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Quantum information distribution in a tripartite state plays a fundamental role in quantum information
processes. Here we investigate how a bipartite unitary transformation UAB redistributes the quantum mutual
information with the third party C in a tripartite pure state |ψ〉ABC in a dA × dB × dC-dimensional Hilbert space.
In particular, we focus on finding out the optimal unitary transformation U ∗

AB that maximizes the quantum
mutual entropy between party A and party C, I (A : C) = S(ρA) − S(ρB ) + S(ρC ). We show that the mutual
entropy I (A : C) is upper bounded by 2S(ρC ) derived from the Araki-Lieb inequality. This upper bound can be
realized via an optimal unitary transformation for any pure state with the rank rC of ρC satisfying rC � dA. For a
generic pure state with rC > dA, the upper bound cannot be realized by any bipartite unitary transformation.
To maximize the mutual entropy in the later case, we propose a fast numerical algorithm to produce an
approximate optimal unitary transformation, where our optimization is transformed into a modified number
partition problem. The validness of our algorithm is confirmed by its comparison with the results from the
Adam algorithm for parameterized unitary transformations. Our approximate algorithm thus provides a practical
protocol to implement redistribution of quantum mutual information for a tripartite quantum state with high
dimensions.
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I. INTRODUCTION

Quantum information distribution in a tripartite state is
fundamental in quantum information processes, where the
strong subadditivity inequality of von Neumann entropy gives
important constrains on these information distribution. Here
we investigate how a bipartite unitary transformation changes
the quantum information distribution in a tripartite pure
state.

To characterize the quantum information distribution,
we use quantum mutual information as a basic measure.
Mutual information in Shannon’s theory is a fundamental
quantity of information transmitting capacity [1]. Quantum
mutual information is a measure of correlation with the
information transmission task in a quantum state [2,3]. In
the quantum on-time pad, quantum mutual information is
the maximum information that can be securely sent [4,5].
Quantum mutual information also quantifies the minimal
amount of noise needed to erase the correlation in a bipartite
state [6,7].

In a tripartite pure state, a bipartite unitary transformation
cannot change the mutual entropy between the two parties
and the third party, but it changes the distribution of quantum
mutual entropy among them. Thus our aim is to maximize
the mutual entropy of the first party and the third one, which
is shown to be equivalent to the maximization of the entropy
difference of the first party relative to the second party.
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The basic application of our mutual information redistri-
bution is as follows. Assume Alice, Bob, and Charlie share
an entangled state |ψ〉ABC , which is used as a quantum re-
source for performing securely transfer classical information
between Alice (and/or Bob) and Charlie. Alice and Bob can
redistribute their capacities by performing an optimized bipar-
tite unitary transformation, although their total capacity keeps
invariant.

To solve the above maximization, we develop an approx-
imate numerical algorithm, which can be transformed into a
modified number partition problem. The number partitioning
problem (NPP) is to partition a group numbers into a fixed
number of subsets, such that the sums of each subset are
as similar as possible. Finding the exact solution is difficult,
which is an NP-hard problem [8,9]. There are lots of ap-
proximate algorithms to give approximate solutions [10–17].
Recently, physicists also proposed a quantum algorithm for
NPP [18–20]. Our algorithm is based on the maximization
of the entropy of the first party before the minimization of
the second party, which are related with the concavity [21]
and the majorization [22,23] properties of Von-Neumann en-
tropy, respectively. Here the maximization of the entropy
of the first party is mapped to a modified number partition
problem after a disentanglement unitary transformation. The
validness of our algorithm is confirmed by its comparison
with the results from the Adam algorithm for parameter-
ized unitary transformations. Our approximate algorithm thus
provides a practical protocol to implement the redistribu-
tion of quantum mutual information for a tripartite quantum
state.
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II. MAXIMIZATION PROBLEM OF QUANTUM MUTUAL
INFORMATION

For a bipartite quantum state ρAB, the quantum mutual
information between A and B is defined as

Iρ (A : B) ≡ S(ρA) + S(ρB) − S(ρAB), (1)

where the state function S is the von Neumann entropy: for
a quantum state σ , S(σ ) ≡ −Tr[σ lnσ ], and the logarithm is
taken on base 2. The states ρA and ρB are the reduced density
matrices of the state ρAB.

