum entropy Ss

r (ρ) for r = 1/2 and s = 2. These observations,
together with the desire to connect coherence and entropy,
inspire us to employ the average coherence Cf (ρ) to intro-
duce a family of quantum entropies which we call quantum
f entropy. Furthermore, we prove that quantum f entropy
possesses several desirable properties analogous to the ubiq-
uitous von Neumann entropy and establish a relation between
quantum f entropy and quasientropy [75–77].

Let us start by reviewing two complementary relations
between average coherence and entropy. First, recall that
the coherence of ρ relative to a reference basis {|i〉 : i =
1, 2, . . . , d}, or equivalently, the corresponding von Neumann
measurement � = {�i = |i〉〈i| : i = 1, 2, . . . , d}, is defined
as [20]

CHS(ρ|�) =
∥∥∥∥∥ρ −

∑
i

�iρ�i

∥∥∥∥∥
2

.

Similar to the first averaging procedure in Sec. II. A, the
average coherence of the state ρ based on the Hilbert-Schmidt
norm with respect to all von Neumann measurements can be
directly calculated as

CU
HS(ρ) =

∫
U

CHS(ρ|U�U †)dU = dtrρ2 − 1

d + 1
.

This implies that the linear entropy defined by S2(ρ) = 1 −
trρ2 is related to CU

HS(ρ) by the following equality:

dS2(ρ) + (d + 1)CU
HS(ρ) = d − 1. (22)

Secondly, recall that the unified-(r, s) quantum entropy is
defined as [78]

Ss
r (ρ) = 1

(1 − r)s

[
(trρr )s − 1

]
, r �= 1, s �= 0.

In particular, when r = 1/2, s = 2, it reduces to

S2
1/2(ρ) = (tr

√
ρ )2 − 1,

which turns out to be related to the average coherence
CfWY (ρ), i.e., Eq. (20), by the following equality:

S2
1/2(ρ) + (d + 1)CfWY (ρ) = d − 1. (23)

Notice that both Eqs. (22) and (23) imply that there exist
complementary relations between average coherence and en-
tropy. So, it is natural to generalize the entropy

S2
1/2(ρ) = (d − 1) − (d + 1)CfWY (ρ)

related to the operator monotone function fWY to that related
to an arbitrary operator monotone function f ∈ Fr. That is,
given a function f ∈ Fr, using the average coherence Cf (ρ),
we can introduce the corresponding entropy

S f (ρ) ≡ (d − 1) − (d + 1)Cf (ρ), (24)

which we call quantum f entropy. By use of Eq. (12), it can
be reexpressed as

S f (ρ) = tr[m f̃ (Lρ, Rρ )] − 1. (25)

From Eq. (24), it follows that

S f (ρ) + (d + 1)Cf (ρ) = d − 1, (26)

which signifies a complementary relation between quantum f
entropy and the average coherence Cf (ρ).

Next, we show that S f (ρ) is indeed a bona fide measure of
entropy, as consolidated by the following properties.

Proposition 5. The following hold.
(1) S f (ρ) � 0, and the equality holds if and only if ρ is a

pure state.
(2) For a d-dimensional system, the f entropy of a quantum

state is at most d − 1. The f entropy is equal to d − 1 if and
only if the system is in the completely mixed state 1/d.

(3) S f (ρ) is concave in ρ in the sense that

S f

⎛⎝∑
j

p jρ j

⎞⎠ �
∑

j

p jS f (ρ j ),

where {p j} is a probability distribution and ρ j are states.
(4) Suppose a composite system shared by parties a and b

is in a pure state |
〉〈
|, then S f (ρa) = S f (ρb), where ρa =
trb|
〉〈
|, and ρb = tra|
〉〈
|.

(5) S f (ρ ⊗ 1/d ) = S f (1/d ⊗ ρ) = dS f (ρ) + S f (1/d ).
(6) S f (

∑
j p j | j〉〈 j| ⊗ ρ j ) �

∑
j p jS f (ρ j ) where {| j〉} is

an orthonormal basis of one system, ρ j are quantum states
on another system, and {pj} is a probability distribution.

