
PHYSICAL REVIEW A 108, 052405 (2023)

Quantum multiplication algorithm based on the convolution theorem

Mehdi Ramezani , Morteza Nikaeen , Farnaz Farman, Seyed Mahmoud Ashrafi , and Alireza Bahrampour
Department of Physics and Centre for Quantum Engineering and Photonics Technology, Sharif University of Technology, Tehran 14588, Iran

(Received 24 June 2023; accepted 10 October 2023; published 6 November 2023)

The problem of efficient multiplication of large numbers has been a long-standing challenge in classical
computation and has been extensively studied for centuries. It appears that the existing classical algorithms are
close to their theoretical limit and offer little room for further enhancement. However, with the advent of quantum
computers and the need for quantum algorithms that can perform multiplication on quantum hardware, a new
paradigm emerges. In this paper, inspired by the convolution theorem and quantum amplitude amplification
paradigm we propose a quantum algorithm for integer multiplication with time complexity of O(

√
n log2 n)

which outperforms the best-known classical algorithm, the Harvey algorithm with time complexity of O(n log n).
Unlike the Harvey algorithm, our algorithm does not have the restriction of being applicable solely to extremely
large numbers, making it a versatile choice for a wide range of integer multiplication tasks. The paper also
reviews the history and development of classical multiplication algorithms and motivates us to explore how
quantum resources can provide new perspectives and possibilities for this fundamental problem.

DOI: 10.1103/PhysRevA.108.052405

I. INTRODUCTION

Efficient computation of integer multiplication, as one of
the most elementary mathematical operations, is crucial in
many fields including computer science and engineering. The
development of multiplication algorithms has been a fascinat-
ing journey that has spanned centuries and continents. From
the ancient Egyptians to modern-day mathematicians, people
have been searching for more efficient ways to perform multi-
plication. Today, we have a range of algorithms that allow us
to perform complex calculations quickly and accurately.

The grade-school algorithm, also known as the standard
algorithm, is the most basic and widely taught multiplication
algorithm. However, its time complexity O(n2), i.e., the num-
ber of single-bit arithmetic operations necessary to multiply
two n-bit integers, limits its practicality for larger numbers.
Although many methods were invented, such as Egyptian
multiplication and lattice multiplication, their time complexity
was also limited to O(n2).

For years, it was believed that the time complexity of mul-
tiplication algorithms could not be improved beyond O(n2).
This changed in the 1960s with the introduction of the
breakthrough Karatsuba algorithm [1], which revolutionized
multiplication algorithms by reducing the time complexity to
O(nlog23). This is a divide-and-conquer algorithm that splits
the numbers into two smaller parts and recursively multiplies
them until the smallest parts can be multiplied directly. Be-
cause of the overhead of recursion, Karatsuba’s multiplication
is slower than standard multiplication for small values of n.
However, it is asymptotically faster than standard multiplica-
tion and has become a cornerstone of modern multiplication
algorithms and paved the way for even faster algorithms.

It did not take long for Karatsuba’s idea to lead to a faster
algorithm known as the Toom-Cook algorithm [2]. It is an ex-
tension of the Karatsuba algorithm that splits the numbers into
more than two parts. Due to the growth of the overhead from

additions and digit management, this algorithm has a higher
computational complexity than the Karatsuba algorithm but
can be faster for very large numbers, and is typically used
for intermediate-size multiplications. For example, the time
complexity of Toom-3, which splits the numbers into three
parts, is O(nlog35).

The Karatsuba algorithm is by no means the end of the
line for multiplication algorithms but it emerged as the be-
ginning of modern multiplication algorithms. A further step
in modern multiplication algorithms was taken by Schönhage
and Strassen in 1971 [3,4]. Their work involves representing
each number as a polynomial, where the coefficients of the
polynomial correspond to the digits of the number. Convolv-
ing the vectors of polynomial coefficients is equivalent to
multiplying the two polynomials. The algorithm then uses
the fast Fourier transform (FFT) and convolution theorem
to compute the product of these polynomials, which gives
the product of the original numbers. This approach exploits
the efficiency of the FFT algorithm to reduce the time com-
plexity of multiplication. The FFT and convolution theorem
provide a way to compute the product of two extremely large
numbers which asymptotically has much lower computational
complexity than the Toom-Cook algorithm. The original algo-
rithm performs the discrete Fourier transform over complex
fields leading to a time complexity of O(nlog2n). However,
it requires the use of complex numbers and floating-point
arithmetic, and as such it requires a significant amount of
memory to store intermediate results due to the numerous
calculations involved. Therefore, implementing the algorithm
to get error-free outcomes is not practical even in modern
classical computer architectures. To overcome this difficulty,
they modified the algorithm by changing the field over which
the FFT is performed from the complex field to the finite field,
i.e., the Galois field. This resulted in error-free outcomes with
a trade-off time complexity of O(nlog2nlog2log2n).

2469-9926/2023/108(5)/052405(10) 052405-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5558-3376
https://orcid.org/0000-0002-3788-0035
https://orcid.org/0000-0002-8444-4391
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.052405&domain=pdf&date_stamp=2023-11-06
https://doi.org/10.1103/PhysRevA.108.052405

MEHDI RAMEZANI et al. PHYSICAL REVIEW A 108, 052405 (2023)

Thirty-six years later, Fürer improved the asymptotic com-
plexity of the multiplication to nlog22O(log ∗n) using Fourier
transforms over complex numbers but with a different divide-
and-conquer pattern than the one of the Strassen algorithm,
where log ∗ denotes the iterated logarithm [5].