For a pure tripartite state |�〉ABC , a direct calculation leads
to the following equality on quantum mutual information:

I|ψ〉(AB : C) = I|ψ〉(A : C) + I|ψ〉(B : C) = 2S(ρC ), (2)

where

I|ψ〉(A : C) = S(ρC ) + S(ρA) − S(ρB), (3)

I|ψ〉(B : C) = S(ρC ) + S(ρB) − S(ρA). (4)

The states ρA, ρB, and ρC are reduced states of |ψ〉ABC .
Equation (2) implies that, for a pure tripartite state, the quan-
tum mutual information between C and {A, B} is completely
distributed into the quantum mutual information between C
and A and that between C and B.

Our main task can be formulated as follows. Assume that
Alice, Bob, and Charlie share a pure tripartite state |ψ〉ABC ,
which is the main resource assisting the communications be-
tween Charlie and Alice (or Bob). By performing a unitary
transformation UAB between Alice and Bob, the quantum
mutual information between Charlie and Alice (or Bob) can
be adjustable. Our aim is to maximize the quantum mutual
information

max
UAB

IUAB|ψ〉ABC (A : C) ≡ IM . (5)

Because UAB is a unitary transformation on AB acting
on AB, the mutual information between C and AB is
invariant, i.e.,

IUAB|ψ〉ABC (AB : C) = I|ψ〉ABC (AB : C) = 2S(ρC ). (6)

This implies that the unitary transformation that maximizes
the mutual information between A and C must minimize the
mutual information between B and C:

min
UAB

IUAB|ψ〉ABC (B : C) = 2S(ρC ) − IM . (7)

In particular, when the dimension of the Hilbert space of party
A equals to that of party B, the range of the mutual information
between A and C under any unitary transformation UAB is
given by

2S(ρC ) − IM � IUAB|ψ〉ABC (A : C) � IM . (8)

Following Eq. (3), the maximization in Eq. (5) can be simpli-
fied as

max
UAB

[
S
(
ρU

A

) − S
(
ρU

B

)] = IM − S(ρC ), (9)

where

ρ0
AB = TrC (|ψ〉ABC ABC〈ψ |), (10)

FIG. 1. Equivalent pictures of redistribution of quantum mutual
information.

ρU
A = TrB

(
UABρ0

ABU †
AB

)
, (11)

ρU
B = TrA

(
UABρ0

ABU †
AB

)
. (12)

We observe that ρ0
AB determines the result of the maximiza-

tion. The equivalent maximization in Eq. (5) and that in
Eq. (9) are demonstrated in Fig. 1.

III. UPPER BOUND OF ENTROPY DIFFERENCE AND
ARAKI-LIEB INEQUALITY

Equation (9) makes reminds us of the Araki-Lieb inequal-
ity [24,25]

|S(ρA) − S(ρB)| � S(ρAB). (13)

In our case, S(ρAB) = S(ρC ), which is invariant under any
unitary transformation UAB. Thus S(ρU

A ) − S(ρU
B ) � S(ρC ),

which implies that the entropy difference �S is upper
bounded by S(ρC ). Let us investigate under which condition
the upper bound S(ρC ) for �S can be arrived at. Our main
result is summarized in the following theorem.

Theorem 1. For a tripartite pure state |ψABC〉 with Hilbert
space dimension dA × dB × dC , there exists an optimal unitary
transformation U ∗

AB such that S(ρU ∗
A ) − S(ρU ∗

B ) = S(ρC ) if and
only if the rank of ρC : rC � dA.

Proof. Let us first prove the “only if” part. If the upper
bound can be arrived at for a state |ψ〉ABC , then there exists a
unitary transformation U ∗

AB, such that

S
(
ρU ∗

A

) − S
(
ρU ∗

B

) = S(ρC ). (14)

Let us introduce the notations

|ψ∗〉ABC = U ∗
AB|ψ〉ABC, (15)

ρ∗
ABC = |ψ∗〉ABC ABC〈ψ∗|. (16)

Then the mutual information

Iρ∗ (A : C) = 2S(ρC ), (17)

Iρ∗ (B : C) = 0. (18)

The later equality implies that

ρ∗
BC = ρ∗

B ⊗ ρC =
rB∑

m=1

rC∑
n=1

pmqn|mn〉〈mn|, (19)
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where {|m〉} and {|n〉} are orthogonal normal bases, pm, qn >

