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Using random coherent states to mimic quantum illumination
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Quantum illumination uses quantum correlations to provide an enhanced detection of an object in the presence
of background noise. This advantage has been shown to exist even if one uses nonoptimal direct measurements
on the two correlated modes. Here we present a protocol that mimics the behavior of quantum illumination, but
does not use correlated or entangled modes. Instead, the protocol uses coherent (or phase-randomized coherent)
pulses with randomly chosen intensities. The intensities are drawn from a distribution such that the average state
looks thermal. Under appropriate conditions, the mimic protocol can perform similarly to quantum illumination
schemes that use direct measurements. This holds even for a reflectance as low as 10−7. We also present an
analytic condition which allows one to determine the sets of parameters in which each protocol works best.
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I. INTRODUCTION

Quantum correlations play a central role in many applica-
tions of quantum information [1–5]. For instance, quantum
illumination protocols use entangled photons to enhance our
ability to detect an object [6]. It has been shown that quantum
illumination provides an advantage for object detection in
the presence of background noise [6–9]. These schemes use
the enhanced correlation between two modes to improve the
contrast between signal and background light. Quantum illu-
mination thus allows one to detect objects without resorting
to increasing the signal strength. This can be important in
applications where the object might be fragile or when we
want our actions to be covert. When covertness is important,
we have an additional constraint: the photon statistics of the
signal should be of the same form as the background [10].
This is not the case for a weak coherent laser source, which
has Poissonian statistics [11,12]. However, quantum illumina-
tion schemes use states of light where the reduced state of the
signal modes can have thermal photon statistics [10,13–15].

The original quantum illumination protocols required a
joint measurement of the photons received from the target
and the stored idler modes [6,7]. The performance of the
protocol is quantified using the Helstrom bound [16,17] and
the quantum Chernoff bound [7,18]. The requirement to store
the photons in the idler mode until the signal returns from the
target increases the experimental difficulty of the protocols.
This makes the ideal joint measurement challenging and, even
if it is known, it may be beyond current experimental methods.
Instead, nonoptimal joint measurement schemes have been
proposed [19], but these are still experimentally challenging.
For these reasons, alternative quantum illumination protocols
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have been suggested, which are more experimentally feasible
[20–24]. In these schemes, the idler mode is measured sep-
arately from the signal mode. This removes the requirement
for storage or for joint measurements. Furthermore, rather
than using an optimal measurement, a simpler measurement is
made using threshold detectors. The correlation between the
idler and signal modes means that if an object is present, then
there should be correlations between detection of the idler
photons and those reflected from the object onto the signal
detector. In contrast, if no object is present, then the there
will be no correlation between the idler and signal detectors.
Despite the simplicity of these schemes, they have been shown
to outperform a weak coherent source [21,24]. Furthermore,
these schemes can still satisfy the covertness condition if they
use two-mode squeezed vacuum (TMSV) states [10,24].

For real world applications, the expected fraction of pho-
tons reflected from an object will be very low [25,26].
This would necessitate working with sources that generate a
slightly higher mean photon flux. This can be accomplished
more straightforwardly with a source that produces either
coherent states or phase-randomized coherent states. Further-
more, the requirement to use either an entangled source [7] or
correlated photon source [20,21] could increase the complex-
ity and cost of any commercial device. Both of these reasons
point towards the practical advantages of using a coherent
source. However, as stated, this source does not perform as
well as protocols that use a two-mode squeezed vacuum state.
Furthermore, the photon statistics from a single-mode coher-
ent state are Poissonian and thus can be easily differentiated
from the thermal background by performing a measurement
of the second-order temporal coherence, g(2)(τ ) [11,12].

Here we propose a scheme that uses coherent states with
random intensities to mimic the behavior of quantum illu-
mination schemes. We show that the performance of this
scheme is better than one that uses fixed coherent pulses and
under certain conditions is as good as existing illumination
protocols. Furthermore, if the intensities of the coherent states
are chosen with the correct probability distribution, then the
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protocol will satisfy the covertness condition by producing
average photon statistics which are thermal.

The outline of the paper is as follows. In Sec. II we
describe a specific quantum illumination scheme in detail.
Understanding this scheme will help to motivate the mimic
protocol. The random coherent state mimic protocol is out-
lined in Sec. III. We present results in Sec. IV and compare
the relative performance of each protocol. This is achieved by
using a Bayesian estimation procedure and performing Monte
Carlo simulations of the setup [27]. In Sec. V we present
an analytic criterion to determine when the mimic protocol
will perform better, on average, than an existing quantum
illumination protocol. Finally, we discuss the results in the
conclusions.

II. DESCRIPTION OF QUANTUM ILLUMINATION

The motivation for the mimic protocol comes from com-
parison with an existing quantum illumination protocol,
outlined in [24]. In this scheme the idler mode is not stored,
but is instead measured. Furthermore, threshold detectors are
used to measure the signal mode. As such, we will refer to this
scheme as a direct measurement protocol. In this section we
recap this scheme and explain the key insights that we exploit
in the mimic protocol. This section will also serve as an oppor-
tunity to describe the physical model used in both schemes.

For the direct measurement scheme outlined in [24], we
use a TMSV state [28]

|�〉I,S = 1√
1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n/2

|n〉I |n〉S, (1)

where n̄ is the mean photon number in each mode, |n〉 is an
n-photon Fock state, and the subscripts I and S respectively
denote idler and signal modes. This state can be generated
experimentally using nondegenerate spontaneous parametric
down-conversion [29–31]. The signal mode is transmitted to
where we believe a reflecting target object might be, while
the idler mode is measured. If there is an object, then some
photons will be scattered onto the mode of the signal detector.
Both the idler and signal detectors are threshold detectors with
efficiency η. The idler detector is assumed to be shielded from
background photons and could, if required, be gated on and off
such that the dark count rate is so small that we can neglect
it. In contrast, the signal detector will receive background
photons. The state of these photons is given by a thermal state
[28]

σ̂m̄ = 1

1 + m̄

∞∑
n=0

(
m̄

1 + m̄

)n

|n〉〈n|, (2)

where m̄ is the mean number of photons in the thermal state.
Notice that if we trace over the idler mode for the TMSV
state, then the reduced state of the signal mode is a thermal
state with mean photon number n̄. The photon statistics for
the signal mode are of the same form as the thermal back-
ground. In particular, if someone performed a measurement of
the second-order temporal coherence, g(2)(τ ), for τ = 0, they
would obtain the same value as for the background [11,12].
The TMSV state will thus satisfy the covertness condition,
provided n̄ is not too large relative to the background.