Efforts continued to provide new algorithms to reduce the
time complexity of multiplication problems. Strassen’s con-
jecture that the final time complexity of the multiplication
algorithm is O(n log2 n) has been a guiding principle for many
researchers. In 2019, Harvey achieved this feat by discovering
an O(n log2 n) multiplication algorithm, which is believed to
be close to the optimal solution for this problem [6]. But the
key aspect to note about this algorithm is that it can only be
used for extremely large numbers with a minimum of 2172912

bits!
Overall, each multiplication algorithm has its own advan-

tages and disadvantages, and the choice of algorithm depends
on the size and type of the input numbers, the available
resources, and the desired level of accuracy and hardware
limitations. Each of these algorithms may be more or less
appropriate depending on the specific use case.

As one of the most basic mathematical operations,
multiplication naturally is employed in various quantum al-
gorithms. Therefore, devising and implementing efficient
quantum multiplication algorithms that can be run in quantum
computers is a crucial problem. A natural question then arises
as to whether the quantum paradigm can give us quantum
algorithms with some advantages over classical algorithms for
multiplication problems. The majority of quantum algorithms
introduced for arithmetic operations, like multiplication, often
amount to quantum implementations of classical algorithms,
lacking a substantial computational advantage [7–10]. As an
illustration, in Ref. [9], a technique for integer multiplication
utilizing the quantum Fourier transform is put forth, albeit
with a gate count of O(n3). Furthermore, in Ref. [10], a quan-
tum adaptation of Strassen’s algorithm is introduced, offering
comparable time complexity to its classical counterpart.

Considering the superiority of the quantum Fourier trans-
form (QFT) compared to its classical counterpart and rec-
ognizing that qubits, unlike classical bits, can store complex
numbers without compromising precision, we derived inspi-
ration from the convolution theorem to introduce a quantum
multiplication algorithm offering computational advantages.
In the beginning, it is crucial to reconstruct the quantum
version of the convolution theorem, appropriate for quantum
resources. In doing so, in the first step, we need to encode the
binary vectors of polynomial coefficients into qubits. Surpris-
ingly it turns out that for encoding a vector corresponding to
an n-bit number, we only need log2 n qubits. This is the reduc-
tion of space complexity of the algorithm, the first advantage
we exploit from quantum resources. The intermediate step is
to implement the QFT circuit of these vectors, leading to a
reduction of the time complexity of the algorithm, which is the
second advantage exploited by quantum resources. The final
step involves building a quantum circuit for the elementwise
product of two quantum vector states corresponding to two in-
volved numbers. Unfortunately, there is no such deterministic
quantum circuit [11]. So, we are forced to be satisfied with the
implementation of the probabilistic version of this circuit that

in turn increases the time (or equivalently space) complexity
of the algorithm. The probability of success of the element-
wise product circuit is O(1/n) and, for every successful run of
the circuit, the time complexity of the remaining parts of the
algorithm is found to be O(log2

2 n). Therefore, the overall time
complexity of the algorithm will be O(n log2

2 n). However, it
is possible to further enhance the algorithm’s time complexity
to O(

√
n log2

2 n) by leveraging the quantum amplitude am-
plification method. This technique effectively transforms the
probabilistic aspects of the algorithm into nearly deterministic
outcomes.

The organization of the paper is as follows. In Sec. II,
we provide a detailed quantum circuit implementation of
grade-school and the Karatsuba algorithms and analyze their
resource requirements in terms of qubits, ancillas, gates, and
circuit depth. This analysis provides a baseline for comparison
with our proposed algorithm, which is presented in Sec. III.
In Sec. III, we introduce the classical convolution theorem
and demonstrate how it can be used to efficiently multiply
integers. We then extend this theorem to the quantum domain,
which involves three main steps: encoding integer vectors in
qubits (presented in Sec. III C), applying QFT, and devising
a circuit for the elementwise product of Fourier-transformed
vectors (presented in Sec. III D). We highlight the practical
advantages of our proposed algorithm and present the re-
sults of our implementation in Qiskit in Sec. III F. Finally,
we conclude with a discussion that includes a comparison
of our algorithm with the grade-school and the Karatsuba
algorithms, as well as a summary of its advantages over the
modern classical multiplication algorithms.

II. QUANTUM CIRCUITS FOR GRADE-SCHOOL
AND KARATSUBA ALGORITHMS

With the development of quantum computers and the de-
mand for quantum algorithms that can perform multiplication
on quantum hardware, it is crucial to design efficient quan-
tum multiplication algorithms that are suitable for quantum
hardware implementation. One of the objectives of vari-
ous algorithms and techniques for implementing quantum
multipliers is to optimize the number of quantum gates,
time complexity, hardware complexity, garbage outputs, and
constant inputs (ancillas). In this section, we examine the
quantum circuits of two important multiplication algorithms:
grade-school and Karatsuba. We characterize the various re-
sources of these circuits, such as depth (the number of time

FIG. 1. Grade-school multiplication of two 4-bit numbers.

052405-2

QUANTUM MULTIPLICATION ALGORITHM BASED ON THE … PHYSICAL REVIEW A 108, 052405 (2023)

FIG. 2. Schematic representation of quantum ANDing circuit.

steps needed to execute the circuit), cost (the total number
of gates applied in the circuit), and ancillas (the number of
auxiliary qubits used in the circuit), to enable us to compare
our proposed algorithm with the quantum implementations of
these two important algorithms. We first explain the quantum
circuit of the grade-school method, which uses a quantum
ANDing circuit (QAC) and quantum full adder (QFA) cir-
cuit as basic components. Then, we show how to use these
components to implement the quantum circuit of the Karat-
suba algorithm, which performs better than the grade-school
method for larger numbers of qubits.