0,
∑

m pm = ∑
n qn = 1, rB, and rC are the ranks of ρ∗

B and ρC ,
respectively. Thus

|ψ∗〉ABC =
rB∑

m=1

rC∑
n=1

√
pmqn|φmn〉 ⊗ |m〉 ⊗ |n〉, (20)

where {|φmn〉} is the orthogonal normal basis of the Hilbert
space of party A. Equation (20) implies that

rB � dB, (21)

rBrC � dA. (22)

Because rB � 1, we have

rC � dA. (23)

Then we prove the “if” part. Our tripartite pure state can be
written as

|ψABC〉 =
rC∑

n=1

√
qn|χn〉 ⊗ |n〉, (24)

where qn > 0,
∑

n qn = 1, {|n〉} and {|χn〉} are orthonormal
base of Hilbert space of C and AB, respectively. Then there
exist a unitary transformation such that

U ∗
AB|χn〉 = |φn〉 ⊗ |1〉, (25)

where {|φn〉} are orthonormal basis of Hilbert space of A, and
|1〉 is a normalized state of B. Then

ρ∗
AB =

rC∑
n=1

qn|φn〉〈φn| ⊗ |1〉〈1|, (26)

which satisfies S(ρ∗
A) − S(ρ∗

B) = S(ρC ). This completes the
proof of our theorem. �

Because rC � dC , we obtain a direct corollary of the above
theorem: if the dimension of Hilbert spaces A and C satisfies
dA > dC , there exists an optimal unitary transformation U ∗
such that S(ρ∗

A) − S(ρ∗
B) = S(ρC ).

For simplicity, we focus on the case with dA = dB = d in
the following. For a general stat ρAB in a d × d Hilbert space,
the rank of ρAB lies the range [1, d2]. Only the states with
lower rank in the range [1, d] can arrive at the upper bound
S(ρAB) from the Araki-Lieb inequality. For the states with the
rank in the range [d + 1, d2], the upper bound S(ρAB) cannot
arrive at.

When the upper bound of entropy difference can be
reached, Eqs. (17) and (18) implies that the optimal unitary
transformation completely transforms the correlation between
AB and C to that between A and C, without any correlation
left between B and C. The upper bound cannot be reached by
a unitary transformation originates from the limitation of the
dimension of the Hilbert space.

IV. SOLVING MUTUAL INFORMATION MAXIMIZATION
BY NUMBER PARTITION ALGORITHM

The eigendecomposition of ρ0
AB is

ρ0
AB =

d−1∑
m=0

d−1∑
n=0

pmn|ψmn〉〈ψmn|. (27)

We assume these eigenvalues are in the decreasing order,
i.e., pmn � pm′n′ if md + n � m′d + n′. First, we apply the
disentanglement unitary transformation

D|ψmn〉 = |mn〉, (28)

which makes ρ0
AB become a separable state

ρD
AB ≡ Dρ0

ABD† =
d−1∑
m=0

d−1∑
n=0

pmn|mn〉〈mn|. (29)

Then we define a unitary transformation related to a permuta-
tion operation s

Us|mn〉 = |s(mn)〉, (30)

where s is an element in the permutation group Sd2 . Thus

ρs
AB ≡ Usρ

D
ABU †

s =
d−1∑
m=0

d−1∑
n=0

pmn|s(mn)〉〈s(mn)|

=
d−1∑
m=0

d−1∑
n=0

ps−1(mn)|mn〉〈mn|, (31)

where s−1 is the inverse of s. The reduced states of ρs
AB are

ρs
A =

d−1∑
m=0

ps
Am|m〉〈m|, (32)

ρs
B =

d−1∑
n=0

ps
Bn|n〉〈n|, (33)

with

ps
Am =

d−1∑
n=0

ps−1(mn), (34)

ps
Bn =

d−1∑
m=0

ps−1(mn). (35)

Hence

S
(
ρs

A

) − S
(
ρs

B

) = −
d−1∑
m=0

ps
Amlnps

Am +
d−1∑
n=0

ps
Bnlnps

Bn. (36)

Thus the maximization over the permutation operation is
given by

max
s∈Sd2

[
S
(
ρs

A

) − S
(
ρs

B

)]
. (37)

In the following, we aim to show that Eq. (37) is an excel-
lent substituent of Eq. (9) in most cases for our optimization
problem.

