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Exact and lower bounds for the quantum speed limit in finite-dimensional systems
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A fundamental problem in quantum engineering is determining the lowest time required to ensure that all
possible unitaries can be generated with the tools available, which is one of a number of possible quantum
speed limits. We examine this problem from the perspective of quantum control, where the system of interest
is described by a drift Hamiltonian and set of control Hamiltonians. Our approach uses a combination of Lie
algebra theory, Lie groups, and differential geometry and formulates the problem in terms of geodesics on a
differentiable manifold. We provide explicit lower bounds on the quantum speed limit for the case of an arbitrary
drift, requiring only that the control Hamiltonians generate a topologically closed subgroup of the full unitary
group, and formulate criteria as to when our expression for the speed limit is exact and not merely a lower bound.
These analytic results are then tested and confirmed using a numerical optimization scheme. Finally, we extend
the analysis to find a lower bound on the quantum speed limit in the common case where the system is described
by a drift Hamiltonian and a single control Hamiltonian.
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I. INTRODUCTION

The emergence of quantum technologies such as quantum
information processing, quantum engineering, and quantum
sensing has relied on our increasing ability to manipulate
quantum systems with high levels of precision. Such manipu-
lation requires the ability to carry out quantum operations and
state preparation with high fidelity, in the presence of noisy
environments, as quickly as possible, and potentially subject
to a number of real-world constraints.

These requirements are the province of the field of quan-
tum control, which is primarily concerned with methods of
steering a quantum system using a set of classical control
inputs to the system [1,2]. Two major topics within this field
are characterizing the operations that can be carried out and
the states that can be reached with a given set of controls,
as well as determining the specific time dependence of those
controls that will steer the system to the intended goal. The
questions regarding the gates that can be implemented and
state reachability are approached using the methods of bilinear
control theory [3,4], which usually involve a Lie theoretic
framework [3,5,6]. The questions regarding the determination
of the time-dependent control fields (pulses), on the other
hand, have no good general strategy and are generally dif-
ficult. Analytic methods of optimal control theory can be
employed [3,7,8], but usually numerical optimization is used,
typically involving gradient-based search strategies with some
fidelity cost functional [9–12].

While these aspects of quantum control have been exten-
sively studied, less attention has been given to the question
of the speed at which specific unitaries can be generated
or specific states can be reached. Given that decoherence is
present in all quantum information processing, it is important

to minimize the time taken to perform quantum operations.
The time taken to reach specific targets given the set of con-
trols available is known as the quantum speed limit [13–15]
or, more precisely, there are a number of different speed
limits, some for the transformation of states, some for unitary
transformation, some for uncontrolled dynamics, and some
for controlled dynamics [14].

We will be more precise later, but in general terms the
quantum speed limit we will consider in this paper is the
following: Assuming we have a set of controls that allows us
to achieve all possible unitaries in a finite-dimensional system,
what is the minimum time by which we can guarantee we can
produce all possible unitaries? In other words, how much time
must we allow to be certain that we can accomplish everything
that can be done with the system?

The exact time for this type of quantum speed limit is
generally very difficult to determine for a specific quantum
system, unless that system is very low dimensional or pos-
sesses a very high degree of symmetry. Nonetheless, in some
special cases the limit can be computed; see, for example,
[16–22]. This difficulty means that work has concentrated on
finding lower bounds for the speed limit rather than exact
results. Various bounds have been obtained for closed finite-
dimensional systems as well as for open systems [23–36].
While these bounds are not tight, they can provide informa-
tion on how the speed limit is likely to scale with regard
to quantities of interest, such as system dimension or total
energy. It is notable that many of these approaches make use
of energy uncertainty of the system, applying the original
results of Mandelstam and Tamm [37], as well as the more
modern interpretation of Margolus and Levitin [23].

Given this background, we can state a generic quantum
control problem and investigate its speed limit as follows. We
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consider a Hamiltonian given by

H = Hd +
m∑

j=1

f j (t )Hj, (1)

where Hd and Hj are time-independent Hamiltonians acting
on a finite-dimensional Hilbert space and f j (t ) are of real
time-dependent scalar functions. The term Hd is called the
drift Hamiltonian and is always present. The Hj are the control
Hamiltonians and we assume that we have arbitrary control
over the f j (t ), as even in this case the quantum speed limits
are very difficult to determine.

The system evolves according to the Schrödinger equation

i
d

dt
U (t ) =

⎛
⎝Hd +

m∑
j=1

f j (t )Hj

⎞
⎠U (t ), U (0) = 1, (2)

where U (t ) is the unitary time-evolution operator. In an n-
dimensional system U (t ) can be represented as a unitary
n × n matrix. Further, as unitary operators are physically in-
distinguishable up to a phase, we can choose to remove this
excessive phase degree of freedom by demanding that U (t )
have unit determinant, making it a special unitary matrix. This
is accomplished by choosing the drift and control Hamilto-
nians to be traceless, and we will assume this is the case
throughout this paper.

The system is called controllable if it is possible to find
control functions f j (t ) such that, given enough time, we can
achieve any possible unitary (up to a phase) or, equivalently,
if we can generate all possible members of the Lie group
SU(n). There is a beautiful Lie-algebraic result that states that
this is the case if and only if [3,5] the dynamical Lie alge-
bra {iHd , iH1, iH2, . . . , iHm}LA has dimension n2 − 1, i.e., the
dynamical Lie algebra generated by the control Hamiltonians
and drift Hamiltonian is the Lie algebra su(n).

The next natural question is, if a quantum system is con-
trollable, how long will it take to produce a specific unitary
in the worst case or, equivalently [4,6], in the case of compact
groups such as SU(n), since the system is controllable, what is
the minimum time by which we can guarantee we can produce
all possible unitaries? This is what we will refer to as the
quantum speed limit in this paper.

We note that some authors make a distinction between
quantum control systems which are fully controllable only
in the presence of a drift term (i.e., removing the drift
Hamiltonian would cause the system to no longer be fully
controllable) from those systems for which this is not the
case. Systems of the latter type are known as strongly control-
lable [38] and are fully controllable with control Hamiltonians
alone regardless of the presence or absence of any drift term.
Due to our assumption that the control strengths f j (t ) can be
arbitrarily large, strongly controllable systems can reach any
unitary in an arbitrarily short amount of time, rendering the
concept of a speed limit irrelevant. For that reason we consider
only systems of the first type, where the drift is required to
ensure the system is controllable.

In this paper our goal is to derive lower bounds on the speed
limits of controllable quantum systems that are as general as
possible. We do not restrict the system to a specific number
of dimensions, demand it describes a set of qubits, or require

the drift Hamiltonian to be of a specific form, as is common
in other speed limit calculations (e.g., [28]; see [14] for a
review). We require no knowledge of the quantum energy
uncertainty of the system. We will require only that the control
subgroup is topologically closed, where the control subgroup
is the set of all unitaries that can be reached by application of
the control Hamiltonians alone, and will thus form a subgroup
of SU(n). However, the resulting speed limits can be hard to
analytically compute explicitly as they require determining
the diameter of rather abstract manifolds, so we examine in
more detail cases where the manifolds are symmetric spaces
[39], which can arise, for example, if the Lie algebra associ-
ated with the control subgroup forms a Cartan decomposition
[3] of the full dynamical Lie algebra.

This will allow us to derive explicit analytic lower bounds
for the quantum speed limit for a number of control schemes
corresponding to cases where the control group is one of
SO(n), Sp(n/2), or S[U(p) × U(q)], with p + q = n, and in-
vestigate when this bound will be tight. We also consider
the case where the number of control Hamiltonians is not
enough to span the full Lie algebra corresponding to these
groups and give the minimum number of control Hamiltonians
required to generate the algebra. Due to the fact that many
control problems will not have enough controls to generate
these groups, we also derive a bound for the common general
case where there is a only a single control Hamiltonian. In all
cases, our results are completely general and valid for arbi-
trary dimension. Finally, in order to test our analytic results,
we carry out an exploration of quantum speed limits for a vari-
ety of low-dimensional systems using numerical simulations.
This not only provides a check on our results, but allows an
investigation of the efficiency of numerical optimal control
algorithms for bilinear systems.