FIG. 1. A figure showing the model for photons scattering off an
object. We describe the object by a beam splitter with reflectance
κ . Photons that are not reflected into the mode of the detectors are
grouped together to form a loss mode, which is traced out. The effect
of background photons is described by mixing a thermal state with
the signal mode.

If an object is present, then some signal photons will scatter
towards the signal detector. The majority of photons, however,
will scatter into modes which are not detected. Mathemat-
ically, we can group these modes into a single loss mode,
which we trace out. Let κ be the probability that a single
signal photon is scattered into the mode of the signal detector.
We model the object as a beam splitter with reflectance κ ,
as illustrated in Fig. 1. In the other input mode, we inject a
thermal state with mean photon number n̄B/(1 − κ ). If there is
no object, then none of the signal photons will scatter onto the
signal detector. The only photons incident on the detector are
from the thermal background. The mean number of photons
per time-bin incident on the signal detector is n̄B. We thus
refer to n̄B as the mean number of background photons per
time bin. The effect of dark counts in the signal detector can
be included within n̄B as explained in Appendix B.

The detection of the idler mode is made with an inefficient
threshold detector. Due to the strong photon number correla-
tions between the signal and idler beams inherent in Eq. (1),
detection of light in the idler mode conditions the signal mode
to have a mean photon number greater than n̄. In contrast,
failure to detect light in the idler mode conditions the signal
mode to have a mean photon number which is less than n̄.
On average, the signal mode is in a thermal state with a mean
photon number n̄. However, provided we record the results of
the idler measurement, then we know the conditional state,
which gives additional information to use in the estimation
process. The procedure can be improved further by using a
balanced optical network to split the idler mode evenly onto
N identical threshold detectors [24]. In this case there is a
nonzero probability for more than one detector to fire that,
when it occurs, gives a greater enhancement for the mean
photon number in the signal mode. Nevertheless, the average
state of the signal mode is still a thermal state with mean
photon number n̄. For additional information on the photon
statistics of the signal mode, see Appendix D.

The key idea for this protocol is that conditioning on the
idler mode changes the state of the signal mode. Our knowl-
edge of the outcome for the idler measurement improves
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our ability to determine whether an object is present or not.
However, without knowledge of the idler measurement, the
no-signaling theorem [32] implies that the signal mode will,
on average, be a thermal state.

III. MIMIC LIDAR WITH COHERENT STATES

In this section we outline a mimic lidar scheme that uses
random coherent states. If we were to send a fixed, weak
coherent state, we would not satisfy the covertness condition,
as the photon statistics would be Poissonian and thus could
be detected by an appropriate measurement. Furthermore, the
direct measurement scheme outperforms a fixed coherent state
when n̄B is large relative to the mean number of signal photons
n̄, which for a coherent state |α〉 is n̄ = |α|2 [24].

Rather than transmitting a fixed coherent state, we instead
randomly pick coherent states with different complex ampli-
tudes, α. To satisfy the covertness condition, we need the
average ensemble to be a thermal state. The P representation
of a thermal state with mean photon number m̄ is [12]

σ̂m̄ = 1

πm̄

∫
e−|α|2/m̄|α〉〈α|d2α. (3)

This density operator can be prepared by randomly generating
a coherent state |α〉 with probability density (over a complex
space) exp(−|α|2/m̄)/(πm̄). An experimental procedure for
this has been demonstrated in a protocol for covertly distribut-
ing information [33]. This suggests the following protocol.

In each time slot, we randomly pick an amplitude, α =
|α|eiθ , for a coherent state, where we use the probability
distribution pn̄(α) = exp(−|α|2/n̄)/(π n̄). This is equivalent
to picking the phase, θ , uniformly and then picking a
mean photon number, |α|2, from the distribution pn̄(|α|2) =
exp(−|α|2/n̄)/n̄. The mean photon number, |α|2, is recorded
for each time slot. We do not need to record the phase of α

as this will not feature in the conditional probabilities for the
detector to fire. In any case the absolute phase may not be
physically meaningful if we use a laser to provide our state
as theoretical considerations suggest that ascribing such a
property to a laser state may be a “convenient fiction” [34,35].

We generate a series of single-mode coherent pulses with the
chosen amplitudes and record whether the signal detector fires
in each time slot. We know the list of mean photon numbers,
|α|2, and together with the measurement record it is used
to estimate the probability that the object is present. This is
achieved using the following Bayesian approach.

For the separate cases where the object is present or not,
we calculate the probability for the detector to fire or not,
given the pulse had intensity |α|2. When there is no object,
the probability to not see a click is

P(0|Ō, |α|2) = Tr
[
σ̂n̄B
̂0

] = 1

1 + ηn̄B
, (4)

where Ō denotes no object and 
̂0 = ∑
n(1 − η)n|n〉〈n| is

the positive operator-valued measure for the no-click result.
The probability for the detector to fire is P(1|Ō, |α|2) = 1 −
P(0|Ō, |α|2). When an object is present, the probability to not
register a click is

P(0|O, |α|2) = 1

1 + ηn̄B
exp

(−ηκ|α|2
1 + ηn̄B

)
, (5)

where O denotes that an object is present. See Appendix A
for a derivation. The probability to register a click is
P(1|O, |α|2) = 1 − P(0|O, |α|2). We do not know whether
the object is actually present; we only have our set of consec-
utive experiments to guide us. So we base our decision on the
Bayesian posterior probability that an object is present, which
we can calculate based on the outcomes of our measurements.
The reason for adopting a Bayesian approach is that it easily
allows one to incorporate any prior information about whether
an object is likely to be present at a given location.