Before detailed numerical optimization, we explore the
symmetry in our problem. Let r ∈ Sd and t ∈ Sd , and r ⊗ t ∈
Sd ⊗ Sd , and Sd ⊗ Sd is a subgroup of Sd2 :

r ⊗ t (mn) = [r(m)t (n)]. (38)
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TABLE I. Number partition of {pmn} with column sums and row
sums for d = 3.

ps
B0 ps

B1 ps
B2

ps
A0 ps−1(00) ps−1(01) ps−1(02)

ps
A1 ps−1(10) ps−1(11) ps−1(12)

ps
A2 ps−1(20) ps−1(21) ps−1(22)

Thus we can prove that

S
(
ρr⊗t ·s

A

) = S
(
ρs

A

)
, (39)

S
(
ρr⊗t ·s

B

) = S
(
ρs

B

)
. (40)

The proof of Eq. (39) is given as follows:

S
(
ρr⊗t ·s

A

) = −
d−1∑
m=0

d−1∑
n=0

p(r⊗ts)−1(mn) ln
d−1∑
n=0

p(r⊗ts)−1(mn)

= −
d−1∑
m=0

d−1∑
n=0

ps−1(r⊗t )−1(mn)ln
d−1∑
n=0

ps−1(r⊗t )−1(mn)

= −
d−1∑
m=0

d−1∑
n=0

ps−1[r−1(m)t−1(n)]ln
d−1∑
n=0

ps−1[r−1(m)t−1(n)]

= −
d−1∑
m′=0

d−1∑
n′=0

ps−1(m′n′ ) ln
d−1∑
n′=0

ps−1(m′n′ )

= S(ρs
A). (41)

Similarly, we can prove Eq. (40). Thus for any r, t ∈ Sd and
s ∈ Sd2 ,

S
(
ρr⊗ts

A

) − S
(
ρr⊗ts

B

) = S
(
ρs

A

) − S
(
ρs

B

)
, (42)

which implies that every element s in one right coset of the
subgroup Sd ⊗ Sd will give the same value of S(ρs

A) − S(ρs
B).

In other words, the maximization in Eq. (37) is taken over the
set of all the right cosets of the subgroup Sd ⊗ Sd , any one
element in each coset

max
s∈Sd2 /Sd ⊗Sd

[
S
(
ρs

A

) − S
(
ρs

B

)]
. (43)

In particular, we realize that the maximization problem in
Eq. (37) or in Eq. (56) is a type of NPP: d2 numbers {pmn}
are partitioned into a d × d lattice, every site with one ele-
ment. Every partition corresponds to a permutation element.
Our maximization is taken over all the ways of partitions.
The case of d = 3 is demonstrated in Table I. To maximize
S(ρs

A) − S(ρs
B), we need to choose a permutation s such that

the numbers in {ps
Am} are as similar as possible and the num-

bers in {ps
Bn} are as different as possible.

Let us consider the number of the permutations in the
set Sd2 or in the set of Sd2/Sd ⊗ Sd , which is (d2)! or
(d2)!/(d!d!). With the increasing of d , there numbers become
extremely large, e.g., (42)! 
 2.1 × 1013 and (42)!/(4!4!) 

3.6 × 1010, which prevents the numerical optimization di-
rectly by the exhaustive attack method.

A. d = 2 case

Let us start with the case of d = 2, where both A and
B are one qubit. Let us take a computational basis of HA

as {|m〉, 0 � a � 1} [the eigenvectors of ZA with eigenvalues
(−1)m], and a basis of HB as {|n〉, 0 � n � 1} [the eigenvec-
tors of ZB with eigenvalues (−1)n]. Then for any permutation
s we construct a unitary transformation

Us|mn〉 = |s(mn)〉. (44)

The number of all the unitary transformations related with
permutations equals to the order of the permutation group S4,
i.e., 4! = 24. We can show that

UsZAU †
s = (−1)cA

s ZaA
s

A ZbA
s

B , (45)

UsZBU †
s = (−1)cB

s ZaB
s

A ZbB
s

B . (46)

Note that the unitary transformations related with the sub-
group S2 ⊗ S2 is

X a
A ⊗ X b

B , a, b ∈ {0, 1}, (47)

where X is the x component of the Pauli operator defined by

X |m〉 = |1 − m〉, (48)

or equivalently defined by

XZX † = −Z. (49)