A. Quantum circuit of grade-school multiplication algorithm

To obtain a quantum circuit for the grade-school multi-
plication algorithm, let us consider the following example,
where we multiply two 4-bit numbers, x = x3x2x1x0 and y =
y3y2y1y0. In the grade-school multiplication algorithm, we
multiply these numbers together in the form shown in Fig. 1.
In the quantum implementation of this algorithm, we encode
each bit of xi and y j in qubit |xi〉 and |y j〉, respectively. This en-
coding method is called basis encoding. As shown in Fig. 1 all
multiplicand and multiplier qubits must be multiplied together
and added purposefully to get the final result. So we can say all
quantum multiplier circuits are composed of two subcircuits:
the quantum partial product generation (PPG) circuit and the
quantum partial product addition (PPA) circuit.

1. Partial product generation (PPG) circuit

The inputs of this circuit are the array of multiplicand and
multiplier qubits. The outputs of the circuit are obtained by
multiplying each of the multiplier and multiplicand qubits
together. A QAC is used to multiply two qubits. The diagram
of the QAC is shown in Fig. 2, which multiplies the input
qubits A and C and shows the result in output qubit Q. In this
figure V := √

σx, where σx is the Pauli x matrix.
Using QACs the multiplication of all multiplicand and

multiplier qubits are obtained. The diagram of the quantum
partial product generation circuit of a 4 × 4 multiplier using
QAC is shown in Fig. 3.

The outputs of the PPG circuit must be purposefully added
together in the PPA circuit to achieve the final result.

2. Partial product addition (PPA) circuit

The inputs of the PPA circuit are the outputs of the PPG
circuit, which must be added purposefully. In order to add two
qubits, the QFA circuit is used, which is shown in Fig. 4.

The QFA circuit adds inputs A and B and C (carry) and
shows the sum and carry in output R and S, respectively. The

FIG. 3. Schematic representation of quantum PPG circuit in the
multiplication of two 4-bit numbers.

PPG circuit is composed of many QFA circuits to get the
final result (S0, . . . , S6 in Fig. 1). An example of one arrange-
ment of the QFA circuits performing the addition operation
of a 4 × 4 multiplier is shown in Fig. 5. After presenting
the components of the quantum circuit for the grade-school
algorithm, we can now estimate the basic resources required
for the circuit, such as depth, cost, and ancillas. As shown in
Figs. 2 and 4, the depth of each QAC and QFA circuit is 5 and
the costs of the QAC and QFA circuit are 5 and 6, respectively.
Also, each QAC and QFA circuit has one ancilla. By putting
these together, we obtain the depth, cost, and ancillas required
for multiplying n qubits by n qubits, for different values of n,
as shown in Table I.

B. Quantum circuit of Karatsuba’s multiplication algorithm

In this section, we investigate the quantum circuit im-
plementation of Karatsuba’s algorithm [12]. This algorithm
reduces the circuit size by recursively decomposing the
multiplication problem of size n into three submultiplica-
tion problems of size n/2 each and achieves an asymptotic
speedup over the grade-school algorithm. Actually, the algo-
rithm reduces the number of operations from T (n) = n2 in
the grade-school method to T (n) = nlog2 3, where T (n) is the
number of operations for multiplication of n-digit numbers.
The Karatsuba algorithm consists of the following steps:

(1) Input two n-digit numbers X and Y (for simplicity,
assume that n is a power of 2).

(2) If n > 1, then split X and Y into two halves, i.e.,
X = 2n/2X1 + X2, Y = 2n/2Y1 + Y2. Note that X1, Y1, X2, and
Y2 have n/2 digits each.

(3) Compute U = Karatsuba[n/2](X1,Y1).
(4) Compute V = Karatsuba[n/2](X2,Y2).

FIG. 4. Schematic representation of the quantum full adder circuit.

052405-3

MEHDI RAMEZANI et al. PHYSICAL REVIEW A 108, 052405 (2023)

FIG. 5. Schematic representation of quantum PPA circuit in the
multiplication of two 4-bit numbers.

(5) Compute W = Karatsuba[n/2](X1 + X2,Y1 + Y2).
(6) Compute Z = W − (U + V).
(7) Compute P = 2nU + 2n/2Z + V .
(8) Return P.
Unlike the grade-school method, Karatsuba’s multiplica-

tion algorithm requires not only the quantum adding circuit
but also the quantum subtraction circuit as a necessary com-
ponent. Figure 6 shows a schematic design of an optimized
version of the quantum full subtractor. A quantum full sub-
tractor circuit has four inputs (A, B,C, 0) and four outputs
(P, Q, R, S), in which the difference and borrow are R =
|C ⊕ B ⊕ A〉 and S = |C ⊕ BA ⊕ CB〉, respectively. Note that
the cost and the depth of a quantum full subtractor are 6 and
the number of ancillas is 1 [13]. Figure 7 shows a schematic
representation of a simple structure of the Karatsuba mul-
tiplication algorithm for 16 qubits. Karatsuba[16] is divided
into three Karatsuba multiplication algorithms for eight qubits
each. Each Karatsuba[8] is divided into three Karatsuba[4]

methods, which have almost the same cost as Grade-School[4].
Figure 8(a) shows how to implement Karatsuba’s algorithm
for 16 qubits using quantum circuits. We use the symbols
QFA[8], QFS[8] and Karatsuba[8] to represent the quantum
circuits for full adder, full subtractor, and Karatsuba multipli-
cation of eight qubits each. Figure 8(b) zooms in on the circuit
of Karatsuba[8], which uses the quantum circuits for full adder,
full subtractor, and grade-school multiplication of four qubits
each, denoted by QFA[4], QFS[4] and Grade-School[4].