The structure of the paper is as follows. We begin in Sec. II
by formulating the quantum speed limit problem in terms of
Lie algebras and Lie groups and introduce concepts we will
require such as cosets, quotient spaces, and adjoint orbits, as
well as laying out our basic approach. We introduce the idea
that the problem can be treated as movement on a manifold,
with the movement direction and speed given by the drift
Hamiltonian. Since the mathematical machinery will not be
familiar to some readers, we provide illustrative examples.

In Sec. III we explain how one can obtain a speed limit by
determining the diameter of a manifold (i.e., the two points
farthest apart) and dividing by the speed at which the sys-
tem moves on the manifold. We describe the conditions on
the manifold required for this to work and give a way of
computing the speed of movement from the system’s drift
Hamiltonian. We establish that symmetric spaces provide
manifolds meeting the criteria, give their diameters, and use
them to compute explicit expressions for the lower bound on
the quantum speed limit.

Section IV examines when the lower bound developed in
the preceding section is actually tight. It develops a criterion
based on the dimension of the adjoint orbit and commutation
relations between the drift Hamiltonian and the matrix repre-
sentation of the Lie algebra corresponding to the controls.

As this criterion is sufficient but not necessary, in Sec. V
we investigate what else can be said about the tightness of
the bound if the controls arise from a Cartan decomposition.
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This allows understanding the control problem in terms of root
systems, and we illustrate the results by considering the case
where the control group is SO(n).

In Sec. VI we treat the problem of finding the quantum
speed limit numerically and compare the simulations to our
analytic results. This allows both a test of our bounds and
an examination of how well standard optimization techniques
used in quantum control work.

Finally, in Sec. VII we consider the case where we have
only a limited set of controls so that we do not have a sym-
metric space and derive a bound on the speed limit for the
common case where the system has only a single control
Hamiltonian.

II. PROBLEM FORMULATION IN TERMS OF LIE
GROUPS AND ALGEBRAS

The calculation of quantum speed limits is often ap-
proached using Lie group-theoretic techniques. We will also
make use of these mathematical structures, so we briefly pro-
vide the relevant background here. Good explanations of this
material can be found in, for example, [3,39,40].

In what follows, we will denote groups with an uppercase
letter, e.g. G = SU(n), and algebras with a lowercase letter
in Fraktur font (g = su(n)). Multiple letter algebras are in
lowercase roman font.

Let g be the full Lie algebra generated by the
drift Hamiltonian and the control Hamiltonians, i.e.,
g = {iHd , iH1, iH2, . . . , iHm}LA, and let the Lie algebra gen-
erated by the control Hamiltonians alone be given by k =
{iH1, iH2, . . . , iHm}LA. Clearly k is a subalgebra of g. The
system is said to be controllable if g = su(n).

We denote the control group, i.e., the group of unitaries
generated by exponentiating k, by K and the dynamical Lie
group generated by g by G. Clearly, K ⊆ G is a subgroup and
G ⊆ SU(n) with equality if the system is controllable.

At any given time, the system evolves according to (2).
Since the control amplitudes f j (t ) can be arbitrarily large, we
can generate any unitary U ∈ K in an arbitrarily short time to
arbitrarily good precision (see [3] for a rigorous justification
of this point). Now suppose our control problem is to produce
a unitary Utarget that moves us between the two unitaries U1 and
U2, i.e., U2 = UtargetU1. Since we can move between elements
of K arbitrarily quickly, all elements of K are equivalent,
meaning if we apply any controls after we have generated
the specific unitary Utarget, all resulting unitaries KUtarget are
equivalent in terms of how quickly we can generate them.
Because of this, we can view our control problem as actually
asking how to move between the right cosets KU1 and KU2,
where the right coset is KU = {kU | k ∈ K}. Furthermore, as
the system evolves in time, the unitary at any point in time,
given by (2), is equivalent to any other element in its coset,
because it can be moved within the coset arbitrarily quickly.

Alternatively, one could define equivalence in terms of left
cosets, where now we consider how to move between the left
cosets U1K and U2K . Again, these cosets are equivalent in
terms of the minimum time it takes to use controls to move
between them, but now the controls are being applied before
the unitary rather than after.

From a quantum control perspective, the most natural ap-
proach would be to consider equivalence under left and right
multiplication with unitaries in K , leading to two-sided cosets.
Mathematically, it is easier to stick to a one-sided coset, and
we will from now on consider right cosets. To “divide out” the
degree of freedom associated with each coset, one defines the
quotient space G/K as the set of right cosets Kg. We denote
each coset by [g] = Kg with g ∈ G, since the element g in-
dexes the coset. The cosets can also be seen as the orbits of the
natural left action of K on G and the space of orbits is G/K .

If K is a normal subgroup of G, then G/K is itself a Lie
group [39,40]. However, even if this is not the case, provided
G is a Lie group and K is a closed subgroup (in the topological
sense,1) then G/K is a differentiable manifold [40] that is
also a (right) homogeneous space, meaning that it carries a
(right) transitive G-action, which is given by [g′] · g = [g′g].
Specifically, G/K can be given the structure of a smooth
manifold with dimension dim(G/K ) = dimG − dimK . Move-
ment within a coset does not result in movement in G/K , but
movement between cosets does. Movement within a coset is
produced by the control Hamiltonians and movement between
the cosets requires the drift Hamiltonian.

As the system evolves via (2) it traces out a continuous path
in G/K space, and the quantum speed limit is governed by
how fast we can move between the two points corresponding
to U1 and U2. Clearly, we cannot move arbitrarily in G/K . Our
movement on G/K is determined by the drift Hamiltonian,
with the direction of the movement determined by where we
are within a coset at any given time, allowing us some degree
of steering.

In particular, we have the following: If G is a compact
and connected Lie group [e.g., SU(n)] and K is a closed Lie
subgroup of G, with associated Lie algebras g and k, then we
can decompose the Lie algebra g as g = p ⊕ k with

[k, p] ⊆ p, (3)

[k, k] ⊆ k, (4)

where p = k⊥ with respect to an Ad-invariant inner product
on g [39], e.g., the Hilbert-Schmidt inner product. Note that
while k is a Lie algebra, p is in general not closed under the
Lie bracket. The Ad-invariant inner product on g induces a
bi-invariant Riemannian geometry on G which in turn induces
a G-invariant Riemannian geometry on G/K (see the next
section for details). This equips the manifold G/K with the
structure of a so-called reductive space, which is a more
restricted variety of a homogeneous space.

Any evolution purely under the action of the controls,
without the drift, will produce motion only within a coset.
Without loss of generality, we can assume iHd ∈ p, since any
contribution that lies in k can be removed by application of
the controls. Since p is orthogonal to k, this means that any
evolution under the drift alone moves purely in G/K , with no
movement within a coset. Specifically, for a reductive space,
the inner product lets us identify the tangent To(G/K ) at the
origin o = [1] with p.

1For counterexamples see, e.g., Sec. 1.1 in [40].
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To show how the action of the control steers the direction
of motion in G/K , we need the concept of the adjoint orbit.
The adjoint orbit of A ∈ g is given by

O(A) = {k−1Ak | k ∈ K}. (5)

By Eq. (3), we have O(A) ⊂ p for A ∈ p. We can see how
this steers the evolution in G/K space as follows [16]: Take
elements k1, k2 ∈ K that belong to the coset containing the
identity and consider where they move under the action of the
drift after a short time �t . We obtain

k1 → e−iHd �t k1 = k1e−ik−1
1 Hd k1�t , (6)

showing that after the evolution it is now a member of
the coset [e−ik−1

1 Hd k1�t ]. Similarly, k2 moves to a coset
[e−ik−1

2 Hd k2�t ]. Since we can choose to be anywhere in a coset
arbitrarily quickly due to the action of the controls, we see that
the adjoint orbit represents the directions we are able to move
from the origin of G/K .