(7) S f (UρU †) = S f (ρ) for any unitary operator U .

(8) For any random unitary channel ERU(ρ) =∑
k pkUkρU †

k with Uk unitary operators and {pk} a probability
distribution, we have S f (ERU(ρ)) � ∑

k pkS f (ρ).
(9) Let f ∈ Fr be a bounded continuous operator monotone

function. Assume that ρn such that ρn → ρ in norm, then
S f (ρn) → S f (ρ).

For the proof, see Appendix A 4.
From Eqs. (13) and (17), we have another representation of

quantum f entropy:

S f (ρ) = d − 1 −
d2∑

α=1

I f (ρ, Xα ), (27)

which is independent of the choice of the operator orthonor-
mal basis {Xα : α = 1, 2, . . . , d2}. According to item 1 in
Proposition 5, S f (ρ) = 0 if and only if ρ is a pure state, which
is equivalent to the average coherence Cf (ρ) reaching its max-
imum (d − 1)/(d + 1). According to item 2 in Proposition
5, the quantum f entropy reaches its maximum d − 1 if and
only if the system is in the completely mixed state 1/d, which
is equivalent to the average coherence reaching its minimum
zero.

In order to relate quantum f entropy to quasientropy, we
now recall the concept of quasientropy. Let Mn(C) denote
the algebra of n × n complex matrices. For positive definite
matrices (thus invertible) ρ1, ρ2, and A ∈ Mn(C) and a func-
tion f : R+ ≡ [0,∞) → R, the quasientropy is defined as
[75–77]

SA
f (ρ1|ρ2) = 〈

Aρ
1/2
2 , f [�(ρ1/ρ2)]

(
ρ

1/2
2

)〉
,

where 〈B,C〉 = tr(B†C) is the Hilbert-Schmidt inner prod-
uct and �(ρ1/ρ2) : Mn(C) → Mn(C) is the linear mapping
defined by �(ρ1/ρ2)(B) = ρ1Bρ−1

2 . Quasientropy can be ex-
pressed in terms of the mean as

SA
f (ρ1|ρ2) = 〈

A, m f
(
Lρ1 , Rρ2

)
(A)

〉
.
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In particular, when ρ1 = ρ2 = ρ, we get

SA
f (ρ|ρ) = 〈A, m f (Lρ, Rρ )(A)〉. (28)

From the proof of item 9 in Proposition 5 (see
Appendix A 4), we obtain

S f (ρ) =
d2∑

α=1

SXα

f̃
(ρ|ρ) − 1, (29)

which connects quantum f entropy and quasientropy.
Combining Eqs. (27) and (29), we have the tradeoff rela-

tion

d2∑
α=1

I f (ρ, Xα ) +
d2∑

α=1

SXα

f̃
(ρ|ρ) = d, (30)

which can be viewed as a complementary relation for metric-
adjusted skew information and quasientropy. In terms of the
average coherence, Eq. (30) can be expressed as

(d + 1)Cf (ρ) +
d2∑

α=1

SXα

f̃
(ρ|ρ) = d. (31)

From the tradeoff relations (26) and (31), we find that the av-
erage coherence Cf (ρ) characterizes the information content
in the state ρ and is associated with the quantum f entropy
or quasientropy of ρ. This indicates that the entropy of a state
cannot be arbitrarily small when the average coherence is very
small.

We now evaluate quantum f entropy for some typical op-
erator monotone functions.

(a) For f (x) = fWY(x) defined by Eq. (19), the quantum f
entropy can be evaluated as

S fWY (ρ) = (tr
√

ρ )2 − 1, (32)

which is just S2
1/2(ρ) according to Eqs. (23) and (26).

(b) For f (x) = fWYD(x) defined by Eq. (21), the quantum
f entropy can be evaluated as

S fWYD (ρ) = trραtrρ1−α − 1, α ∈ (0, 1). (33)

(c) For f (x) = fSLD(x) = (1 + x)/2, we have

I fSLD (ρ, A) = 1
4 tr(ρL2),

which is the quantum Fisher information defined via sym-
metric logarithmic derivative L determined by the operator
equation (Lρ + ρL)/2 = i[ρ, A] [79–81]. The quantum f en-
tropy can be evaluated as

S fSLD (ρ) =
∑

i j

2λiλ j

λi + λ j
− 1, (34)

where λi are the nonzero eigenvalues of ρ.