The purple box in Fig. 8 illustrates the quantum circuit
of final adding, which performs the step 7 of the algorithm,
i.e., P = 2nU + 2

n
2 Z + V . The Final Adding[n] module com-

prises n QFA[1] modules, and therefore requires n ancilla
qubits. After presenting the quantum circuit for the Karat-
suba algorithm, we can now estimate the basic resources
required for the circuit. To do so, we provide the resource es-
timate for the modules that are used in the algorithm, namely,

TABLE I. The estimation of basic resources required for imple-
menting a quantum circuit of the grade-school algorithm.

Number size (in bits) n

Depth 5n2 − 5n + 10
Cost 11n2 − 12n + 12
Ancillas 2n2 − 2n + 2

FIG. 6. Schematic representation of a quantum full subtractor
circuit.

(QFA[n], QFS[n], Final Adding[n]). Table II displays the depth,
cost, and ancillas for each of these circuits.

From Fig. 8 one can easily derive that in general, the
Karatsuba[n] has three Karatsuba[n/2], two QFA[n/2], one
QFS[n], one QFA[n], and finally one Final Adding[n]. Now,
considering Table II, cost, depth, and the number of ancillas
of the Karatsuba[n] algorithm can be derived as follows.

Let T (n) be the resource (depth, cost, and ancilla) required
by the Karatsuba[n] algorithm. The following equation gives
us a recursive relation for the resource count:

T (n) = αT (n/2) + O(n). (1)

In the resource counts for depth, cost, and ancillas, we set
α = 3 for the latter two and α = 1 for the former. The addi-
tional O(n) term accounts for the resources required by other
modules, such as QFS[n], QFA[n], and so on.

The estimated resources for the Karatsuba algorithm
are listed in Table III, obtained by evaluating O(n) for
different resource values and solving the corresponding re-
cursive equation while taking into account the relevant initial
conditions.

Here, we presented a basic implementation of the Karat-
suba algorithm on quantum computers. It is worth noting that
several enhancements to this implementation have been ex-
plored in the literature. For instance, in Ref. [7], a significant
reduction in space requirements (ancillas), from O(n1.585) to
O(n1.427), was reported. Additionally, in Ref. [8], the space
complexity was further reduced to O(n), while the gate com-
plexity (cost) remained at O(n1.585).

FIG. 7. A schematic representation of the quantum Karatsuba
algorithm for 16 qubits.

052405-4

QUANTUM MULTIPLICATION ALGORITHM BASED ON THE … PHYSICAL REVIEW A 108, 052405 (2023)

FIG. 8. (a) Schematic representation of Karatsuba multiplica-
tion circuit for 16 qubits (Karatsuba[16]) and (b) a detailed view
of the Karatsuba[8] circuit, which uses quantum circuits for full
adder, full subtractor, and grade-school multiplication of four qubits
each. The quantum circuits are denoted by QFA[4], QFA[4], and
Grade-School[4], respectively.

III. QUANTUM MULTIPLICATION ALGORITHM BASED
ON CONVOLUTION THEOREM

In this section, we present a quantum algorithm for mul-
tiplying integers based on the convolution theorem. We first
review the classical convolution theorem and its application to
integer multiplication. Then, we show how to adapt the convo-
lution theorem to the quantum domain using three key steps:
qubit encoding, quantum Fourier transform, and elementwise
product. We also analyze the advantages of our algorithm over
classical methods and provide simulation results using Qiskit.

A. Convolution theorem

The convolution theorem is a fundamental concept in
signal processing and mathematics that relates the convolu-
tion operation in the time domain to multiplication in the
frequency domain. It provides a powerful tool for analyzing
and manipulating discrete vectors in various domains.

In the context of discrete signals represented as vectors,
the convolution operation combines two vectors to produce a

TABLE II. The resource estimate of modules used in the quan-
tum Karatsuba algorithm for n qubits.

Module QFA[n] QFS[n] Final Adding[n]

Depth 5n 6n 5n
Cost 6n 6n 6n
Ancillas n n n

TABLE III. The estimation of basic resources required for im-
plementing a quantum circuit of the Karatsuba algorithm.

Number size (in bits) n

Depth 37n − 78

Cost 332
9 nlog2 3 − 48n

Ancillas 58
27 nlog2 3 − 8n

third vector that represents the interaction between the two.
Mathematically, the convolution of two discrete vectors f [j]
and g[j] is defined as

(f ∗ g)[j] =
D∑

i=1

f [i]g[j − i], (2)

where ∗ denotes the convolution operator, D is the length of
the vector, and when j − i is negative, we wrap around the
indices by adding the length of the vector to ensure they fall
within the valid range. Mathematically, if j − i < 0, then we
can express the wrapped index as (j − i) mod D. This opera-
tion computes the sum of the elementwise product of the two
vectors, with one vector (g[j]) being time reversed and shifted
before multiplication.

The convolution theorem states that the discrete Fourier
transform (DFT) of the convolution of two vectors in the time
domain is equal to the elementwise multiplication of their
individual DFTs. In other words, if F (f) and F (g) represent
the DFTs of vectors f [j] and g[j], respectively, then the DFT
of their convolution (f ∗ g)[j] is given by

F (f ∗ g) = F (f) × F (g), (3)

where × represents the elementwise multiplication of the
complex-valued frequency components.

This theorem provides a powerful tool for signal-
processing tasks. It allows us to efficiently perform convo-
lutions by simply transforming the vectors to the frequency
domain using the DFT, multiplying their spectra, and then
transforming the result back to the time domain using the
inverse discrete Fourier transform (IDFT). This approach can
significantly simplify the computation of convolutions, espe-
cially when dealing with large vectors or complex systems.