Let x(r) denote an array of the first r measurement out-
comes for the detector and let n(r) be an array of the first
r mean photon numbers used when preparing the pulses.
It will be convenient to introduce some notation: let �r =
{x(r), n(r)}. After each pulse, we update the posterior prob-
ability for the target object to be present using Bayes rule.
After the rth measurement, the probability for the object to be
present is

P(O|x(r), n(r) ) = P(O|�r ) = P
(
xr |O, |α|2r

)
P(O|�r−1)

P
(
xr |O, |α|2r

)
P(O|�r−1) + P

(
xr |Ō, |α|2r

)
P(Ō|�r−1)

, (6)

where xr is the outcome of the rth measurement and |α|2r is
the mean photon number of the rth pulse. Initially, we have no
knowledge of whether an object is present. We account for this
by using equal prior probabilities, i.e., P(O) = P(Ō) = 1/2.
We might, of course, make a different prior choice if we have
a greater belief that no object is present initially.

After N measurements P(O|�N ) is the posterior proba-
bility for the object to be present. This will depend on the
set of measurement outcomes x(N ) and the set of intensities
chosen n(N ). The effectiveness of the protocol can be evalu-
ated by performing a Monte Carlo simulation to evaluate the
average performance [27]. This entails performing a random

simulation of the experiment. For this simulation we describe
the system by the model shown in Fig. 1. We randomly gen-
erate a set of mean photon numbers for each pulse. These are
used with Eq. (5) to obtain a set of simulated measurement
outcomes consistent with those produced if a target were
present. These outcomes are fed into (6) to find the probability
for the object to be present after each pulses. This gives
P(O|�N ) for one possible set of measurement outcomes. We
would then run this many times and average P(O|�N ).

We have explained the mimic protocol for coherent states.
However, the phase of the coherent states is not important.
One could thus replace coherent states with phase-randomized
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coherent states. If we set the mean photon number to λ, then
phase randomized coherent states have the form

ρ̂λ = 1

2π

∫ 2π+θ0

θ0

|
√

λeiθ 〉〈
√

λeiθ |dθ. (7)

By writing (3) in polar coordinates and performing the phase
integration, we can verify that

σ̂m̄ = 1

m̄

∫ ∞

0
e−λ/m̄ρ̂λdλ. (8)

The protocol is then exactly the same as before. In particular,
the probabilities (4) and (5) are the same, but with λ = |α|2.

IV. RESULTS

To evaluate the average performance of the mimic protocol,
we compare it to other approaches. We look at the quantum
illumination protocol discussed in Sec. II and also compare it
to coherent pulses with fixed amplitudes. The latter protocol
does not satisfy the covertness condition as it has Poissonian
photon statistics. Nevertheless, transmitting fixed coherent
states is straightforward and it is thus sensible to compare the
performance of more complicated schemes against this simple
approach.

For a fair comparison between the three approaches, we
use the same mean photon number for the signal mode of
each protocol. Recall that for the direct measurement and
mimic protocols, the mean photon number will vary pulse
to pulse. For these protocols n̄ denotes the averaged mean
photon number in the signal mode. For the fixed coherent
state |α〉, then n̄ = |α|2. For all protocols, we perform a Monte
Carlo simulation to obtain the average performance of each
approach. For more details on performing a Monte Carlo
simulation for the direct measurement protocol, see [24]. The
simulation for the fixed coherent state is the same as outlined
in the last section for the mimic scheme, but where now the
amplitude of the coherent state is fixed.

In practice, we can use a source with high repetition rate
of 100 MHz or 1 GHz. In the latter case, we transmit 1 × 106

pulses to the target in 1 ms. A large number of pulses can
thus be used while still having a low acquisition time, which
will allow detection of objects of low reflectivity. However,
performing averaging over many realizations of simulations
that each cover large numbers of pulses is time consuming. To
reduce the number of pulses we investigate the regimes where
κ = 0.1. This corresponds to an object which is expected to be
relatively close to the source. The reduced number of pulses
needed for larger values of κ allows for an investigation of
results with very high levels of background counts, without
the need for advanced computational resources. This is of
particular importance as quantum illumination was initially
conceived to solve the problem of object detection in environ-
ments with high background, while using relatively low signal
powers.

In Fig. 2 we plot the probability for an object to be
present, given we have used N pulses. For all curves, we
have performed Monte Carlo simulation for n̄B = 3.0, η = 0.9
and where an object is present with κ = 0.1. For the direct
measurement scheme, we show results for a single idler de-
tector (solid gray, red online), two idler detectors (dotted, blue

FIG. 2. A plot of the probability for the object to be present given
we have transmitted N signals. All plots are for the case where an
object is present: η = 0.9, n̄B = 3.0, and k = 0.1. (a) Mean photon
number of 0.5 photon per pulse. (b) Mean photon number of 1.0
photon per pulse. In both figures, the dot-dashed (green online),
dotted (blue online), and solid gray (red online) curves refer to the
the direct measurement scheme where solid (red) is for a single
idler detector, dotted (blue) is for two idler detectors, and dot-dashed
(green) is for four idler detectors. The dashed black curve is for the
mimic protocol and the solid black curve is a fixed coherent state.
The black and dashed curves have been averaged over 8000 runs,
while the other curves have been averaged over 4000 runs.