It is easy to prove that if f̃ � g̃, then I f (ρ, A) � Ig(ρ, A),
which yields S f (ρ) � Sg(ρ). In addition, by a similar proof
given in Refs. [67,81], we have

I f (ρ, A) � I fSLD (ρ, A) � 1

2 f (0)
I f (ρ, A),

and the constant 1/(2 f (0)) is optimal. Thus,

S fSLD (ρ) � S f (ρ) � S̄ f (ρ), (35)

where

S̄ f (ρ) = 2 f (0)S fSLD (ρ) + (1 − 2 f (0))S f (1/d )

is an average of quantum entropy S fSLD (ρ) and quantum f
entropy of the maximally mixed state. Thus the quantum f
entropy S f (ρ) is lower bounded by the quantum entropy re-
lated to operator monotone function fSLD, and upper bounded
by the average of quantum entropy S fSLD (ρ) and quantum f
entropy of the maximally mixed state.

IV. COMPARISON

In order to gain a more concrete and intuitive under-
standing of quantum f entropy and its relations with other
entropies, we compare it with several typical quantum en-
tropies in the literature.

For a qubit state expressed in the computational basis
{|0〉, |1〉} as

ρ = 1

2

(
1 +

3∑
i=1

riσi

)
= 1

2

(
1 + r3 r1 − ir2

r1 + ir2 1 − r3

)
, (36)

where ri ∈ R, 1 is the identity operator, and σi are the Pauli
matrices, it can be directly verified that it has the following
spectral decomposition:

ρ = λ1|ψ1〉〈ψ1| + λ2|ψ2〉〈ψ2|, (37)

with eigenvalues

λ1 = 1
2 (1 + r), λ2 = 1

2 (1 − r),

and the corresponding eigenvectors

|ψ1〉 = (r1 − ir2)|0〉 − (r3 − r)|1〉√
2r(r − r3)

,

|ψ2〉 = (r1 − ir2)|0〉 − (r3 + r)|1〉√
2r(r + r3)

.

Here r =
√

r2
1 + r2

2 + r2
3�1 is the modulus of the Bloch vector

of ρ.
Before comparing entropies of ρ, let us first focus on the

connections among the linear entropy, the purity, and the
average coherence as well as quantum f entropy through this
example. From the spectral decomposition of ρ, we readily
obtain Tsallis-2 entropy (i.e., the linear entropy)

S2(ρ) = 1 − trρ2 = 1
2 (1 − r2),

and the purity [82]

P(ρ) = trρ2 = 1
2 (1 + r2),

which implies that

S2(ρ) + P(ρ) = 1. (38)

The average coherence of the state ρ can be directly evalu-
ated as

Cf (ρ) = 2r2 f (0)

3(1 + r) f
(

1−r
1+r

) , (39)
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TABLE I. Comparison among the linear entropy, purity, f en-
tropy, and average coherence of qubit states ρ defined by Eq. (36)
with r = √

r2
1 + r2

2 + r2
3 .

S2(ρ ) P(ρ ) Sf (ρ ) Cf (ρ )

Expression 1−r2

2
1+r2

2 1 − 2r2 f (0)
(1+r) f ( 1−r

1+r )
2r2 f (0)

3(1+r) f ( 1−r
1+r )

Maximum 1
2 1 1 1

3

Minimum 0 1
2 0 0

Convex or concave Concave Convex Concave Convex

and the quantum f entropy of the state ρ is

S f (ρ) = 1 − 2r2 f (0)

(1 + r) f
(

1−r
1+r

) .

Consequently,

S f (ρ) + 3Cf (ρ) = 1, (40)

which is consistent with Eq. (26).
In order to compare Eqs. (38) and (40) more clearly, we

explain the difference in Table I. From the table, we see that
when the quantum state is the maximally mixed state, the lin-
ear entropy reaches the maximum 1/2 and the f entropy also
reaches the maximum 1, while the purity reaches its minimum
1/2, and the average coherence reaches the minimum zero.
When the quantum state is a pure state, the linear entropy
reaches its minimum zero, the f entropy also reaches the
minimum zero, while the purity reaches the maximum 1, and
the average coherence reaches the maximum 1/3.