This mathematical machinery can be somewhat opaque, so
we present a simple example that illustrates these concepts.
We consider computing the quantum speed limit of a con-
trollable quantum system in a two-dimensional Hilbert space,
i.e., the group associated with the unitary evolution operator
is SU(2). This is one of the few cases where the speed limit is
explicitly known.

We take our Hamiltonian to be

H = σz + f (t )σx (7)

and the Schrödinger equation is given by

−i
d

dt
U (t ) = [σz + f (t )σx]U (t ), U (0) = 1. (8)

The Lie algebra associated with the single control is just
span{iσx}, while the full dynamical Lie algebra associated
with the drift and controls is span{iσx, iσy, iσz}. Since this
algebra is three dimensional and this matches n2 − 1, where n
is the Hilbert space dimension, the system is controllable. Our
Lie-algebra decomposition is g = p ⊕ k, with k = span{iσx}
and p = span{iσy, iσz}. We have g = su(2), k = u(1), G =
SU(2), and K = U(1). The manifold corresponding to the
quotient space G/K can in general be quite complicated, but
in this case it is particularly simple; the manifold G/K =
SU(2)/U(1) is isomorphic to the two-sphere S2.

Since the control algebra is one dimensional, the control
group subgroup K generated by k can be parametrized by a
single parameter α as eiασx , α ∈ [0, 2π ], and the adjoint orbit
is given by the set

O(iHd ) = {e−iασx iσze
iασx | α ∈ [0, 2π ]}

= {i cos(2α)σz + i sin(2α)σy | α ∈ [0, 2π ]}. (9)

Here S2 is two dimensional and the tangent space at the
origin is defined by span{iσy, iσz} = p. Since Eq. (9) allows
any direction in the tangent space by a suitable choice of
α, we can move in any direction in G/K we wish. As we
will show in later sections, the speed of movement in G/K is
constant and determined purely by the drift Hamiltonian. This

means that the speed limit is achieved by moving on a great
circle geodesic between two antipodal points, as this yields the
maximum possible evolution time between any two unitaries
for the system.

The concepts of speeds and distances on the G/K manifold
are determined by the Riemannian metric on G/K which
depends on the inner product chosen on g. As will be shown
later, if we choose the Killing form for the inner product, then
for this particular example the speed of movement is 2

√
2 and

the distance between two antipodal points is
√

2π , giving the
time for the quantum speed limit as t = π/2, which agrees
with the standard result [3].

We note that this is an unusual way to look at this problem.
The normal approach is to apply the maxim “algebra is easier
than geometry” and use Lie algebra, Lie groups and results
such as the maximal torus theorem, rather than considering
geodesics on a manifold. Nonetheless, the idea of obtaining
a speed limit by dividing the diameter of the G/K manifold
by the drift velocity will prove extremely useful. In the case
where the adjoint orbit allows us to move on a geodesic con-
necting the two points farthest apart on the manifold, we can
obtain an exact speed limit, and if it does not allow movement
on such a geodesic, such a method will still provide a lower
bound.

III. QUANTUM SPEED LIMITS FROM MANIFOLD
DIAMETER AND DRIFT VELOCITY

As discussed in the preceding section, in order to obtain
speed limits from the structure of the G/K manifold, we need
some way of assigning distances to the space. This involves
bridging the two descriptions of the problem: The control and
drift Hamiltonians defining the system are described by the
Lie algebra, while the unitaries corresponding to the system
evolution are described by the Lie group and associated man-
ifold.

To see the issue, consider the group SU(2). The associated
manifold is the three-sphere, which describes the topology, but
there is no metric associated with it (yet); for example, there
is no concept of the size of its diameter. The way the metric is
imposed is to define an inner product on the Lie algebra which
is then pushed around the group to define an inner metric on
all tangent spaces. For the inner product on the Lie algebra g

we will take

〈X,Y 〉K = −2n Tr(XY ), X,Y ∈ g. (10)

This inner product is Ad-invariant since the group G consists
of unitary operators. The dimension-dependent factor of 2n is
chosen such that the inner product is equal to the Killing inner
product in the case g = su(n); it will, however, drop out in the
quantum speed limits. We now obtain the inner product at the
tangent space of a general element g ∈ G from

〈X,Y 〉g = 〈g−1X, g−1Y 〉K = 〈Xg−1,Y g−1〉K , (11)

where X,Y ∈ TgG are tangent vectors at g. The second equal-
ity holds by Ad-invariance of the inner product on g. This
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equips G with a bi-invariant Riemannian geometry (meaning
that both left and right multiplication act isometrically). For
such groups the geodesics through an element g are pre-
cisely the curves of the form t �→ gevt , where v ∈ g (see [41],
Lemma 21.2).

The quotient space G/K inherits a G-invariant Riemannian
geometry from G: At the origin o the inner product 〈X,Y 〉o

is defined as 〈X,Y 〉K using that ToG/K ∼= p ⊂ g. This is ex-
tended to arbitrary points [g] by the (differential of the) G
action just as in (11): 〈X,Y 〉[g] = 〈X · g−1,Y · g−1〉o (this is
indeed well defined, i.e., independent of the choice of g within
the coset). In particular, the resulting Riemannian metric is
automatically G invariant, meaning that G acts isometrically
on G/K . It now holds by construction that the natural projec-
tion π : G → G/K induces an isometry between (ker dπ |g)⊥
and Tπ (g)(G/K ) for all g. Such a map is called a Riemannian
submersion [39]. Since ker(dπ |1) = k, this just follows from
To(G/K ) ∼= p and our definition of the metric (in general, we
have ker dπ |g = g−1kg and hence T[g]G/K ∼= g−1pg). The no-
tation dπ |g means that we take the differential of π at the point
g, which is a linear map TgG → Tπ (g)G/K . A concrete descrip-
tion of this geometry for basic examples like SU(2)/SO(3) is
given in Sec. V.

The crucial point for us is the following: From π being
a Riemannian submersion it follows that geodesics in G/K
running through a coset x = [g] are precisely curves of the
form [gexp(ut )] = x · exp(ut ) with u ∈ g−1pg and that they
have the same length as their corresponding lifts of G (see
[39], Proposition 18.8).

Let us summarize the relevant structure: We have a quan-
tum control problem with dynamical Lie algebra g and control
algebra k, associated Lie groups G = eg and K = ek, and K
is a closed subgroup of G. We use the Killing form as an
inner product on g and take the decomposition g = p ⊕ k with
p = k⊥. We can always ensure iHd ∈ p by removing any part
not in p via the controls. We know G/K is a reductive space
and we know precisely which form the geodesics on G/K
have.

We now compute the speed at which the system moves
through G/K as it evolves. We know the possible directions
of travel at the origin are given by the adjoint orbit of the
drift, k†iHd k ∈ O(iHd ) with k ∈ K , so in a time dt we move
to the coset of exp(ik†Hd kdt ). To determine the distance ds
this corresponds to in G/K we use the metric on G/K and
because we have a Riemannian submersion we can employ
(10) to obtain

ds =
√

〈ik−1Hd kdt, ik−1Hd kdt〉K

= dt
√

2n Tr
(
H2

d

)
, (12)

where we have used the fact that the Killing form is Ad
invariant. Using the G invariance of the metric on G/K , the
same argument shows this result also holds at other points
x �= o ∈ G/K . This means the speed at which the system
moves in G/K is constant and is given by

v =
√

2n Tr
(
H2

d

)
. (13)

TABLE I. Diameter of various compact symmetric spaces arising
from the quotient G/K , when using the Killing inner product on g in
order to obtain a Riemannian metric on G/K .