online), and four idler detectors (dot-dashed, green online).
We compare this with the mimic protocol (black dashed) and
a fixed coherent state (solid black). In Fig. 2(a), the mean
photon number of each pulse is n̄ = 0.5, which is six times
lower than the number of background photons n̄B. We see
that the mimic system does not perform as well as the di-
rect measurement scheme, but does significantly better than
the scheme with a fixed coherent state. In Fig. 2(b), the
mean photon number for each pulse is n̄ = 1.0. We now
see that the mimic protocol almost performs as well as the
direct measurement protocol with a single idler detector. No-
tice that in this case, n̄B is still three times larger than n̄.
Both Figs. 2(a) and 2(b) demonstrate that the mimic proto-
col can outperform a coherent state of fixed amplitude. In
Fig. 2(b) after 30 000 shots the mimic and the single idler
detector outperform the coherent state protocol with an in-
crease in posterior probability of almost 0.1. A better way of
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quantifying this out-performance, however, is to use the num-
ber of shots required to reach a particular level of confidence.
On the right-hand edge of Fig. 2(b) the coherent state protocol
reaches a probability of around 0.85 in 30 000 shots. The
mimic and one-photon idler schemes reach this confidence
level in half the time.

As n̄ increases we see that all protocols improve. However,
in relative terms, there is a greater increase in the performance
for the mimic protocol. One reason for this is that in the mimic
protocol we will sometimes transmit a coherent state with a
relatively large coherent amplitude. When n̄ increases, there
is a higher probability to pick a coherent state with a large
amplitude. This can be illustrated with the following simple
example. The probability to send a pulse with |α|2 � 2 is
0.018 for n̄ = 0.5, which increases to 0.135 for n̄ = 1.0. These
large amplitude pulses give us more information. This is con-
firmed by looking at the individual (unaveraged) trajectories.
We observe that detection of pulses with large intensities tends
to yield a greater increase in probability that the object is
present. For more information on this effect and the photon
statistics of the ensemble, see Appendix D. Numerical investi-
gations for n̄ = 2.0 and the same values of η, n̄B, and κ as were
used in Fig. 2 found that the mimic protocol performed almost
as well the four idler detector direct measurement scheme.
This confirms that in relative terms the mimic protocol per-
forms better at higher mean photon numbers than the direct
measurement protocol.

In many practical situations, the target will not be close to
the detection system. The effective reflectivity of the object
will be proportional to the solid angle subtended by the de-
tector at the target. If we include this effect in κ , it will be
low and thus a very small fraction of the signal photon will
reach the detector. We now consider the performance of the
protocol in the limit of low reflectivity. In Fig. 3 we plot the
averaged probability for the object to be present given we have
results for N pulses. For all curves we have performed Monte
Carlo simulations for η = 0.9 and a mean photon number
of n̄ = 1.0 for each pulse. Figure 3(a) is for κ = 10−5 and
n̄B = 5.56 × 10−6, while Fig. 3(b) is for κ = 10−7 and n̄B =
5.56 × 10−8. We show results for the direct measurement
protocol with a single idler detector (gray, red online), the
mimic protocol (dashed), and the fixed coherent state (black).
All curves are averaged over 8000 random runs.

To gain some physical perspective on values of n̄B used
in Fig. 3, we compare them to detector dark counts. Equa-
tion (B2) of Appendix B allows us to incorporate the dark
count probability in n̄B. Suppose the system is operating in
an environment where we can ignore stray light, then from
Eq. (B2) we can set n̄B = PD/η(1 − PD), where PD is the dark
count probability. A value of n̄B = 5.56 × 10−8 corresponds
to PD = 5.00 × 10−8. For a laser source with a repetition rate
of 1 GHz, we would expect approximately 50 dark counts/s
for this value of PD. Similarly, n̄B = 5.56 × 10−6, with a
source repetition rate of 1 GHz, corresponds to slightly over
5000 counts/s.

Figure 3 again shows that the mimic protocol performs
better than a fixed coherent state. Furthermore, the mimic
protocol is slightly worse, but still close to the perfor-
mance of the direct measurement scheme with a single idler
detector. Figure 3(b) shows that even for a reflectance of κ =

FIG. 3. A plot of the probability for the object to be present
given we have transmitted N signals. All plots are for the case where
an object is present: η = 0.9 and n̄ = 1.0. (a) κ = 10−5 and n̄B =
5.56 × 10−6. (b) κ = 10−7 and n̄B = 5.56 × 10−8. In both figures,
the gray (red online) curve refers to the direct measurement scheme
with a single idler detector, the dashed (blue online) curve is for the
mimic protocol, and the solid black curve is a fixed coherent state.
All curves have been averaged over 8000 runs.

10−7, both the mimic and direct measurement protocols give
an advantage over fixed coherent states. Quantum illumination
schemes with direct measurements still provide an advantage
for low reflectivities. Note also that Fig. 3(b) shows that less
than 3 × 107 pulses are needed for reasonable confidence that
an object is present. For a pulsed laser source with a 1-GHz
repetition rate, this corresponds to an acquisition time of less
than 0.03 s.

Thus far we have considered situations where an object is
always present. However, the approach that we have taken
applies also to more general situations, such as an object
not being present initially but appearing during the process
of illuminating an area. To simplify the analysis, we assume
the object appears within the time between pulses and is
visible after the 10 000th pulse. The flexibility of the Bayesian
approach means that we do not need to change our esti-
mation procedure for this situation. The results of a Monte
Carlo simulation are plotted in Fig. 4 for the parameters
n̄B = 3.0, η = 0.9, and κ = 0.1 when the object is present
and zero before that. The solid black line corresponds to a
fixed coherent state, the dashed (blue online) curve is for the
mimic protocol, while the solid gray (red online) curve is
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FIG. 4. A plot of the probability for the object to be present given
we have transmitted N signals. All plots are for η = 0.9, n̄B = 3.0,
and κ = 0 for N < 10 000, and κ = 0.1 for N � 10 000. The gray
(red online) curve refers to the direct measurement scheme with a
single idler detector, the dashed (blue online) curve is for the mimic
protocol, and the solid black curve is a fixed coherent state. All
curves have been averaged over 8000 runs.

for the direct measurement scheme with a single idler detec-
tor. The performance of the mimic protocol is very close to
the direct measurement scheme, while both are better than
using a fixed coherent state. In particular, we see that the
mimic scheme performs better than a fixed coherent state
at registering the absence of the object and then responds
quicker to the object’s appearance. For instance, after 10 000
pulses, the mimic scheme has an averaged probability of
≈0.22, while for the fixed coherent state the probability
is ≈0.32.