Now, we proceed to discuss relations and difference be-
tween quantum f entropy and some commonly used entropies
such as von Neumann entropy, Rényi entropy, and Tsallis
entropy. Recall that for a quantum state ρ, the von Neumann
entropy was defined as [40]

S(ρ) = −trρ log2 ρ,

and Rényi-2 entropy was defined as [49]

R2(ρ) = − log2 trρ2.

For a qubit state ρ, these entropies can be readily evaluated as

S(ρ) = 1 − 1

2
log2(1 − r2) + r

2
log2

1 − r

1 + r
,

R2(ρ) = 1 − log2(1 + r2).

Using Eqs. (32) and (34), we can evaluate quantum f entropy
of the qubit state ρ by specifying f to some typical operator
monotone functions as

S fWY (ρ) =
√

1 − r2, S fSLD (ρ) = 1 − r2.

We depict the graphs of the above entropies in Fig. 1. We
see that all the five entropies behave similarly in some sense.
That is, they are all concave and decrease with respect to r.
When r = 0, which corresponds to ρ = 1/2, all the entropies
achieve the maximum and all the maxima of these entropies
are 1 except for Tsallis-2 entropy whose maximum is 1/2.
When r = 1, which means that ρ is a pure state, all the
entropies achieve the minimum zero. Furthermore, we notice

FIG. 1. Comparison among von Neumann entropy S(ρ ), Rényi-
2 entropy R2(ρ ), Tsallis-2 entropy S2(ρ ), and quantum f entropy
including SfWY (ρ ) and SfSLD (ρ ) as functions of r for qubit state ρ

defined by Eq. (36) with r = √
r2

1 + r2
2 + r2

3 .

that S fSLD (ρ) is the smallest in the family of f entropy, which
is consistent with Eq. (35).

The qubit systems provide illuminating examples to illus-
trate that the coherence measure Cf (ρ|�) defined by Eq. (9)
is dependent on the choice of the reference basis, while the
average coherence Cf (ρ) does not since it can be directly
verified that if we choose � = {|0〉〈0|, |1〉〈1|}, then

Cf (ρ|�) = f (0)
(
r2

1 + r2
2

)
(1 + r) f

(
1−r
1+r

) . (41)

If we choose another orthonormal basis{
|+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)

}
with the corresponding von Neumann measurement being
�′ = {|+〉〈+|, |−〉〈−|}, then

Cf (ρ|�′) = f (0)
(
r2

2 + r2
3

)
(1 + r) f

(
1−r
1+r

) , (42)

which is obviously different from Cf (ρ|�) when r1 �= r3.

Next, we consider the Werner states

w = d − x

d3 − d
1d ⊗ 1d + dx − 1

d3 − d
F, x ∈ [−1, 1]

on Cd ⊗ Cd = Cd2
with {|μ〉 : μ = 1, 2, . . . , d} an orthonor-

mal basis of the d-dimensional Hilbert space Cd and F =∑d
μ,ν=1 |μ〉〈ν| ⊗ |ν〉〈μ| the swap operation. The spectral de-

composition of w reads [83]

w = 2p

d2 + d
�s + 2(1 − p)

d2 − d
�a, p ∈ [0, 1] (43)

with eigenvalues

λ1 = 2p

d2 + d
, λ2 = 2(1 − p)

d2 − d

of multiplicities (d2 + d )/2 and (d2 − d )/2, respectively.
Here �s and �a are projections onto the symmetric and
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FIG. 2. Comparison among von Neumann entropy S(w), Tsallis-
2 entropy S2(w), Rényi-2 entropy R2(w), and quantum f entropy
including SfWY (w) and SfSLD (w) as functions of p ∈ [0, 1] for Werner
states w defined by Eq. (43) with d = 2.

antisymmetric subspaces of Cd ⊗ Cd , respectively, and p =
tr(w�s). It can be directly evaluated that