G/K diam(G/K )

SU(n)/SO(n)
√

2
2 πn for n even

SU(n)/SO(n)
√

2
2 π (n2 − 1)1/2 for n odd

SU(n)/Sp( n
2 ) π

2 n for n/2 even

SU(n)/Sp( n
2 ) π

2 (n2 − 4)1/2 for n/2 odd

SU(p + q)/S[U(p) × U(q)] π (p + q)1/2 p1/2 for p � q

Now that we know the form a geodesic in G/K must take
and speed with which a quantum system moves along it, the
task is to find the diameter of the G/K space, that is, the
farthest distance possible pairs of points can have. Given the
fact that motion in G/K is at constant speed, this will give us
a lower bound on the quantum speed limit, that is, the time
taken to produce the most difficult unitary. This proves the
following theorem.

Theorem 1. Let G be the dynamical Lie group of the control
problem (1) and assume that the subgroup K ⊂ G generated
by the controls alone is closed. Let TQSL be the minimum time
in which all unitaries of G can be reached. Then

TQSL � diam(G/K )√
2n Tr

(
H2

d

) . (14)

The practical usefulness of this result of course relies on
an explicit computation of the diameter (or at least a lower
bound). The diameter of the Riemannian manifold G/K is

diam(M ) = sup{d (x, y) : x, y ∈ G/K}, (15)

where d (x, y), the Riemannian distance between x and y, is the
infimum over the lengths of curves connecting these points
as measured by the metric. Since G/K is homogeneous the
definition is equivalent to diam(M ) = supx∈G/K d (x, o).

That Eq. (14) is only a lower bound in general is due to
the restricted movement on G/K : The possible directions are
given by the adjoint orbit O(iHd ). If the adjoint orbit does
not allow for the needed directions, the time taken to generate
some unitaries will be longer than the lower bound given in
Eqs. (16)–(20).

Finding the diameter of the homogeneous space G/K is
in general difficult. However, the diameter of all symmet-
ric spaces arising from classical compact groups has been
calculated by Yang [42]. [We note there appears to be an
error in Yang’s paper; the results given for the diameters of
SU(2n)/Sp(n) should be divided by

√
2.] If we consider only

symmetric spaces arising from quotient groups of the form
G/K , where G = SU(n), there are only three possibilities,
which we list in Table I. Note that the group Sp(n) refers to
the compact symplectic group and we have chosen to use the
Killing form as the inner product on the Lie algebra g to obtain
a metric on G/K . Consequently, if the Lie group K generated
by the controls is one of SO(n), Sp(n), or S[U(p) × U(q)]
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[the matrices of unit determinant in U(p) × U(q)], we obtain
the quantum speed limits

SO(n): TQSL �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
nπ

2

√
Tr
(

H2
d

) for n even

π (n2−1)1/2

2

√
n Tr

(
H2

d

) for n odd,

(16)

(17)

Sp(n/2): TQSL �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
nπ

2

√
2 Tr

(
H2

d

) for n/2 even

π (n2−4)1/2

2

√
2n Tr

(
H2

d

) for n/2 odd,

(18)

(19)

S[U(p) × U(q)]: TQSL �
√

pπ√
2 Tr

(
H2

d

) for p � q. (20)

The result for the case where the control group is Sp( n
2 )

is particularly interesting. It is known that this control group
provides complete state controllability even in the absence of
a drift Hamiltonian [3]. As we have assumed arbitrarily strong
controls, this means that one can find controls that move from
any state to any other state arbitrarily quickly, that is, the speed
limit for state control in this case is zero. The emergence of
a finite speed limit as given by (18) and (19) highlights the
difference between unitary control and state control.

It is also worth noting the appearance of explicit depen-
dence of the Hilbert space dimension in these bounds, as
existing speed limits in the literature are usually not able to
include this factor.

IV. BOUND TIGHTNESS IN TERMS
OF DIMENSION COUNTING

Let us discuss the tightness of our speed limit bounds from
the perspective of the dimensions of the control group. Our
bound was obtained from the observations that the speed of
movement in G/K is constant and that the largest distance be-
tween two points (the diameter) is finite. While the existence
of a length minimizing geodesic connecting the origin o with
any other point x ∈ G/K is guaranteed (by the Hopf-Rinow
theorem), it is not clear that such a geodesic is available by
choice of suitable controls.

Denote by D the set of points maximizing the distance
from the origin, i.e., the points x ∈ G/K with d (o, x) =
diam(G/K ), where d denotes the Riemannian length on G/K .
As both inversion and the K action are isometries that fix the
origin, we know that they also leave D invariant, i.e., D−1 = D
and D · k = D for all k ∈ K . For the bounds to be tight, it is
necessary that for each x ∈ D, there is a minimal geodesic
connecting the origin o with x which is of the form [exp(vt )]
with v ∈ O(iHd ). This trivially holds if O(iHd ) is equal to the
sphere S = ∂Br (0) in p of radius r = √〈Hd , Hd〉K (note that
all directions in the adjoint orbit have the same length by Ad
invariance). The adjoint orbit itself is a closed manifold which
is a subset of S. In the case that the dimension of O(iHd ) is
maximal (i.e., equal to dimp − 1), it follows that O(iHd ) is
equal to S and thus contains every direction in p.

TABLE II. Dimensions of the Lie algebras associated with the
three symmetric spaces associated with SU(n). Here dk = dim(k) is
the dimension of the control algebra and dp = dim(p) is the dimen-
sion of the symmetric space G/K . If dim({A ∈ k | [Hd , A] = 0}) =
1 + dimk − dimp, the adjoint orbit from the controls is guaranteed
to have enough degrees of freedom to choose any single-parameter
geodesic from the origin to a point corresponding to the diameter of
the space.

G/K dp dk dk − dp + 1

SU(n)/SO(n) 1
2 (n2+n−2) n

2 (n − 1) 2 − n

SU(n)/Sp
(

n
2

)
1
2 (n2−n−2) n

2 (n + 1) 2 + n

SU(p+q)/S[U(p)×U(q)] 2pq p2+q2−1 (p−q)2

The dimension of the adjoint orbit is

dimO(iHd ) = dimk − dim({A ∈ k | [Hd , A] = 0}) (21)

because TAO(A) ∼= p/ker[A, ·]. This means that the bound is
tight if we have equality in

dim({A ∈ k | [Hd , A] = 0}) � 1 + dimk − dimp. (22)

This inequality always holds and equality is equivalent to the
ability to move into every possible direction in G/K .

We stress that this is a sufficient condition, but not a nec-
essary one. Even if the adjoint orbit does not have enough
directions to access all dimensions of p, that does not rule out
the possibility that, for a specific drift Hamiltonian, a single-
parameter geodesic from the origin to the locus corresponding
to the diameter with an initial direction lying in the adjoint
orbit does not exist.

Table II lists the relevant dimensions for k and p for the
symmetric spaces we are considering, as well the quantity
corresponding to the right-hand side of (22). For the symmet-
ric spaces SU(n)/Sp( n

2 ) and SU(p + q)/S[U(p) × U(q)] the
number degrees of freedom in the control group exceeds that
of the quotient space, so naive dimension counting arguments
suggest the bound is likely to be tight, although one must test
for equality in Eq. (22) to be sure. Combined with the numer-
ical results in the Sec. VI, we make the following conjecture.

Conjecture 1. Let SU(n) be the dynamical Lie group of
the control problem (1) and K = Sp( n

2 ). Then Eqs. (18) and
(19) are tight. If K = S[U(p) × U(q)], with p + q = n, then
Eq. (20) is tight.

However, it is clear that for the case SU(n)/SO(n) with
n > 2 it is never possible to achieve equality in (22) as the
dimension of a space can never be less than zero. Nonetheless,
as we will see in our numerical tests of the speed limit in
Sec. VI, for some drift Hamiltonians the bounds (16) and (17)
are still tight. To investigate this in more detail, we consider
case where the control algebra is k = so(n). We wish to de-
termine the size of dim({A ∈ k | [Hd , A] = 0)}. To begin, we
note that any drift Hd can be moved into the Cartan subalge-
bra by some controls. This subalgebra is diagonal with trace
zero, meaning we need only consider the case where Hd is
diagonal. Let Hd = diag{λ1, λ2, . . . , λn}, where the λi are the
eigenvalues of Hd .