An important feature of the mimic protocol is that it uses
coherent pulses and, as such, it is straightforward to increase
the intensity. It can thus be used in high intensity regimes that
would be unsuitable for direct measurement schemes. This
can be important in many applications where we have higher
backgrounds or high losses. We illustrate this with an example
where κ = 0.02, η = 0.2, and n̄B = 20.0 and an object is
present. In Fig. 5 we plot the posterior probability to detect an
object for n̄ = 20.0. The figure shows that the mimic protocol
provides an advantage over both a fixed coherent state and
the direct measurement scheme with a single idler detector.
This is important as it illustrates that the mimic protocol
has applications outside the quantum regime of low photon
number.

Figure 5 illustrates that the mimic protocol can signif-
icantly outperform direct measurement schemes when the
mean photon number becomes relatively large. For instance,
to achieve a posterior probability of 0.8 requires N ≈ 37 000
pulses for the mimic protocol, while the one idler detector
direct measurement scheme requires N ≈ 63 000 pulses. An-
other example of this is the example mentioned earlier, with
κ = 0.1, η = 0.9, n̄B = 3.0, and n̄ = 2.0, where we found
that the mimic protocol’s relative performance was almost
as good the direct measurement protocol with four idler de-
tectors. These examples show that there exist regimes where
the mimic protocol can outperform the direct measurement
protocol.

FIG. 5. A plot of the probability for the object to be present given
we have transmitted N signals. All plots are for the case where an
object is present: η = 0.2, κ = 0.02, and n̄ = n̄B = 20.0. The dashed
curve (blue online) is for the mimic protocol, the solid black curve
is a fixed coherent state, and the gray (red online) curve is for the
threshold protocol with a single idler detector. All curves have been
averaged over 8000 runs.

V. COMPARISON OF PROTOCOLS

An obvious question to ask is, for a given set of system
parameters, when should we use each protocol? To fully an-
swer this question would require one to consider the cost and
complexity of each protocol. Instead, we will here focus on
the simpler task of determining when each protocol performs
best. We achieve this by finding an analytic criterion for when
the mimic protocol is better than the direct measurement pro-
tocol, using a single idler detector. The approach is to look at
the averaged posterior probability for a single measurement.
Using Eq. (6) we find the probability for an object to be
present after a single measurement outcome. This is averaged
over all possible measurement outcomes and choices for the
pulse intensity. The same is done for the direct measurement
protocol, where now we average over both the idler and signal
measurements. The averaged probabilities are then compared
to asses the performance of each protocol. In all the following
calculations, we assume that an object is present and take the
initial prior probabilities to be P(O) = P(Ō) = 1/2.

For notational simplicity, we set |α|2 = λ. The probability
for the object to be present after we obtain the measurement
outcome x is P(O|x, λ), which can be calculated using (6).
The average of this over all possible measurement outcomes
and pulse choices, PRC

n̄ (O), is

PRC
n̄ (O) =

∫ ∞

0

1∑
x=0

pn̄(λ)P(O|x, λ)P(x|O, λ)dλ, (9)

where “RC” stands for “random coherent” and pn̄(λ) =
exp(−λ/n̄)/(n̄) is the probability to pick a pulse with mean
photon number λ. The evaluation of the integral for the two
terms in the sum can be performed using the integral repre-
sentations of the standard hypergeometric function and the
harmonic function [36]. For details, see Appendix C. We find
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that

PRC
n̄ (O) = 1

2ηκ n̄

[
H

(
1

2
+ β

2

)
− H

(
β

2

)]

+ βC

[
2F1(1, β; β + 1; A)

β

− 2 2F1(1, β + 1; β + 2; A)

(β + 1)(1 + ηn̄B)

+ 2F1(1, β + 2; β + 3; A)

(β + 2)(1 + ηn̄B)2

]
, (10)

where H (x) is the harmonic function, which is equal to Euler’s
constant plus the derivative of the natural log of the gamma
function [36]. The constants A, β, and C are

A = 1

1 + 2ηn̄B
,

β = 1 + ηn̄B

ηκ n̄
, (11)

C = 1 + ηn̄B

1 + 2ηn̄B
.

For the direct measurement protocol, we average over all
possible outcomes for the idler and signal detectors. Let s
and i denote the outcomes for the signal and idler detectors
respectively. The average probability after a single set of mea-
surements is

PDM
n̄ (O) =

∑
i,s

P(i, s|O)P(O|i, s)

=
∑

i,s

pn̄(i)
P(s|i, O)2

P(s|i, O) + P(s|i, Ō)
, (12)

where pn̄(i = 0) = (1 + ηn̄)−1 and pn̄(i = 1) = 1 − pn̄(i =
0) are the probabilities of obtaining the outcome i for a mea-
surement on the idler mode. The detection probability for no
object present, P(s|i, Ō), is the same as (4). The conditional
probabilities P(s|i, O) are calculated in [24]. For no detection,
i.e., s = 0, the probabilities are

P(0|0, O) = 1 + ηn̄

1 + η(n̄ + n̄B) + ηn̄[ηn̄B + (1 − η)κ]
,

P(0|1, O) = 1

ηn̄

(
1 + ηn̄

1 + η(n̄B + κ n̄)
− 1

1 + η(n̄B + κm̄10)

)
,

(13)

where m̄10 = n̄(1 − η)/(1 + ηn̄).
As an example of how one can use Eqs. (10) and (12), one

can use the parameters n̄B = 3.0, η = 0.9, and κ = 0.1 [i.e.,
Fig. 2(b)]. For these values, we find that PRC

n̄ (O) > PDM
n̄ (O)

when n̄ � 1.04. If we keep n̄B and η the same, but change
the reflectance to κ = 10−3, then PRC

n̄ (O) > PDM
n̄ (O) when

n̄ � 0.99. Both of these examples show that increasing the
mean photon number of the signal, n̄, will eventually lead
to a point where the mimic protocol performs better than
the direct measurement protocol with a single idler detector.
Intuitively, this comes from the fact that as n̄ increases, we
have a greater probability to pick large amplitude coherent
states in the mimic protocol.