B. Integer multiplication using the convolution theorem

The convolution theorem is a powerful mathematical tool
that can be used to perform integer multiplication efficiently.
Instead of using the traditional grade-school multiplication
algorithm, which can be slow for large integers, we can con-
vert the integers to vector representations and then perform
convolution on the digit sequences of the vectors. By using
the convolution theorem, we can obtain the multiplication
value of the two integers as a vector that can be converted
back to an integer representation. This approach offers an
efficient and mathematically sound method for performing
integer multiplication.

To convert an integer to a vector representation, we can
use the binary representation method. This involves dividing
the integer by 2 repeatedly and noting down the remainders.
The resulting remainders form the binary digits of the integer.

052405-5

MEHDI RAMEZANI et al. PHYSICAL REVIEW A 108, 052405 (2023)

For example, the integer 27 can be converted to the binary
representation 11011. Each digit in the binary representation
corresponds to an element in the vector. Therefore, we can
represent the integer 27 as the vector (1, 1, 0, 1, 1).

When performing the multiplication of two n-digit inte-
gers, the resulting product will have 2n digits. To accommo-
date this, we need to ensure that the vectors representing the
integers are zero padded. This means adding zeros to the most
significant side of the vectors, extending their size to 2n digits
or elements. By zero-padding the vectors, we create enough
space for the resulting multiplication to fill in the expanded
vector. This step is crucial to ensure the correct representation
of the product and to preserve the accuracy of the multipli-
cation operation. By performing zero padding, one can verify
that integer multiplication is equivalent to the convolution of
their corresponding vectors.

The time complexity of integer multiplication using the
convolution theorem is significantly improved compared to
traditional methods. The key factor contributing to this im-
provement is the utilization of fast algorithms for the DFT
and IDFT. The DFT and IDFT can be computed efficiently
using algorithms such as the FFT and its inverse. These
algorithms have a time complexity of O(n log2 n), where n
is the size of the vectors representing the integers. Since
the size of the vectors is 2n (to accommodate the 2n-digit
product), the time complexity of the overall integer multi-
plication using the convolution theorem is O(n log2 n). This
is a significant improvement compared to the O(n2) time
complexity of traditional long multiplication algorithms. The
convolution theorem, combined with fast Fourier transform
algorithms, offers a faster computational approach for integer
multiplication.

While the convolution theorem provides an efficient
method for integer multiplication using vector convolution, it
is important to note that directly implementing this method
on a computer may not be practical. One reason is that the
DFT and its inverse, which are key components of the con-
volution theorem, produce complex numbers as intermediate
results. Storing and manipulating complex numbers on a com-
puter typically requires a floating-point architecture. However,
working with floating-point numbers can introduce rounding
errors and loss of precision, which can impact the accuracy
of the multiplication results. As a result, direct application
of the convolution theorem for integer multiplication on a
computer may not be suitable, especially when high precision
and accuracy are required.

In response to the limitations of complex numbers and
floating-point arithmetic in the convolution theorem for in-
teger multiplication, alternative methods have emerged. The
use of the DFT over finite fields has shown promise, enabling
integer multiplication without rounding errors or precision
loss. Notably, Strassen introduced this approach, achieving a
time complexity of O(n log2 n log2 log2 n). By combining the
convolution theorem with the DFT over finite fields, accurate
and efficient multiplication of integers is made possible.

Quantum mechanics can offer significant improvements to
multiplication algorithms that utilize the convolution theorem
in two key ways. First, by leveraging the principles of quan-
tum computing, the binary vector representation of an integer
with n binary digits, which would typically require n classical

bits, can be encoded using only log2 n qubits. This exponential
reduction in qubit usage is due to the fact that the Hilbert
vector space of n qubits has a dimension of 2n. Second, since
qubits can represent complex numbers, one can utilize QFT
techniques on the qubits, mitigating the occurrence of round-
ing errors that are common in classical computations. The
inherent properties of quantum systems enable more precise
and accurate calculations when employing the convolution
theorem for integer multiplication.

Furthermore, while quantum mechanics presents oppor-
tunities for improving multiplication algorithms based on
the aforementioned advantages, there are challenges when it
comes to performing elementwise multiplication using unitary
operations. It can be shown that exact elementwise multipli-
cation cannot be achieved through unitary operations alone.
However, in light of this limitation, we propose an approach
utilizing a probabilistic circuit for elementwise multiplication.
By incorporating probabilistic elements into the quantum cir-
cuit, we can overcome the inherent constraints and enable
efficient and accurate elementwise multiplication of quantum
states. This innovative approach paves the way for leveraging
the power of quantum mechanics to enhance multiplication
algorithms beyond the limitations of unitary operations.

In what follows, we will explore the methods employed to
encode an integer in the Hilbert space of qubits, as well as
introduce an approach for conducting elementwise multipli-
cation through the utilization of a probabilistic circuit.

C. Vector representation of integers in Hilbert space

In this section, we will explore the concept of representing
integers as vectors in the Hilbert space. Each integer, denoted
as A, can be decomposed as A = ∑

j=0 A[j]B j , where B is re-
ferred to as the base. In binary representation, the base is equal
to 2. By denoting the powers of 2, such as 20, 21, 22, and so on,
with corresponding vectors (0, . . . , 0, 0, 1), (0, . . . , 0, 1, 0),
(0, . . . , 1, 0, 0), and so forth, we can represent an integer
A as a binary vector A = (A[n − 1], . . . , A[1], A[0]), which
requires n classical bits for storage.