We choose the basis of k to be the set of n × n matri-
ces given by Bi j = |ei〉〈e j | − |e j〉〈ei|, i < j, where |ei〉 is the
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column vector with a 1 in row i and 0 everywhere else. The
size of this basis is dimk = n(n − 1)/2.

The commutator of Hd with the basis elements of k is
given by

[Hd , Bi j] = (λi − λ j )(|ei〉〈e j | + |e j〉〈ei|), (23)

demonstrating that to ensure [Hd , Bi j] = 0 we require λi =
λ j . This means that dim({A ∈ k | [Hd , A] = 0) is given by the
number of pairs M of eigenvalues of Hd that are degenerate,
giving dimO(iHd ) = dimk − M.

So, for example, if all eigenvalues are distinct, M = 0,
meaning dimO(iHd ) = dimk. If all eigenvalues are identi-
cal, then M = 1

2 n(n − 1) = dimk, meaning dimO(iHd ) = 0.
This shows that the more eigenvalues that are degenerate, the
smaller the chance the adjoint orbit allows us to choose a
direction that makes the bound tight.

As an example, consider the case SU(2)/SO(2) discussed
in the preceding section. Here dk = 1 and dp = 2, so the
equality in Eq. (22) is achieved when the two eigenvalues of
Hd are not degenerate. Specifically, in this case the adjoint
orbit is one dimensional, and since G/K is the two-sphere,
this single degree of freedom for the adjoint orbit suffices to
choose arbitrary directions on the two-dimensional manifold,
meaning achieving a minimal geodesic from the origin to the
diameter is always possible.

V. EXAMINATION OF THE TIGHTNESS
OF OUR BOUNDS WITH CARTAN CONTROLS

In the preceding section we developed a criterion that was
sufficient to show our speed limit bounds were tight, based
on determining the dimension of the adjoint orbit. As this
criterion is not necessary, however, this section examines what
else can be said about the tightness of the bounds. We do
this mostly for the controllable case g = su(n) by using the
root system of (g, k), and we illustrate the approach using
k = so(n).

We begin by considering the symmetric spaces described
in the preceding section as arising from the situation where
the controls form a Cartan decomposition of the full Lie
algebra. As before, the control algebra is denoted by k and
the associated control group is K = ek. This decomposition
is often used in quantum control problems. The main point is
that a Cartan decomposition provides a decomposition of the
full Lie algebra of the form g = p ⊕ k, with p = k⊥, which
satisfies the relations

[k, k] ⊆ k, (24)

[k, p] ⊆ p, (25)

[p, p] ⊆ k. (26)

These conditions include those required for a reductive space
plus the additional condition (26). Here the Lie algebra is
again equipped with the inner product (10) in order to match
the speeds and manifold diameters computed in the preceding
section.

There are precisely three Cartan decompositions of su(n)
[3]. They are k = so(n), k = sp( n

2 ), and k = s[u(p) ⊕ u(q)],

with p + q = n, where

s[u(p) ⊕ u(q)]

=
{(

A 0
0 B

)∣∣∣∣∣A ∈ u(p), B ∈ u(q), TrA = −TrB

}
. (27)

These three decompositions are associated with the three pos-
sible symmetric spaces of SU(n) introduced before.

To proceed we need the following notion: A Cartan subal-
gebra of g (with respect to a Cartan decomposition g = p ⊕ k)
is a maximal Abelian subalgebra a contained in p [3] [subal-
gebras contained in p are Abelian because of Eq. (26)]. All
Cartan subalgebras are conjugate via an element k ∈ K and
every element of p is contained in a Cartan subalgebra [3]. In
particular, for every X ∈ p there are k ∈ K and A ∈ a so that

X = kAk−1. (28)

From now on we assume that g = su(n). It is possible to use
the maximal torus theorem to show [16] that the fastest way to
generate any target unitary Utarg is to find the smallest τ such
that it is possible to write

Utarg = k1 exp(vτ )k2, (29)

with k1, k2 ∈ K and v ∈ p of the form

v =
m∑

i=1

βiXi, β � 0,
∑

βi = 1, Xi ∈ W (iHd ), (30)

where W (iHd ) = a ∩ O(iHd ) is the Weyl orbit of iHd . Note
that Eq. (29) does not actually give a specific minimal time
solution; it merely states the form it must take and reduces the
difficulty of the (usually numerical) optimization problem.

Clearly, v ∈ p and gives the direction of the geodesic con-
necting the identity and Utarg in G/K , so (29) shows the correct
control strategy is to apply strong controls initially to pick the
correct direction in G/K provided the adjoint orbit allows the
direction, drift for a time with all controls at zero, and then
apply strong controls again to move to the final desired Utarg

within the coset. If v lies in O(iHd ), we can generate it and
will always be capable of moving on a geodesic between any
two points in G/K , including from the identity to the point the
farthest away corresponding to the diameter of G/K . Since all
elements of the Weyl orbit commute, exp(vτ ) can be written

exp(vτ ) = exp(β1X1) exp(β2X2) · · · exp(βmXm), (31)

with βi and Xi as in (30). Because the elements of the Weyl
orbit W (iHd ) are a subset of the adjoint orbit O(iHd ), we are
clearly capable of implementing exp(vτ ) through the action
of the drift and arbitrarily strong controls.

It is important to note, however, that the fastest way to
implement a unitary by using the available controls, i.e., the
path described by (31), is not necessarily a minimal geodesic
between the initial and final points even though it is a piece-
wise geodesic. Only if the right-hand side of (31) consists of
single exponential is it possible that the time this fastest path
takes coincides with our lower bound given by Eqs. (16)–(20).

We now examine the question as to when the v in
Eq. (31) lies within the adjoint orbit, making our speed limit
lower bounds tight. As said in the preceding section, the
fact that G/K is homogeneous implies that diam(G/K ) =
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supx∈G/K d (o, x), meaning we need only to look for the point
x corresponding to the target unitary that is farthest from
the group identity along a single-parameter geodesic. This
point has the property that a geodesic starting at the origin
stops being length minimizing after running through x. The
set of points where geodesics starting at the origin o stop
being length minimizing is known as the cut locus (of the
origin). By the Hopf-Rinow theorem [39], there is for every
x ∈ G/K a minimizing geodesic joining it with the origin. If G
is simply connected [as is the case for SU(n)], the symmetric
space G/K is also simply connected (see [43], Proposition
3.6), which implies that the cut locus coincides with what is
called the first conjugate locus (see [44], Theorem 3.5.4). To
illustrate these ideas, we give an explicit description of the cut
locus for SU(2)/SO(3) below.

The conjugate locus can be described in terms of the
positive roots �+(g, a) of the Lie algebra g with respect to
the Cartan subalgebra a. Specifically, the exact form of the
conjugate locus of a point x ∈ M is given by [42,44,45]

C(x) = {x · eAk | k ∈ K, A ∈ a s.t. (33) holds}, (32)

with the root condition

∃α ∈ �+(g, a), 0 �= m ∈ Z: α(A) = imπ (33)

and the first conjugate locus corresponds to m = ±1. Note that
the locus C(x) is K invariant (i.e., invariant under the right
action by elements of K) and invariant under inversion. As
explained previously, we only care about C(o). In this case we
have o · eAk = [eAk] = [exp(k−1Ak)], so the conjugate (and
hence cut) locus consists precisely of the points [expO(A)],
where A satisfies the root condition (33).

In order to illustrate this approach, we consider the sim-
plest cases: SU(2)/SO(2) and SU(3)/SO(3).