FIG. 6. Parameter regimes for the case where the mimic protocol
and one idler direct measurement protocol each perform best as
a function of n̄B. The quantity n̄min plotted is the minimum value
of n̄ such that PRC(O) > PDM(O). In the shaded blue region the
mimic protocol performs, on average, better than the one idler direct
measurement protocol, for equal priors. Both figures (a) and (b) are
for κ = 0.1 and the case where an object is present. (a) η = 0.9.
(b) η = 0.5.

The relations (10) and (12) can also be used to investigate
how changing n̄B affects the relative performance of the two
protocols. In Fig. 6 we plot the minimum value of n̄ for which
PRC

n̄ (O) > PDM
n̄ (O), for two different values of η. For brevity,

we call this quantity n̄min. In both figures, the shaded blue area
denotes the region where PRC

n̄ (O) is greater than PDM
n̄ (O).

Figure 6(a) is for η = 0.9 and κ = 0.1, while Fig. 6(b) is
for η = 0.5 and κ = 0.1. We see again that increasing n̄
does eventually lead to the mimic protocol providing a better
averaged probability. Both plots show that as n̄B increases,
n̄min decreases. Increasing the background thus means that we
achieve a greater relative performance of the mimic protocol
for lower values of n̄. Comparing Figs. 6(a) and 6(b) shows
that the detector efficiency has an effect on n̄min, which de-
creases for the smaller values for η. A possible reason for
this is that the direct measurement protocol requires detectors
for both the idler and signal modes. Inefficiencies in the idler
mode decrease the probability for this detector to fire and also
decrease the probability to enhance the signal mode’s mean
photon number. This compounds the effects of the inefficiency
of the signal detector.
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VI. CONCLUSIONS

We have presented an object detection protocol that uses
random coherent states to mimic the operation of a direct
measurement quantum illumination protocol. In the so-called
mimic protocol, one transmits coherent pulses with a ran-
domly chosen amplitude, α. The mean photon number of each
pulse will differ, but the averaged value is fixed. Furthermore,
the average ensemble of coherent states is a thermal state.
This ensures that the photon statistics of the signal mode is
similar to the background. This mimics the behavior of a two
mode squeezed vacuum, where the reduced state of the signal
mode is also a thermal state. Additionally, the random vari-
ation in the signal intensity mimics the measurement based
conditioning for quantum illumination schemes that involve
measures on the idler mode. The preparation of the random
ensemble of coherent states could be achieved using electro-
optical modulators in an approach that is similar to that which
has been experimentally demonstrated already, for the task of
covertly distributing information [33].

We compared the performance of the mimic protocol to co-
herent states with fixed amplitudes and a direct measurement
scheme where one measures the idler mode to condition the
signal mode. To make the comparison fair, we use the same
averaged mean photon number for each protocol. It was found
that the mimic protocol performed better than coherent states
with fixed intensity. For reflectance of 0.1 and a background
mean photon number of 3.0, we found that as the signal mode
mean photon number went to 1, the performance of the mimic
scheme became similar to the direct measurement scheme.
When the mean photon numbers of the signal mode became
greater, the mimic scheme eventually performed better than
the direct measurement scheme. Numerical investigation for
different parameters confirms that increasing the mean photon
number will eventually result in the mimic protocol out-
performing the considered direct measurement protocols. A
particularly interesting example was for a reflectance of 10−7,
where we found that both the mimic and direct measurement
schemes could identify an object using order 107 pulses.

The relative performance of the direct measurement pro-
tocol with a single idler detector and the mimic protocol
was investigated further. We derived an analytic condition for
comparing the two protocols. This applied in the case where
one uses equal priors probabilities for the object being present
or not. The condition allows one to explore the parameters
space to determine when one should use each protocol. For
instance, we found that the direct measurement protocol will

outperform the mimic protocol up to a particular value of
the mean photon number, n̄min. Furthermore, we found that
increasing the number of background photons decreases the
value of n̄min.

The protocol and presented results are also valid if we re-
place coherent pulses with phase-randomized coherent pulses.
We can again choose the intensity of these pulses randomly
such that the average state is thermal. The results are then
identical to the case of random coherent states as the phase
of the coherent states is not relevant to the detection process.

The current paper establishes that some of the advantage
from quantum illumination can be achieved without the need
for twin beams with correlation in their photon number. In-
stead, one can use coherent pulses with random intensities.
The results are of interest in situations where such higher
intensities are needed. This is for two reasons.

(1) The mimic protocol has been shown to work best in this
regime.

(2) Generating high intensity coherent states is more
straightforward than generating either higher intensity TMSV
states or twin-beam states.

This will be important in situations where we have very
low reflectances and high background counts.
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APPENDIX A: DERIVATION OF DETECTION
PROBABILITY FOR THE MIMIC SCHEME

The probability for the detector to not fire, given an object
is present, is given in Eq. (5). In this Appendix we will explain
how this probability is calculated. Let Ûκ be a unitary that
describes the action of a beam splitter with reflectance κ , as
shown in Fig. 1. This models the reflection of a signal state
from the object and the injection of thermal photons. The input
states for the beam splitter are a coherent state |α〉 and the
thermal state σ̂m̄, where m̄ = n̄B/(1 − κ ). The output state is
Ûκ [|α〉〈α| ⊗ σ̂m̄]Û †

κ . To evaluate this we use the coherent state
representation of a thermal state, given in (3). Using linearity
together with the well-known properties of coherent states at
a beam splitter [11,28], we find that

Ûκ [ |α〉〈α| ⊗ σ̂m̄]Û †
κ = 1

πm̄

∫
e−|β|2/m̄|√1 − κα + i

√
κβ〉〈√1 − κα + i

√
κβ| ⊗ |i√κα + √

1 − κβ〉〈i√κα + √
1 − κβ|d2β.