To efficiently encode the powers of 2 (20, 21, 22, and so
on) in the Hilbert space, we can take advantage of the fact
that they share the same base. Consequently, it is possible to
encode only the exponents in the Hilbert space. This allows
us to represent 20, 21, 22, and subsequent powers of 2 in the
Hilbert space using the respective vectors |0 · · · 00〉, |0 · · · 01〉,
|0 · · · 10〉, and so on. By employing this encoding scheme, an
integer A can be represented in the Hilbert space as the sum
A = 1

Z

∑
j=0 A[j] | j〉, where the index j in | j〉 represents the

binary form of j, and Z =
√∑

j=0 A[j]2 is the normalization

factor.
Notably, this encoding technique requires only log2 n

qubits to represent an n-digit integer. By utilizing the quantum
properties of superposition and entanglement, we can achieve
a compact representation of integers in the Hilbert space,
leading to potential space savings and computational benefits
in certain applications.

With this encoding scheme, it is worth noting that zero
padding in the quantum representation of integers is highly
efficient. In the quantum setting, adding an additional qubit

052405-6

QUANTUM MULTIPLICATION ALGORITHM BASED ON THE … PHYSICAL REVIEW A 108, 052405 (2023)

FIG. 9. Quantum elementwise multiplication circuit for five
qubits.

doubles the dimension of the Hilbert space. This means that
for zero padding, where additional zeros are appended to
the binary representation, only one extra qubit is required.
In contrast, in the classical case, zero padding necessitates
doubling the number of classical bits to accommodate the
expanded number of digits. This property highlights the ad-
vantage of quantum encoding in terms of space efficiency for
zero-padding operations.

As indicated in Ref. [14], the gate complexity needed to
encode an n-bit number into log2 n qubits, following the de-
scribed method, is O(log2 n).

D. Probabilistic quantum circuit for elementwise multiplication

The elementwise multiplication quantum circuit is a
circuit that receives two k-qubit (k = log2 n) systems with
states |ψ (1)

in 〉 = ∑
i∈{0,1}k αi |i〉 and |ψ (2)

in 〉 = ∑
i∈{0,1}k βi |i〉

as input and puts their elementwise multiplication
|ψ (1)

out 〉 = 1√∑
j |α jβ j |2

∑
i∈{0,1}k αiβi |i〉 on the first k qubits

as output. One can check that the circuit of Fig. 9 satisfies the
desired requirement if the result |00 · · · 0〉 is obtained after
measuring the second k qubits. This figure depicts a quantum
elementwise multiplication circuit specifically designed
for five qubits. However, it is important to note that the
generalization of this circuit for k qubits is straightforward.
To extend the circuit for k qubits, one can simply include a
controlled-NOT (CNOT) gate between any two corresponding
qubits of the input registers a and b. By applying the CNOT

gate between qubits with the same indices, the circuit
can be scaled up to accommodate any desired number of
qubits, allowing for efficient elementwise multiplication on a
quantum system.

The proposed circuit for elementwise multiplication of two
k-qubit systems indeed requires k CNOT gates. Importantly,
since CNOT gates act on different qubits, they can be applied
simultaneously in a single clock cycle. This parallel appli-
cation of the CNOT gates allows for efficient computation of

the elementwise multiplication, reducing the overall compu-
tational time required. Therefore, by applying all the CNOT

gates concurrently, the circuit can perform the multiplication
operation swiftly and effectively on a quantum system.

This aspect of the algorithm is inherently probabilistic,
with a success probability of O(1/n). To ensure the mul-
tiplication algorithm’s correct execution, it must be iterated
O(n) times. Employing the quantum amplitude amplification
method [15], it becomes feasible to enhance the success prob-
ability, achieving the |00 · · · 0〉 state for the second qubits by
introducing a unitary operator and repeating it O(

√
n) times

(as elaborated in the forthcoming section), akin to the Grover
search algorithm. This adjustment results in an almost deter-
ministic circuit.

E. Quantum amplitude amplification

Amplitude amplification is a fundamental technique in
quantum computing and quantum algorithms that allows
us to enhance the probability of measuring a desired state
while suppressing the probability of measuring other states.
It was first introduced by Brassard and Hoyer in 1997 [16]
and independently rediscovered by Grover in 1998 [17].
This algorithm provides a quadratic speedup over classical
search algorithms for unstructured databases or searching
unsorted lists. In the following, we briefly explain this
method.

Let us suppose we are dealing with a quantum system’s
state space, which is represented by a Hilbert space of N
dimensions, H. This space is constructed using orthonormal
computational basis states. Furthermore, suppose we have a
Hermitian projection operator, denoted as P, which can be uti-
lized to divide the Hilbert space H into two distinct subspaces
that are mutually orthogonal. These subspaces are referred
to as the “good subspace” H1 and the “bad subspace” H0.
We can decompose the state vector |ψ〉 ∈ H into these two
subspaces by projection operator P as |ψ〉 = cos(θ) |ψ0〉 +
sin(θ) |ψ1〉.

Defining operator SP = 1 − 2P which flips the phase of the
state in the good subspace and operator Sψ = 1 − 2 |ψ〉 〈ψ |
which flips the phase of state |ψ〉, we can construct the unitary
operator Q(ψ, P) = −SψSP. The effect of operator Q acting
on state |ψ〉 results in a rotation with an angle of 2θ .

Applying the operator Q repeatedly n times on the state |ψ〉
results in

Qn|ψ〉 = cos((2n + 1)θ)|ψ0〉 + sin((2n + 1)θ)|ψ1〉. (4)

The process involves transitioning the state between the
good and bad subspaces through rotation. After n iterations,
the likelihood of locating the system in a favorable state is
determined by the function sin2((2n + 1)θ). To maximize this
probability, we should select n = [π

4θ
]. So far, in each step

of the process, the technique has been boosting the strength
of the favorable states, which is why it is called amplitude
amplification.