For SU(2)/SO(2) we consider the control problem (7). The
control algebra is k = span{iσx} and the Cartan subalgebra
is given by a = span{iσz}. The locus C(o) consists of points
[eiησz ] · eiβσx , where β ∈ [0, 2π ] and A = iησz must satisfy the
root condition. There is a single positive root α1 in this case
given by α1(iησz ) = 2iη. This means we require 2iη = ±iπ .
The cut locus is therefore given by the set {[e±iσzπ/2eiβσx ] |
β ∈ [0, 2π ]}, which actually only contains the single coset
[eiσzπ/2] because all e±iσzπ/2eiβσx determine the same coset. A
geometrical way to understand this is that the coset [eiσzπ/2] is
the unique point on S2 = SU(2)/SO(3) that is an antipodal
point to the origin. The group action of SO(2) acts on the
sphere by rotating about the axis going through the origin and
hence fixes this antipodal point. Since the control elements k1

and k2 can be applied arbitrarily quickly, our drift will hit the
conjugate locus at time t = π/2, giving the expected speed
limit and showing the bound is tight.

The SU(3)/SO(3) case is more complex. Generally
speaking, for a Riemannian manifold the set of points corre-
sponding to the diameter and the set of points corresponding
to the cut locus are not the same. It is the case, however, that
the diameter locus must be a (possibly equal) subset of the cut
locus.

Consider the question whether there is single-parameter
geodesic that lies in the Weyl orbit that, up to conjugation by
the controls, lies on the conjugate locus at a specific time tQSL

given by the quantum speed limit bound in Eqs. (16) and (17),

that is, whether for a given drift Hd we can find a solution for
a specific A ∈ a, k1, k2 ∈ K , satisfying

exp(A) = k1 exp(iHdtQSL)k2, (34)

with α(A) = ±iπ . If we can find such an A, then we know we
can move to the cut locus on a single minimal geodesic, but
this final point may not lie on the set of diameter points. If
it does, our bound is clearly tight, since in order to reach the
diameter, our geodesic must fail to be distance minimizing
for the first time at that point. This means that the condition
given by Eq. (34) is necessary but not sufficient. To make it
sufficient, it would be necessary to be able find a solution to
Eq. (34) for all A ∈ a, which is generally not possible.

The Cartan subalgebra a has rank 2 and can be
parametrized as A = c1h1 + c2h2, where c1 and c2 are real
parameters and we use the Cartan-Weyl basis

h1 = i

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, h2 = i

⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠. (35)

There are three positive roots for su(3) and their action on A
is given by

α1(c1h1 + c2h2) = i(2c1 − c2), (36)

α2(c1h1 + c2h2) = i(−c1 + 2c2), (37)

α3(c1h1 + c2h2) = i(c1 + c2). (38)

Applying these roots to (33) shows that the A ∈ a generating
the conjugate locus can be parametrized as the union of the
three sets of Lie algebra elements

A1 = i diag{c1, c1 − m1π,−2c1 + m1π},
A2 = i diag

{
c1,

1
2 (−c1 + m2π ),− 1

2 (c1 + m2π )
}
,

A3 = i diag{c1,−2c1 + m3π, c1 − m3π}, (39)

where c1 is an arbitrary real parameter and mi = ±.
This shows that the bound (17) will be exact if we can find

integers mi not equal to zero and control group elements k and
k′ such that

k exp(A)k′ = exp(iHdtQSL) (40)

for all A satisfying (39), as this ensures we can reach the entire
cut locus, of which the diameter is a subset. Since each k ∈ K
has three parameters, this is already an eight-parameter prob-
lem and is analytically difficult. Higher-dimensional groups
will pose an even bigger problem.

We can however gain some partial information by making
use of Eqs. (36)–(38). We note that any drift iHd ∈ p can be
moved into a Cartan subalgebra a via conjugation by some
controls, i.e., iHa

d = kiHd k†. This is a unitary transformation
which does not change the spectrum, and since the Cartan
subalgebra is spanned by the real diagonal matrices with
zero trace, we write Ha

d in terms of its eigenvectors Ha
d =

diag{λ1, λ2, λ3}, where λ3 = −λ1 − λ2 since Tr(Ha
d ) = 0.

If we apply Eqs. (36), (38), and (33) to A = iHa
d t =

it diag{λ1, λ2,−λ1 − λ2} we see that to intersect the cut locus
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we need one of

(λ1 + 2λ2)t = m1π, (41)

(λ1 − λ2)t = m2π (42)

to be satisfied. Since t is a continuous positive parameter,
these conditions will almost always be satisfied for some t ,
unless λ1 and λ2 are chosen to make the left-hand side of
one of (41) or (42) equal to zero. This occurs if λ1 = λ2 or
if λ1 = −2λ2. However, these two conditions are equivalent,
since if λ1 = −2λ2, then λ3 = −λ1 − λ2 = λ2 due to the
zero-trace condition, showing that λ1 and λ3 are degenerate.
Consequently if any two eigenvalues are degenerate, one of
(41) or (42) cannot be met.

Note that this condition does not guarantee there is no
element of the Weyl orbit that produces a single-parameter
geodesic from the identity to the point corresponding to the
diameter, but it reduces the possibility since it ensures there
is a portion of the cut locus that cannot be reached. This is
because each root condition corresponds to a geodesic that
intersects a different portion of the cut locus, so failing one of
the conditions (41) or (42) will only result in the bound not
being tight if the diameter lies on that portion of the cut locus.

However, this is more powerful than might first be
imagined, since if any drift Hamiltonian with degenerate
eigenvalues exceeds the lower bound on the speed limit, then
all drift Hamiltonians with degenerate eigenvalues will exceed
the lower bound. This is because the ordering of the elements
of a diagonal matrix can be arbitrarily switched by controls,
and multiplying the drift by a scalar does not change whether
bound is tight; it merely stretches the timescale. This means all
drifts with two degenerate eigenvalues have the same behavior
regarding whether the bound is tight. If this can be determined
for a single case in SU(3)/SO(3), the behavior of all drift
Hamiltonians is known. This is one of the questions that will
be investigated numerically in the next section.

VI. NUMERICAL TESTS
OF THE ANALYTIC SPEED LIMITS

In Sec. III we derived lower bounds on the quantum speed
limit for various types of controls and in Sec. V we looked at
evidence for when these bounds might be saturated, i.e., when
the bound is actually exact. We now examine these systems
to determine the speed limit via a numerical optimization pro-
cedure. The motivation is to provide checks on both analytic
bounds as well as to test our dimension counting and eigen-
value degeneracy arguments for bound tightness laid out in
Secs. IV and V. In addition, bilinear optimal control problems
are seldom analytically tractable and are usually approached
numerically, so our analytic results provide an ideal test for
checking the performance of various optimization strategies.

Our approach is to determine the quantum speed limit nu-
merically for a variety of drifts and a variety of Hilbert space
dimensions, assuming the controls Hamiltonians generate one
of the three Lie algebras so(n), sp( n

2 ), or s[u(p) ⊕ u(q)](n).
To do this we choose a series of Haar-random unitary targets
and attempt to numerically find optimal controls that, for a
specific drift Hamiltonian Hd , would achieve that unitary at a
specific chosen time T . That time is divided into N discrete

FIG. 1. Example of how the quantum speed limit is determined
numerically, for the case with SO(3) controls. Each line corresponds
to a random target unitary in SU(3). We attempt to find a solution for
time-dependent controls for a given fixed time total time T (horizon-
tal axis) and a specified drift Hd . As T is increased, better solutions
can be found, giving a better-fidelity overlap with the target unitary.
When the fidelity error is lower than some cutoff, we take this to
mean we have found a solution for the control pulse that can generate
the unitary. If this is repeated many times for many random unitary
targets, the speed limit is taken to be the time for which we can find
a control pulse for all possible targets in this time or less. This plot
shows 30 Haar random unitary targets with Hd = diag{1, 0, −1} and
100 time slots.

intervals (time slots), with the width of each time slot given
by T/N , and the controls are assumed to have a constant
amplitude over each interval, i.e., the controls are time depen-
dent but piecewise constant. In the limit of a large number of
time slots, arbitrary control functions are well approximated.
Specifically, we solve

i
d

dt
U (t ) =

⎛
⎝Hd +

m∑
j=1

f j (t )Hj

⎞
⎠U (t ), (43)

with an initial random guess at the amplitudes in each time slot
for each independent control function f j (t ). We use QUTIP’s
optimal control package [46] with a gradient-ascent algorithm
to find the control functions that maximize the overlap be-
tween the final unitary resulting from the evolution of (43) and
the desired target unitary, as given by the phase-insensitive
fidelity measure

F = 1

n
|Tr[U †

targetU (T )]|. (44)

This process is then repeated many times with different
random initial guesses to help the optimizer becoming stuck
in local minima. For each target unitary, we gradually increase
the time T until a solution could be found where the fidelity
error 1 − F is less than a cutoff of 10−7. This is repeated for
a large number of random unitaries, and the quantum speed
limit for that particular drift is taken to be the lowest time
for which we could guarantee solutions for all the unitaries
with a fidelity error less than the cutoff. This is illustrated in
Fig. 1 with a small sample of the results for the SU(3)/SO(3)
case for a particular drift corresponding to a predicted analytic
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quantum speed limit of tQSL = 1.81. It shows how the fidelity
error for any given target reduces as more time is allowed,
until we reach a sudden drop in the error which we interpret
as the existence of a set of control functions that can achieve
that unitary.