(A1)

The second mode is the one which is incident on the detector, while the first mode is the loss mode, which we trace out. The detec-
tor mode is measured by an inefficient detector. This is equivalent to an ideal threshold detector with a lossy channel in front of it.
The effect of passing a coherent state through this lossy channel is |α′〉〈α′| → |ηα′〉〈ηα′|. The probability to not detect a photon is

P(0|O, |α|2) =
∫

exp
(−|β|2/m̄

)
πm̄

exp(−η|i√κα + √
1 − κβ|2)d2β,

= exp(−ηκ|α|2)

m̄π

∫
exp(−A|β|2 + Bαβ∗ + Bβα∗)d2β, (A2)
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FIG. 7. A figure showing the model for an inefficient detector
with dark counts. We describe this as an ideal detector with a beam
splitter in front of it. The transmittance of the beam splitter is η, the
efficiency of the detector. Undetected photons are scattered into the
loss mode, while dark counts result from photons from the internal
noise mode.

where

A = 1 + ηm̄(1 − κ )

m̄
,

B = η
√

κ (1 − κ ). (A3)

The coefficients A and B are both non-negative. The above
integral can be solved by separating β into real and imaginary
parts and performing the resulting Gaussian integrals. After
some algebraic manipulations, we find that

P(0|O, |α|2) = exp(−ηκ|α|2)

1 + ηm̄(1 − κ )
exp

(
η2κ (1 − κ )m̄|α|2
1 + ηm̄(1 − κ )

)
.

(A4)

The mean number of photons injected into the detector mode
is n̄B = m̄(1 − κ ). Using this relation in (A4) followed by
some straightforward algebra will give Eq. (5).

APPENDIX B: METHOD FOR INCLUDING DETECTOR
DARK COUNTS IN n̄B

In this Appendix we outline how n̄B can be modified to in-
clude the effects of dark counts. First suppose that one blocks
all the signal and stray background photons from entering the
detector. The detector still has a probability, PD, to fire in each
time bin due to detector dark counts. This can be modeled by
changing our description of an inefficient detector. In Fig. 7
we outline a model of an inefficient detector with dark counts.
In the model, the detector is an ideal detector, but with a beam
splitter in front of it. The detector efficiency, η, corresponds
to the probability for an incoming photon to be transmitted by
the beam splitter. The effects of dark counts are described by
an internal noise mode, which is in a thermal state with mean
photon number m̄. Suppose there is no incoming light (either
signal or background); the only photons incident on the ideal
detector are from the internal noise mode. On average, in each
time slot, we have n̄D = m̄(1 − η) mean photons incident on
the detector from the internal noise mode.

The dark count probability, PD, can be found by first cal-
culating the probability for the detector to not fire due to
these internal noise photons. This is found by using the model

shown in Fig. 7, where the signal mode is the vacuum and
the noise mode is a thermal state with mean photon number
m̄ = n̄D/(1 − η). A straightforward calculation shows that the
probability to not register a click is P0 = 1/(1 + n̄D), which
means that

PD = n̄D

1 + n̄D
. (B1)

This relates the probability of a dark count to the mean number
of noise photons incident on the hypothetical ideal detector.
This is equivalent to injecting n̄D/η background photons into
the mode that is incident on the real (nonideal) detector. If
we already had n̄′

B background photons in this mode, then
the effects of detector dark counts are included by modifying
the mean photon number of the background to n̄B = n̄′

B + n̄D
η

.
In practice, we will not know n̄D, but instead will know the
dark count probability. We would then use Eq. (B1), which
gives n̄D = PD/(1 − PD). The effective mean number of back-
ground photons incident on the real detector can be taken as

n̄B = n̄′
B + PD

η(1 − PD)
. (B2)

This is the desired result.

APPENDIX C: DERIVATION OF PRC(O)

In this Appendix we outline a derivation of (10), the aver-
aged probability that an object is present given the results for
a single measurement and that there is an object. The formal
definition of PRC(O) is given in Eq. (9). From this equation,
we see that PRC(O) is the sum of two integrals, which we
denote as I1 and I0, where the subscript refers to whether we
register a detection (I1) or have no detection (I0). Using the
detection probabilities (5) and Bayes rule, (6), we find that

I0 = 1

n̄(1 + ηn̄B)

∫ ∞

0
e−λ/n̄ exp(−γ λ)2

exp(−γ λ) + 1
dλ,

I1 = 1

n̄

∫ ∞

0
e−λ/n̄ (1 − exp(−γ λ)/Z )2

[1 − exp(−γ λ)/Z] + [1 − 1/Z]
dλ, (C1)

where λ is the mean photon number of a pulse, γ =
(ηκ )/(1 + ηn̄B), and Z = 1 + ηn̄B. Both of these integrals
can be transformed to standard forms by suitable changes of
variables. For both integrals, we start by using the substitution
t = exp(−γ λ). For I1, we can rearrange to obtain

I1 = 1

n̄γ
AZ

∫ 1

0

tβ−1(1 − t/Z )2

1 − At
dt, (C2)

where β = 1/(n̄γ ) and A = (2Z − 1)−1. The integral repre-
sentation of the hypergeometric function is [36]

2F1(a, b; c; x) = �(c)

�(b)�(c − b)

∫ 1

0
t b−1

× (1 − t )c−b−1(1 − xt )−adt, (C3)

where c > b > 0 and �(y) are gamma functions. Using
this, we can reexpress (C2) as a linear combination of
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hypergeometric functions:

I1 = 1

n̄γ

(
Z

2Z − 1

)[
2F1(1, β; β + 1; A)

β

− 2 2F1(1, β + 1; β + 2; A)

Z (β + 1)

+ 2F1(1, β + 2; β + 3; A)

Z2(β + 2)

]
. (C4)

The other integral, I0, can be written as

I0 = 1

ηκ n̄

∫ 1

0

tβ+1

t + 1
dt . (C5)

To simplify this further, we first multiply the denominator and
numerator of the integrand by (1 − t ) and then make a change
of variable to u = t2. This gives the integral

I0 = 1

2ηκ n̄

∫ 1

0

uβ/2(1 − u1/2)

1 − u
du

= 1

2ηκ n̄

∫ 1

0

(
1 − u(β+1)/2

1 − u
− 1 − uβ/2

1 − u

)
du. (C6)

The harmonic function, H (x), is equal to H (x) = γEuler +
d
dx ln(�(x)), where γEuler is Euler’s number and �(x) is the
standard Gamma function [36]. The harmonic function also
has a useful integral representation [36]:

H (x) =
∫ 1

0

1 − ux

1 − u
du. (C7)

Using this we can reexpress I0 as

I0 = 1

2ηκ n̄

[
H

(
1

2
+ β

2

)
− H

(
β

2

)]
. (C8)

Some simple algebra shows that the sum of I0 and I1 is equal
to that in (10).

APPENDIX D: PHOTON STATISTICS OF SUBENSEMBLES

In this Appendix we discuss the photon statistics of the
various states of the signal mode. Recall, in both the mimic
and direct detection schemes, the averaged state of the sig-
nal mode is a thermal state. The averaged state is, however,
realized in different ways for each protocol. In the mimic
protocol we prepare coherent states of different amplitudes
with probabilities such that the average state is (3), while
in direct measurement schemes, the signal state is prepared
by measuring the idler mode of the state (1). For simplic-
ity, we limit our discussion to direct measurements schemes
with a single idler detector. This means that the signal mode
is conditionally prepared in one of two states, ρ̂0 and ρ̂1,

where the subscript denotes whether the idler detector has
fired or not. The form of the states ρ̂i can be found using
Eqs. (10) and (12) of [24]. The probability for the idler de-
tector to not fire is PI (0) = (1 + ηn̄)−1, while the probability
to register a click is PI (1) = 1 − PI (0). The averaged signal
state is PI (0)ρ̂0 + PI (1)ρ̂1 = σ̂n̄, which is a thermal state with
mean photon number n̄. The mean photon number for ρ̂0 is
n̄(1 − η)/(1 + ηn̄), while the mean photon number for ρ̂1 is
n̄ + (1 + n̄)/(1 + ηn̄). The average of these is again n̄, the
mean photon number of the signal mode when we do not
condition on an idler measurement. Detecting light in the
idler mode thus gives an enhancement in the signal mode
mean photon number. In contrast, a failure to detect light in
the idler mode suppresses the mean photon number in the
signal mode. However, the average behavior is unchanged
from the reduced state of the signal mode, as required by the
no-signaling theorem [32].

We can gain more insight into the photon statistics by
looking at some examples of the conditional photon statistics.
In Fig. 8 we plot the conditional photon statistics for the direct
detection scheme for η = 0.9 and two different values of n̄:
n̄ = 0.5 in Fig. 8(a) and n̄ = 20 in Fig. 8(b). In both Figs. 8(a)
and 8(b) the triangles represent the photon statistics for the
averaged state, the solid dots are for the conditional state ρ̂0,
and the x’s are for the conditional state ρ̂1. For n̄ = 0.5 the
two conditional states have very distinct probability distribu-
tions, each of which differs from the average state. Heralding
has a significant conditioning effect on the state when the
detector fires. However, Fig. 8(b) shows that for n̄ = 20, the
nonvacuum outcome for the probability distribution for ρ̂1 is
almost identical to the averaged state. As the mean photon
number is high, the click outcome is much more likely than
the nonclick (which is rarer but has a photon number reducing
effect). Increasing n̄ thus provides a small conditioning effect
and keeps the photon probability distribution for ρ̂1 similar to
that of the original thermal state.

In contrast, in the mimic protocol one transmits coherent
states with Poissonian photon statistics. With high probability,
we will prepare coherent states with mean photon numbers,
|α|2, that are close to the ensemble average n̄. Some examples
of this are shown in Fig. 9, where Fig. 9(a) is for n̄ = 0.5
and Fig. 9(b) is for n̄ = 20. In both Figs. 9(a) and 9(b), the
triangles denote the photon probability distribution for the
averaged state, the dots are for probability distributions with
a mean below n̄, and the x’s are for probability distributions
with a mean above n̄. We see from Fig. 9(a) that for low values
of n̄, the resulting photon probability distributions are similar.
However, as n̄ increases, we see from Fig. 9(b) that the distri-
butions become more distinct. This feature helps explain why
the mimic protocol performs better, in relative terms, as the
mean photon number increases. This analysis thus provides
an intuitive understanding of the results found in Sec. V.
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FIG. 8. A plot showing the photon probability distribution for
the conditional and average states of the signal mode in the direct
measurement protocol. (a) η = 0.9 and n̄ = 0.5. (b) η = 0.9 and
n̄ = 20. In both figures, the triangles are for the average state, the
circular dots are for the state conditioned on no click in the idler
mode, while the x’s are for the state conditioned on a click in the
idler mode.

FIG. 9. A plot showing typical photon probability distribution
for coherent states and the averaged state of the signal mode.
(a) n̄ = 0.5, the circular dots are for |α|2 = 0.2, and the x’s are for
|α|2 = 0.7. (b) n̄ = 20, the circular dots are for |α|2 = 12, and the x’s
are for |α|2 = 28. In both figures, the triangles denote the averaged
state, which is a thermal state.
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