F. Qiskit implementation of quantum multiplier algorithm
based on convolution theorem

In this section, we present a Qiskit implementation of our
multiplication algorithm, showcasing its practical application.

052405-7

MEHDI RAMEZANI et al. PHYSICAL REVIEW A 108, 052405 (2023)

FIG. 10. Quantum integer multiplication circuit based on the convolution theorem.

We aim to multiply two random integers, namely, 8616 and
4532, using our proposed encoding method and elementwise
multiplication circuit. The Qiskit implementation provides a
hands-on demonstration of how quantum computation can be
utilized for efficient integer multiplication. By executing the
code, the quantum multiplication algorithm will be applied
to these specific integers, showcasing the power and potential
of quantum computing in tackling real-world computational
tasks.

Based on our encoding method, the numbers 8616 and
4532 can be encoded in a five-qubit system as follows:

8616 = 23 + 25 + 27 + 28 + 213

→ 1√
5

(|00011〉 + |00101〉 + |00111〉

+ |01000〉 + |01101〉),

4532 = 22 + 24 + 25 + 27 + 28 + 212

→ 1√
6

(|00010〉 + |00100〉 + |00101〉

+ |00111〉 + |01000〉 + |01100〉). (5)

Figure 10 displays our proposed quantum multiplication
circuit, which is based on the convolution theorem. To assess
the circuit’s performance, we conducted 1 000 000 runs, and
in 68 929 instances, the measurement on quantum register b
resulted in the state |00000〉. Figure 11 provides an overview
of the measurement results obtained from quantum register a.
Analyzing these results allows us to infer the state of register
a prior to measurement, which is
∣∣ψ (a)

out

〉 = 1√
66

(|00101〉 + 2 |00111〉 + |01000〉 + 2 |01001〉

+ 3 |01010〉 + 2 |01011〉 + 3 |01100〉 + 2 |01101〉
+ |01110〉 + 4 |01111〉 + |10000〉 + 2 |10001〉
+ |10010〉 + |10011〉 + 2 |10100〉 + |10101〉
+ |11001〉), (6)

and decoding the state obtained from the measurement results
of register a yields the product number as

(1 × 205) + (2 × 207) + (1 × 208) + (2 × 209)

+ (3 × 210) + (2 × 211) + (3 × 212) + (2 × 213)

+ (1 × 214) + (4 × 215) + (1 × 216) + (2 × 217)

+ (1 × 218) + (1 × 219) + (2 × 220) + (1 × 221)

+ (1 × 225) = 39 047 712. (7)

In the previous example, we did not utilize the ampli-
tude amplification method. The circuit described there is
particularly beneficial for quantum computers with shallow
circuit depths. However, for an ideal quantum computer, one
can employ the amplitude amplification process to harness
computational advantages. We define the main circuit as
the concatenation of the following components: Encoder(a),
Encoder(b), QFT(a), QFT(b), and CNOT gates. To implement

FIG. 11. Result of measurement on quantum register a.

052405-8

QUANTUM MULTIPLICATION ALGORITHM BASED ON THE … PHYSICAL REVIEW A 108, 052405 (2023)

FIG. 12. Quantum amplitude amplification gate.

amplitude amplification, a specific quantum gate should be
inserted before measuring the quantum register b. This gate
needs to be repeated approximately O(

√
n) times for optimal

results, as illustrated in Fig. 12.

IV. DISCUSSION AND CONCLUSION

Efficient multiplication of large integer numbers is the key
component in many fields, including cryptography, computer
science, and engineering. The optimal design of the algorithm
for this task depends on the size and type of the numbers
involved, the available resources, the desired level of accuracy,
and hardware constraints.

In the context of quantum computation, multiplication re-
tains its significance as one of the fundamental mathematical
operations involved in various quantum algorithms. How-
ever, in this context, it can also exploit quantum resources
to achieve more efficient performance of the multiplication
task. Hence, it is important to propose efficient quantum mul-
tiplication algorithms that are suitable for quantum hardware
implementation.

In this paper, inspired by the convolution theorem and
motivated by the advantage of QFT over FFT, we propose
a quantum algorithm for integer multiplication with some
advantages using quantum resources. The core of our work
was the construction of a quantum version of the convolution
theorem that can be implemented with quantum circuits. It
consists of three main steps. The first step is to encode the
binary vectors of polynomial coefficients into qubits. We find
that we only need log2 n qubits to encode a vector for an n-bit
number. This reduces the space complexity of the algorithm,
which is the first benefit we obtain from quantum resources.
The second step is to apply the quantum Fourier transform
to these vectors, which reduces the time complexity of the
algorithm. This is the second benefit we gain from quantum
resources. The third step is to construct a quantum circuit

TABLE IV. Basic resources of quantum circuits for multiplica-
tion of two n-bit integers. We compare the depth, cost, and ancillas
of three algorithms: grade-school, Karatsuba, and our algorithm.

Algorithm Grade-school Karatsuba Our algorithm

Depth 5n2 − 5n + 10 37n − 78 O(
√

n log2
2 n)

Cost 11n2 − 12n + 12 332
9 nlog2 3 − 48n O(

√
n log2

2 n)

Ancillas 2n2 − 2n + 2 58
27 nlog2 3 − 8n 0

for the elementwise product of two vectors in Hilbert space.
However, there is no deterministic quantum circuit for this
task [11]. We have to use a probabilistic quantum circuit
instead, which increases the time (or space) complexity of
the algorithm. The probabilistic quantum circuit exhibits a
success probability of O(1/n), while the time complexity of
the remaining steps in the algorithm amounts to O(log2

2 n)
for each successful execution. Consequently, the overall time
complexity of the algorithm is O(n log2

2 n). However, by em-
ploying the quantum amplitude amplification method, we can
significantly enhance the algorithm’s efficiency, reducing its
complexity to O(

√
n log2

2 n). This remarkable improvement
surpasses the performance of the most advanced classical al-
gorithm known to date, namely, the Harvey algorithm, which
operates with a time complexity of O(n log2 n).