S(w) = −p log2
2p

d2 + d
− (1 − p) log2

2(1 − p)

d2 − d
,

S2(w) = 1 −
(

2p2

d2 + d
+ 2(1 − p)2

d2 − d

)
,

R2(w) = − log2

(
2p2

d2 + d
+ 2(1 − p)2

d2 − d

)
,

S fWY (w) = 1

2
(
√

p(d2 + d ) +
√

(1 − p)(d2 − d ))2 − 1,

S fSLD (w) = d p + d2 − d

2
+ 2p(1 − p)d (d2 − 1)

d + 1 − 2p
− 1.

We depict the graphs of the above entropies of Werner
states with d = 2 in Fig. 2 (hence in this case the Werner states
live in C4). From the figure we see that all the five entropies
behave similarly in some sense. We see that von Neumann
entropy S(w), Rényi-2 entropy R2(w), and Tsallis-2 entropy
S2(w) may be less than fSLD entropy (which is the smallest in
the family of f entropy) for some Werner states, so none of
these entropies belongs to the family of f entropy. Therefore,

these well-known entropies are all different from quantum f
entropy.

V. SUMMARY

For the average coherence, we have considered three nat-
ural and seemingly different yet equivalent procedures: The
first is taking the average over all orthonormal bases, the
second is taking the average over all elements of an oper-
ator orthonormal basis, and the third is taking the average
over a complete family of mutually unbiased bases. We have
employed average coherence to study entropy. We have in-
troduced quantum f entropy related to operator monotone
functions by means of the average coherence, and revealed
basic properties of quantum f entropy. We have shown that it
is indeed a bona fide measure of entropy. We have established
some tradeoff relations among average coherence, quantum f
entropy, and quasientropy. To illustrate f entropy, we have
evaluated and compared various entropies, and have found
that they exhibit qualitatively similar behaviors. In particu-
lar, we have made a rather detailed comparison among f
entropy for f = fWY, fSLD and von Neumann entropy, Rényi-
2 entropy, and Tsallis-2 entropy. We have illuminated some
similarities and differences between them.

Different entropies capture uncertainties of states from
different angles and have their own advantages in different
contexts. Quantum f entropy has the advantage that it is a
sufficiently large family related to many important operator
monotone functions and is intrinsically related to average
coherence.

In view of the information-theoretic meaning of quantum f
entropy and its intricate connections with average coherence,
the foundational and practical implications of quantum f en-
tropy deserve further investigations and exploitation.
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APPENDIX

Here we present the detailed proofs of Propositions 1, 2, 3, and 5. Notice that Proposition 4 follows readily from
Propositions 1–3.

1. Proof of Proposition 1

By using Eq. (11), the definition of the metric-adjusted skew information, and (U |i〉〈i|U †)
2 = U |i〉〈i|U †, Eq. (12) follows

from

CU
f (ρ) =

d∑
i=1

∫
U
{tr(ρU |i〉〈i|U †) − tr[U |i〉〈i|U †m f̃ (Lρ, Rρ )(U |i〉〈i|U †)]}dU

= 1 −
d∑

i=1

tr

(
|i〉〈i|

∫
U

U †m f̃ (Lρ, Rρ )(U |i〉〈i|U †)UdU

)
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= 1 −
d∑

i=1

tr

{
|i〉〈i|

[
dtr(m f̃ (Lρ, Rρ )(1)) − tr(m f̃ (Lρ, Rρ ))

d (d2 − 1)
1 + dtr(m f̃ (Lρ, Rρ )) − tr(m f̃ (Lρ, Rρ )(1))

d (d2 − 1)
|i〉〈i|

]}

= 1 −
d∑

i=1

d − tr(m f̃ (Lρ, Rρ ) + dtr(m f̃ (Lρ, Rρ )) − 1

d (d2 − 1)

= d − tr(m f̃ (Lρ, Rρ ))

d + 1
.