Not all drift Hamiltonians Hd need to be examined. First, if
iHd has some overlap with k then this portion can be removed
arbitrarily quickly by application of the controls, so we can
assume iHd ∈ p. Second, since iHd ∈ p, due to (28) it can also
be moved into a subspace of p corresponding to a Cartan sub-
algebra a by application of the controls. This means we need
only consider drift Hamiltonians drawn from a (multiplied by
i).

There are a number of reasons that the numerical approach
may provide a speed limit higher than the true one, making it
difficult to determine if the lower bounds given by Eqs. (16)–
(20) are truly tight. First, for a given time there may have
been a better solution that the optimizer simply missed, even
with many attempts with random initial conditions. Second,
because we have divided the total time T into N time slots,
elements of the control group cannot be performed arbitrarily
fast; they take at least T/N . Both of these serve to ensure the
speed limit found numerically will be slightly higher than the
true speed limit. Third, since the testing is done with a set
of discrete choices of time T , there may be a fast solution at
a specific low T that we do not see because that value of T
is not tested, giving the illusion that the speed limit for that
unitary is higher than it actually is. Conversely, we draw the
target unitaries from a Haar-random set. As the dimension of
the Hilbert space increases, it becomes increasingly difficult
to properly sample the set of possible unitaries, and this is
exacerbated by the fact that higher dimensions take longer to
simulate, so fewer targets can be sampled.

With these caveats in mind, we now examine the results of
the numerical optimization process. We first consider the case
where the controls generate the Sp(n/2) subgroup. As conjec-
tured in Sec. V, we might expect the speed limit bounds given
by (18) and (19) to be tight. The elements of the Lie algebra
sp( n

2 ) have the form ( L1 L2
−L∗

2 L∗
1
), with L1 skew Hermitian and

L2 = LT
2 , where L1 and L2 are complex and n

2 × n
2 in size. One

chooses a basis for this space, and the control Hamiltonians
will be given by this basis multiplied by i.

As discussed above, we need only consider drift Hamilto-
nians that lie within the Cartan subalgebra, which drastically
reduces the possibilities. For sp( n

2 ) this is given by matrices of
the form [3]

A =
(

D 0
0 D

)
, (45)

with D diagonal and D ∈ su( n
2 ). Figure 2 shows results

for the SU(4)/Sp(2) case, with a drift Hamiltonian Hd =
diag{1,−1, 1,−1}. Up to a constant factor, this is in fact the
only drift Hamiltonian that lies within the Cartan subalgebra.
As expected, all random target unitaries chosen can be reached
with a time under the speed limit given by (18), and the
maximal time falls on the speed limit, showing that the bound
is tight.

Next we consider the case where the controls generate the
S[U(p) × U(q)] subgroup of SU(n), with p + q = n, p � q.

FIG. 2. Speed limit for the SU(4)/Sp(2) case, with a drift Hd =
diag{1,−1, 1,−1}. The histogram shows the fastest possible times
to achieve 150 randomly chosen unitary targets when using Sp( n

2 )
controls, with the analytic lower bound of 1.11 given by (18) repre-
sented by the vertical green dashed line. As all targets can be met
in a time less than the bound and some targets are at the bound, the
bound is tight.

Its Lie algebra s[u(p) ⊕ u(q)] is given by Eq. (27). Again, we
conjectured above that the bound given by (20) is tight. The
Cartan subalgebra is given by matrices of the form [3]

A =
(

0 B
−BT 0

)
, (46)

where B is a real p × q matrix that is zero everywhere except
for the first p columns, which is given by a p × p diagonal
matrix. We chose our drift Hamiltonian to be given by

Hd = i

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 4 0

−1 0 0 0 0
0 −4 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠. (47)

Figure 3 shows results for the SU(5)/S[U(3) × U(2)] case
with the drift Hamiltonian given by (47). As expected, all
random target unitaries chosen can be reached with a time
equal to or less than the speed limit given by (20). Again, we
conclude that in this case the bound is tight.

We now arrive at the third and final case, SU(n)/SO(n).
Dimension counting arguments suggest that we cannot always
rely on the bound being tight and at least in the SU(3)/SO(3)
case we expect the bound to fail to be tight if the drift Hamil-
tonian has a degenerate eigenvalue.

The Lie algebra so(n) associated with the SO(n) control
group is the set of n × n traceless skew-Hermitian complex
matrices, and the Cartan subalgebra is the set of real, diago-
nal, and traceless matrices. Our numerics are carried out for
the SU(3)/SO(3) case, where the control Hamiltonians are
given by the three Gell-Mann matrices λ2, λ5, and λ7, and the
Cartan subalgebra is spanned by iλ3 and iλ8. We first consider
a drift Hamiltonian Hd = diag{1, 0,−1}, which clearly does
not have degenerate eigenvalues. The results are shown in
Fig. 4. Interestingly, we see that the speed limit lower bound is
still tight. No target unitary takes longer than this lower bound.
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FIG. 3. Speed limit for the SU(5)/S[U(2) × U(3)] case, with a
drift Hamiltonian given by (47). The histogram shows the fastest
possible times to achieve 120 randomly chosen unitary targets when
using S[U(2) × U(3)] controls, with the analytic lower bound of
0.539 given by (20) represented by the vertical green dashed line.
As all targets can be met in a time less than the bound and some
targets are at the bound, the bound is tight.

Finally, we consider the case with a drift Hd = diag
{1,− 1

2 ,− 1
2 }, which does have a degenerate eigenvalue. The

results are shown in Fig. 5 and we see that while the analytic
lower bound given by (17) is still respected it is no longer
tight, which is what we expect due to Hd possessing degener-
ate eigenvalues.

Collectively, these results provide a check on the analytic
results for the lower bounds on the quantum speed limit. They
confirm that the bounds (16)–(20) are accurate, showing that
if we consider all possible unitaries, there will be at least one
that takes at least this long to generate. These simulations also
support our conjecture that for the Sp( n

2 ) and S[U(p) × U(q)]
control schemes, the bounds are tight, meaning that there is at
least one unitary that takes exactly that long to produce, but

FIG. 4. Speed limit for the SU(3)/SO(3) case, with a drift Hd =
diag{1, 0, −1}. The histogram shows the fastest possible times to
achieve 160 randomly chosen unitary targets when using SO(3) con-
trols, with the analytic lower bound of 1.81 given by (17) represented
by the vertical green dashed line. As all targets can be met in a time
less than the bound and some targets are at the bound, the bound is
tight.