At the end, to evaluate the performance of our algorithm,
we compare it with other quantum multiplication circuits pre-
sented in the paper. We use the basic resources required for
each circuit as the comparison metric. Table IV summarizes
the results.

The efficient utilization of quantum resources is essen-
tial for the development of quantum algorithms that can
outperform classical algorithms. In the context of quantum
multiplication algorithms, the efficient implementation of the
Fourier transform is a critical component that can significantly
impact the performance of the algorithm. In our proposed
algorithm, we used the quantum Fourier transform (QFT)
to perform the Fourier transform operation. While the QFT
algorithm is widely used in quantum computing, there are
other fast quantum Fourier transform algorithms that can
be used to perform the Fourier transform operation [18,19].
These algorithms have different resource requirements and
can potentially improve the performance of the algorithm.
Therefore, in future works, it is important to explore and
compare the resource requirements of different fast quantum
Fourier transform algorithms to optimize the performance of
quantum multiplication algorithms.

ACKNOWLEDGMENTS

This work was supported by the Research Centre for Quan-
tum Engineering and Photonics Technology, Sharif University
of Technology, through the Quantum Algorithm Project under
Grant No. 140200401. We would also like to give special
thanks to Mahdi Shokhmkar and Diba Masihi for their useful
discussions.

052405-9

MEHDI RAMEZANI et al. PHYSICAL REVIEW A 108, 052405 (2023)

[1] A. A. Karatsuba and Y. P. Ofman, Multiplication of
many-digital numbers by automatic computers, Dokl. Akad.
Nauk (SSSR) 145, 293 (1962).

[2] A. L. Toom, The complexity of a scheme of functional elements
realizing the multiplication of integers, Sov. Math. Dokl. 3, 714
(1963).

[3] A. Schönhage, Schnelle multiplikation grosser zahlen,
Computing 7, 281 (1971).

[4] A. Schönhage, Schnelle multiplikation von polynomen über
körpern der charakteristik 2, Acta Inf. 7, 395 (1977).

[5] M. Fürer, Faster integer multiplication, in Proceedings of the
39th Annual ACM Symposium on the Theory of Computing
(Association for Computing Machinery, New York, 2007),
pp. 57–66.

[6] D. Harvey and J. Van Der Hoeven, Integer multiplication in time
O(n log n), Ann. Math. 193, 563 (2021).

[7] A. Parent, M. Roetteler, and M. Mosca, Improved reversible
and quantum circuits for Karatsuba-based integer multipli-
cation, in 12th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2017),
Leibniz International Proceedings in Informatics (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018), Vol. 73,
pp. 7:1–7:15.

[8] C. Gidney, Asymptotically efficient quantum Karatsuba multi-
plication, arXiv:1904.07356.

[9] L. Ruiz-Perez and J. C. Garcia-Escartin, Quantum arithmetic
with the quantum Fourier transform, Quantum Inf. Process. 16,
152 (2017).

[10] J. Nie, Q. Zhu, M. Li, and X. Sun, Quantum circuit design
for integer multiplication based on Schönhage-Strassen algo-
rithm, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
(2023).

[11] C. Lomont, Quantum convolution and quantum correlation al-
gorithms are physically impossible, arXiv:quant-ph/0309070.

[12] L. A. B. Kowada, R. Portugal, and C. M. H. de Figueiredo,
Reversible Karatsuba’s algorithm, J. Univers. Comput. Sci. 12,
499 (2006).

[13] H. M. H. Babu, Quantum Computing: A Pathway to Quantum
Logic Design (IOP Publishing, Bristol, U.K., 2020), pp. 57–66.

[14] A. Shukla and P. Vedula, An efficient quantum algorithm
for preparation of uniform quantum superposition states,
arXiv:2306.11747.

[15] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum am-
plitude amplification and estimation, Contemp. Math. 305, 53
(2002).

[16] G. Brassard and P. Hoyer, An exact quantum polynomial-time
algorithm for Simon’s problem, in Proceedings of the Fifth
Israeli Symposium on Theory of Computing and Systems (IEEE,
New York, 1997), pp. 12–23.

[17] L. K. Grover, Quantum computers can search rapidly by using
almost any transformation, Phys. Rev. Lett. 80, 4329 (1998).

[18] R. Asaka, K. Sakai, and R. Yahagi, Quantum circuit for the fast
Fourier transform, Quantum Inf. Process. 19, 277 (2020).

[19] Y. Nam, Y. Su, and D. Maslov, Approximate quantum Fourier
transform with O(n log(n)) T gates, npj Quantum Inf. 6, 26
(2020).

052405-10

https://www.mathnet.ru/eng/dan26729
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF00289470
https://doi.org/10.4007/annals.2021.193.2.4
http://arxiv.org/abs/arXiv:1904.07356
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1109/TCAD.2023.3279300
http://arxiv.org/abs/arXiv:quant-ph/0309070
https://doi.org/10.3217/jucs-012-05-0499
http://arxiv.org/abs/arXiv:2306.11747
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1103/PhysRevLett.80.4329
https://doi.org/10.1007/s11128-020-02776-5
https://doi.org/10.1038/s41534-020-0257-5