In the above derivation, we have used the fact that tr(m f̃ (Lρ, Rρ )(1)) = 1 and the relation [84]∫
U

U †�(UXU †)UdU = dtr(�(1)) − tr(�)

d (d2 − 1)
tr(X )1 + dtr(�) − tr(�(1))

d (d2 − 1)
X. (A1)

2. Proof of Proposition 2

Notice that Cob
f (ρ) is independent of the choice of the operator orthonormal basis and thus is well defined. In the following

we choose the operator orthonormal basis {Ei j = |i〉〈 j| : i, j = 1, 2, . . . , d}, where Ei j is the matrix with entry 1 at the (i, j) site
and zero elsewhere. Let ρ = ∑

i λi|φi〉〈φi| be the spectral decomposition of ρ, then

d∑
i, j=1

I f (ρ, Ei j ) = d −
d∑

i, j=1

m∑
k,l=1

m f̃ (λk, λl )tr(| j〉〈i|φk〉〈φk|i〉〈 j|φl〉〈φl |) = d −
m∑

k,l=1

m f̃ (λk, λl )
d∑

i=1

〈i|φk〉〈φk|i〉
d∑

j=1

〈 j|φl〉〈φl | j〉

= d −
m∑

k,l=1

m f̃ (λk, λl )tr(|φk〉〈φk|)tr(|φl〉〈φl |) = d −
m∑

k,l=1

m f̃ (λk, λl ) = d − tr[m f̃ (Lρ, Rρ )],

from which we obtain Eq. (14).

3. Proof of Proposition 3

First we compute the trace of the superoperator m f̃ (Lρ, Rρ ). Let ρ = ∑
i λi|φi〉〈φi| be the spectral decomposition of the state

ρ. For any operator X ,

m f̃ (Lρ, Rρ )(X ) =
∑

i j

m f̃ (λi, λ j )|φi〉〈φi|X |φ j〉〈φ j | =
∑

j

(∑
i

m f̃ (λi, λ j )|φi〉〈φi|
)

X |φ j〉〈φ j |.

By the fact that tr(�) = ∑
j tr(Aj )tr(B†

j ) for the superoperator � represented as �(X ) = ∑
j A jXB†

j [84], we have

tr[m f̃ (Lρ, Rρ )] =
∑

j

tr

(∑
i

m f̃ (λi, λ j )|φi〉〈φi|
)

tr(|φ j〉〈φ j |) =
∑
i, j

m f̃ (λi, λ j ).

Next by the definition of Cmub
f (ρ), we can express it as

Cmub
f (ρ) = 1

d + 1

d+1∑
ν=1

d∑
i=1

{tr(ρ|bνi〉〈bνi|) − tr[|bνi〉〈bνi|m f̃ (Lρ, Rρ )(|bνi〉〈bνi|)]}

= 1 − 1

d + 1

∑
k,l

m f̃ (λk, λl )
d+1∑
ν=1

d∑
i=1

tr(|bνi〉〈bνi|φk〉〈φk|bνi〉〈bνi|φl〉〈φl |)

= 1 − 1

d + 1

∑
k,l

m f̃ (λk, λl )tr

(
d+1∑
ν=1

d∑
i=1

(|bνi〉〈bνi| ⊗ |bνi〉〈bνi|)(|φk〉〈φk| ⊗ |φl〉〈φl |)
)

.

In order to evaluate the average coherence Cmub
f (ρ), we need the following identity:

1

d + 1

d+1∑
ν=1

d∑
i=1

|bνi〉〈bνi| ⊗ |bνi〉〈bνi| = 1 ⊗ 1 + F

d + 1
, (A2)
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where F = ∑
α Xα ⊗ X †

α = ∑
i, j |i〉〈 j| ⊗ | j〉〈i| is the swap operator. We invoke the relation

ρ =
d+1∑
ν=1

ρ(Bν ) − 1, (A3)

proved by Ivanovic [85], where ρ(Bν ) = ∑d
j=1〈bν j |ρ|bν j〉|bν j〉〈bν j |. Plugging ρ(Bν ) into Eq. (A3) we get ρ =∑d+1

ν=1

∑d
i=1 |bνi〉〈bνi|ρ|bνi〉〈bνi| − 1, which leads to the following equation:

X =
d+1∑
ν=1

d∑
i=1

|bνi〉〈bνi|X |bνi〉〈bνi| − tr(X )1 (A4)

for any operator X. Notice that

d+1∑
ν=1

d∑
i=1

|bνi〉〈bνi|bνi〉〈bνi| =
d+1∑
ν=1

d∑
i=1

|bνi〉〈bνi| = (d + 1)1.