FIG. 5. Speed limit for the SU(3)/SO(3) case, with a drift Hd =
diag{1,−0.5, −0.5}. The histogram shows the fastest possible times
to achieve 140 randomly chosen unitary targets when using SO(3)
controls, with the analytic lower bound of 2.09 given by (17) repre-
sented by the vertical green dashed line. Consequently, the bound is
not tight for this particular drift: The slowest unitary is around 3.0,
while the lower bound is around 2.0. This is expected because Hd has
two degenerate eigenvalues.

no unitaries will take longer. Furthermore, the results show
that, for the SO(3) control case where the drift has a pair of
degenerate eigenvalues, the bound is respected but is not tight,
as expected. Interestingly, the bound with the SO(3) control
case where the drift has distinct eigenvalues does appear to be
tight, at least for the particular drift Hamiltonian we chose.

Finally, we see that numerical optimization techniques to
find optimal control pulses for quantum systems appear to
work remarkably well. Optimal pulses are found that respect
the analytic bounds exactly, providing evidence that such
methods can be trusted for bilinear control problems.

VII. SPEED LIMITS WITHOUT A FULL SET
OF LIE ALGEBRA CONTROLS

The previous sections have obtained lower bounds on the
quantum speed limit for systems with arbitrary drifts and
with controls that form a closed subgroup of SU(n), as well
as considering in more detail the case where the control
Hamiltonians are one of the Lie algebras so(n), sp( n

2 ), or
s[u(p) ⊕ u(q)]. The number of control Hamiltonians required
to span these Lie algebras is given by dk in Table II and can be
seen to scale quadratically in n. Such a situation might seem
to be difficult to arrange in practice.

However, it is important to realize that the controls them-
selves need not provide a full basis for the algebra but rather
that the dynamical Lie algebra generated through repeated
application of the commutators of the controls provide such
a basis. Clearly, if we have a full set of controls that already
provide a basis, that is enough. However, the question is, how
few control Hamiltonians do we actually need to generate
these algebras?

It is known that the simple compact classical Lie algebras
su(n), so(n), and sp( n

2 ) can be generated by “one and a half”
elements [47,48]. This means that if we choose any element in
the algebra, there exists a second element in the algebra that
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along with the first will generate the entire algebra, provided
neither of the two is the identity. Consequently, one never
needs more than two control Hamiltonians to generate the
full so(n) or sp( n

2 ) algebras, ensuring the results in previous
sections are applicable.

Finally, so far we have only discussed systems where we
have multiple control Hamiltonians, but the situation with a
single control, i.e., where the system Hamiltonian is given by

H = Hd + f (t )Hc, (48)

is very common. It is therefore useful to derive a bound on the
quantum speed limit in this case.

Again, the full Lie algebra of the system is g = su(n) and
the control subalgebra is one dimensional and is given by
k = span{iHc}. This pair does not admit a Cartan decompo-
sition unless Hc ∈ so(2). Indeed, the Lie group generated by
K = exp(k) is in some cases not even topologically closed.
Consequently, the quotient space G/K may not be a homoge-
neous space, let alone a symmetric space. We can however
apply the results we derived in previous sections to obtain
a lower bound on the quantum speed limit in this case by
“embedding” this control problem into another which does
satisfy our criteria.

To obtain a bound we note that since Hc is Hermitian it
can be transformed into a diagonal, purely real matrix H ′

c =
UHcU † via a unitary transformation. In this new basis the drift
is given by H ′

d = UHdU †. Changing the basis of the problem
via unitary transformation cannot change the speed limit since
a basis change is only a mathematical convenience. We also
introduce an auxiliary control problem with the same drift
H ′

d but with the control group given by S[U(p) × U (q)] with
p + q = n and an associated control algebra k. This auxiliary
problem does admit a Cartan decomposition.

Since iH ′
c is diagonal, purely imaginary, and traceless, it

can be written

iH ′
c =

(
D1 0
0 D2

)
, Tr(D1) + Tr(D2) = 0, (49)

where D1 and D2 are diagonal, imaginary, and p × p and q ×
q, respectively. Consequently, we have D1 ∈ u(p) and D2 ∈
u(q) and thus iH ′

c ⊂ k. This means that the control problem

H = H ′
d + f (t )H ′

c (50)

is the same as the auxiliary control problem, except with fewer
controls, that is, it has a single control from k, rather the entire
basis set of p2 + q2 − 1 controls. Hence whatever the lower
bound on the quantum speed limit for the auxiliary control
problem, the lower bound for the system described by (50)
must be at least as large since it has a strict subset of the
controls relative to the auxiliary problem. Since the system
described by (50) is physically equivalent to (48) and since
the trace is unchanged by a unitary transformation, we obtain
a lower bound on the quantum speed limit of (48) given by

TQSL �
√

pπ√
2 Tr

(
H2

d

) , (51)

where we have assumed without loss of generality that p � q.
Since our split of the sizes of D1 and D2 in (49) is only

constrained by p � q, we are free to choose the size of p and q

to make the lower bound (51) as large as possible. This clearly
occurs when p = �n/2�, yielding

TQSL �
√�n/2�π√

2 Tr
(
H2

d

) (52)

for the case where we have a single control. In the general
case one would not expect (52) to be tight, but it does provide
a rigorous lower bound and demonstrates how the quantum
speed limit scales with dimension and how it depends on the
form of the drift.

VIII. CONCLUSION

The purpose of this paper has been to develop a lower
bound for the quantum speed limit of a controllable finite-
dimensional system, given the assumption that the controls
can be arbitrarily strong. We have also investigated the cir-
cumstances under which this lower bound is not merely a
bound but is actually exact.

We have used the techniques of Lie algebras, Lie groups,
and differential geometry. Mindful that these areas may not
be entirely familiar to many physicists, we have provided a
pedagogical development of this material, making it clear why
it is relevant and constantly tying it back to the physics. We
have also provided a number of examples to aid this process.
Our approach has been completely general, and the basic
result given by Theorem 1 holds for Hilbert spaces of arbitrary
dimension, arbitrary drift Hamiltonians, and does not require
specific symmetries. The only requirement is that the control
group is topologically closed.

This basic result, however, does require some knowledge of
the diameter of the homogeneous space corresponding to the
quotient group of SU(n) with the control group. While this is
generally difficult to determine, exact diameters are available
for symmetric spaces, allowing us to give explicit bounds in
this case. It is important to note, however, that even if the exact
diameter of the quotient group is not known analytically, any
ability to bound the diameter, analytically or numerically, can
immediately be used in our expression for the quantum speed
limit and merely results in a looser bound.

We have also examined the question of when our formula
for the quantum speed limit is not merely a lower bound but is
actually exact. This led us to Conjecture 1 for specific cases.
In the fully general case we developed a sufficiency criterion
based on the dimension of the adjoint orbit and commutation
relations between the drift Hamiltonian and the matrix repre-
sentation of the Lie algebra corresponding to the controls. As
an illustration we showed how this can be done for the case
where the control group is SO(n).

As this criterion for bound tightness is sufficient but not
necessary, we also examined what could further be said in the
case where the controls are not arbitrary but form a Cartan
decomposition of the quantum control problem. In this case
bound tightness depends on the cut locus of the quotient space,
which can be described in terms of the positive roots of the Lie
algebras. We were not able to provide a complete statement as
to when the bounds were tight but did show how conditions
on the roots would decrease the probability that the bound was
tight.
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Since the development of our results is somewhat abstract
and mathematical, we have also examined our speed limit
bounds using a numerical optimization procedure for a num-
ber of specific Hamiltonians. This purpose of this is twofold.
First, it provides numerical confirmation of our explicit an-
alytic bounds, as well as supporting our results on the link
between the degree of degeneracy of the drift Hamiltonian
and the tightness of the bounds. Second, it provides a general
way to use numerical optimization to determine speed lim-
its and demonstrates that gradient-descent-based techniques
work well.

Finally, we have considered the quantum speed limit in
the very common quantum control case where one has a
drift Hamiltonian and a single control Hamiltonian. Such a

system need not meet the assumptions for our main speed
limit theorem; for example, the control group may not be
closed or indeed form a quotient group that is a homogeneous
space. Nonetheless, we showed it is possible to embed such
a problem into a group that does meet our criteria, allowing
us to use our previous results and thereby provide an explicit
lower bound for this case.
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