Thus if we take Eγ = |bνi〉〈bνi|/
√

d + 1 with γ = (ν, j), then they are Kraus operators of the channel E , and

E (X ) = 1

d + 1

d+1∑
ν=1

d∑
j=1

|bν j〉〈bν j |X |bν j〉〈bν j |. (A5)

Combining Eqs. (A4) and (A5), we get

E (X ) = 1

d + 1
(X + tr(X )1).

Hence if we put F0 = 1/
√

d + 1, Fα = Xα/
√

d + 1, α = 1, 2, . . . , d2, where {Xα : α = 1, 2, . . . , d2} is an operator orthonormal
basis of L(H ), then {Fβ : β = 0, 1, . . . , d2} is a set of Kraus operators of E . Here we have used the fact that

∑d2

α=1 XαY X †
α =

tr(Y )1 for any operator Y [86]. Now we have constructed two sets of Kraus operators {Eγ } and {Fβ} of the channel E . There exist
complex numbers uγ β such that Eγ = ∑

β uγ βFβ for any γ and
∑

γ uγ βu†
γ β ′ = δββ ′ . Consequently,

∑
γ

Eγ ⊗ E†
γ =

∑
γ

∑
β

uγ βFβ ⊗
⎛⎝∑

β ′
uγ β ′Fβ ′

⎞⎠†

=
∑
β,β ′

∑
γ

uγ βu†
γ β ′Fβ ⊗ F †

β ′ =
∑

β

Fβ ⊗ F †
β ,

which implies Eq. (A2). Therefore, we obtain

Cmub
f (ρ) = 1 − 1

d + 1

∑
i, j

m f̃ (λi, λ j )tr[(1 ⊗ 1 + F )(|φi〉〈φi| ⊗ |φ j〉〈φ j |)] = 1 − 1

d + 1

∑
i, j

m f̃ (λi, λ j )(1 + δi j )

= 1 − 1

d + 1

(
tr(m f̃ (Lρ, Rρ )) +

∑
i

m f̃ (λi, λi )

)
= 1 − 1

d + 1
{tr[m f̃ (Lρ, Rρ )] + 1} = d − tr[m f̃ (Lρ, Rρ )]

d + 1
,

where the second equality follows from

tr[F (A ⊗ B)] =
∑
i, j

tr(|i〉〈 j|A ⊗ | j〉〈i|B) =
∑
i, j

〈 j|A|i〉〈i|B| j〉 = tr(AB).

4. Proof of Proposition 5

To prove item 1, for any state ρ with the spectral decomposition ρ = ∑
i λi|φi〉〈φi|, where the eigenvalues λi > 0, we have∑

i, j

m f̃ (λi, λ j ) �
∑
i= j

m f̃ (λi, λ j ) =
∑

i

m f̃ (λi, λi ) =
∑

i

λi = 1,

thus S f (ρ) � 0. When ρ is a pure state, S f (ρ) = 0. On the other hand, if ρ is not a pure state, then ρ has at least two eigenvalues,
and ∑

i, j

m f̃ (λi, λ j ) >
∑

i

m f̃ (λi, λi ) = 1.

Therefore S(ρ) = 0 if and only if ρ is a pure state.
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For item 2, ∀ f ∈ Fr, x, y > 0, it holds that

m f̃ (x, y) = x f̃

(
y

x

)
= 1

2

(
x + y − (y − x)2 f (0)

x f
( y

x

))
.

Thus m f̃ (x, y) � (x + y)/2 and m f̃ (x, y) = (x + y)/2 if and only if x = y. It follows that∑
i, j

m f̃ (λi, λ j ) �
∑
i, j

λi + λ j

2
� d. (A6)

Thus S f (ρ) � d − 1 for any state ρ, and the equality holds if and only if
∑

i, j m f̃ (λi, λ j ) = d, which is equivalent to∑
i, j m f̃ (λi, λ j ) = ∑

i, j (λi + λ j )/2 = d. Hence, m f̃ (λi, λ j ) = (λi + λ j )/2 for any i, j = 1, 2, . . . , d, which implies λi = λ j

for all i, j = 1, 2, . . . , d, and the state is the completely mixed state 1/d. On the other hand, by direct calculation, we have
S f (1/d ) = d − 1.

Item 3 follows from Eq. (27) and the convexity of I f (ρ, K ) in ρ.

For item 4, from the Schmidt decomposition we know that the eigenvalues of the density operators ρa and ρb are the same.
Quantum f entropy is determined completely by the eigenvalues, so the desired result follows.

For item 5, by the symmetry of m f̃ (x, y), for any states ρ and σ , we have S f (ρ ⊗ σ ) = S f (σ ⊗ ρ). Let {|φi〉 : i = 1, 2, . . . , d}
be a complete set of eigenvectors of ρ = ∑

i λi|φi〉〈φi|, which thus constitute an orthonormal basis of the system Hilbert space.
Consequently, 1 = ∑d

i=1 |φi〉〈φi|, and

ρ ⊗ 1
d

=
∑
i, j

λi

d
|φi〉〈φi| ⊗ |φ j〉〈φ j |,

then

S f

(
ρ ⊗ 1

d

)
=

∑
i,i′

∑
j, j′

m f̃

(
λi

1

d
, λi′

1

d

)
− 1 = 1

d

∑
j, j′

∑
i,i′

m f̃ (λi, λi′ ) − 1 = 1

d

∑
j, j′

(S f (ρ) + 1) − 1

= dS f (ρ) + S f

(
1
d

)
.

Item 6 follows from item 3 and

S f

⎛⎝∑
j

p j | j〉〈 j| ⊗ ρ j

⎞⎠ �
∑

j

p jS f (| j〉〈 j| ⊗ ρ j ) =
∑

j

p jS f (ρ j ).

For item 7, let {Xα : α = 1, 2 . . . , d2} be an operator orthonormal basis for L(H ), then {UXαU † : α = 1, 2, . . . , d2} is also an
operator orthonormal basis for L(H ), and

S f (UρU †) = d − 1 −
d2∑

α=1

I f (UρU †, Xα ) = d − 1 −
d2∑

α=1

I f (ρ,U †XαU ) = S f (ρ).

In view of the convexity of I f (ρ, K ) in ρ and Eq. (27), we have

S f (ERU(ρ)) = d − 1 −
d2∑

α=1

I f (ERU(ρ), Xα ) = d − 1 −
d2∑

α=1

I f

(∑
k

pkUkρU †
k , Xα

)
� d − 1 −

∑
k

pk

d2∑
α=1

I f (UkρU †
k , Xα )

= d − 1 −
∑

k

pk

d2∑
α=1

I f (ρ,U †
k XαUk ) = d − 1 −

∑
k

pk[d − 1 − S f (ρ)] = S f (ρ),

from which item 8 follows.
To prove item 9, by Eqs. (27) and (28), for any operator orthonormal basis {Xα : j = 1, 2, . . . , d2} (self-adjoint operators) of

L(H ), we have

S f (ρ) = d − 1 −
d2∑

α=1

I f (ρ, Xα ) = d − 1 −
d2∑

α=1

tr
(
ρX 2

α

) +
d2∑

α=1

tr[Xαm f̃ (Lρ, Rρ )(Xα )]

=
d2∑

α=1

tr[Xαm f̃ (Lρ, Rρ )(Xα )] − 1 =
d2∑

α=1

SXα

f̃
(ρ|ρ) − 1,
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where the third equation holds in view of
∑d2

α=1 X 2
α = d1. If ρn → ρ in norm, then for any bounded continuous operator

monotone function f , SA
f (ρn|ρn) → SA

f (ρ|ρ) for any operator A [77]. f ∈ Fr implies that f̃ is also a bounded continuous operator
monotone function [66], so S f (ρn) → S f (ρ).
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