Then Eqs. (45) and (46) become

X a
A X b

B ZAX b
B X a

A = (−1)aZA, (50)

X a
A X b

B ZBX b
B X a

A = (−1)bZB. (51)

Thus the representative element in the unitary transformations
corresponding to the right cosets of the subgroup S2 ⊗ S2 are
given by

UsZAU †
s = ZaA

s
A ZbA

s
B , (52)

UsZBU †
s = ZaB

s
A ZbB

s
B , (53)

which means the unitary transformations of {ZA, ZB} can take
the values of any two ordered elements in {ZA, ZB, ZAZB}.
This implies there are P2

3 = 6 representative unitary trans-
formations in the cosets. If we denote s(mn) = (m′n′), then
these unitary transformations can be obtained by solving the
following equations:

s−1

(
m′

n′

)
=

(
m
n

)
mod 2, (54)

with

s−1 =
(

aA
s bA

s

aB
s bB

s

)
. (55)

The above equations have a unique solution if and only if

det s−1 = aA
s bB

s − aB
s bA

s �= 0. (56)
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TABLE II. Optimal number partition of {pmn} with column sums
and row sums for d = 2, which corresponds to Eq. (66).

ps5
B0 ps5

B1

ps5
A0 p00 p11

ps5
A1 p01 p10

Then all the permutations in S4/S2 ⊗ S2 are given by

s1
−1 =

(
1 0
0 1

)
, (57)

s2
−1 =

(
0 1
1 0

)
, (58)

s3
−1 =

(
1 0
1 1

)
, (59)

s4
−1 =

(
1 1
0 1

)
, (60)

s5
−1 =

(
0 1
1 1

)
, (61)

s6
−1 =

(
1 1
1 0

)
. (62)

Their inverse permutations are given by

si = si
−1, 1 � i � 4, (63)

s5 = s6
−1, (64)

s6 = s−1
5 . (65)

A direct calculation gives

argmax
s∈S4/S2⊗S2

[
S
(
ρs

A

) − S
(
ρs

B

)] = s5, (66)

where

s−1
5

(
m
n

)
=

(
n

m + n mod 2

)
. (67)

Then the state

ρ
s5
AB =

1∑
m=0

1∑
n=0

ps−1
5 (mn)|mn〉〈mn|

= p00|00〉〈00| + p11|01〉〈01|
+ p01|10〉〈10| + p10|11〉〈11|. (68)

The reduced states of ρ
s5
AB are

ρ
s5
A = (p00 + p11)|0〉A〈0| + (p01 + p10)|1〉A〈1|, (69)

ρ
s5
B = (p00 + p01)|0〉B〈0| + (p11 + p10)|1〉B〈1|. (70)

Hence the maximum value

S
(
ρ

s5
A

) − S
(
ρ

s5
B

) = − (p00 + p11)ln(p00 + p11)

− (p01 + p10)ln(p01 + p10)

+ (p00 + p01)ln(p00 + p01)

+ (p10 + p11)ln(p10 + p11). (71)

This permutation is demonstrated in Table II.

Theorem 2. For a two-qubit state ρAB, the unitary trans-
formation U ∗ = Us5 D makes S(ρU

A ) − S(ρU
B ) take a local

maximum.
Proof. Let U = WU ∗. Then

�S(U ) ≡ S
(
ρU

A

) − S
(
ρU

B

)
= S

(
TrB

[
W ρ

s5
ABW †

]) − S
(
TrA

[
W ρ

s5
ABW †

])
, (72)

where the unitary transformation W can be parameterized as

W = W00(h00)
3∏

j=1

Wj0(h j0)

×
3∏

k=1

W0 j (h0 j )
3∏

m,n=1

Wmn(hmn), (73)

with

Wmn(hmn) = exp(ihmnσm ⊗ σn). (74)

Let

W ′ =
′3∏

m,n=1

Wmn(hmn), (75)

and U ′ = W ′U ∗. Then we can prove

�S(U ) = �S(U ′) = �S({hmn}′), (76)

where ′ implies that it does not contain the term with
m = n = 3.

Then we need to show that

∂�S

∂hmn

∣∣∣∣
{hmn=0}

= 0, (77)

H (�S)|{hmn=0} � 0, (78)

with the Hessian matrix

H (�S)mn;m′n′ = ∂�S

∂hmn
hm′n′ . (79)

Equations (77) and (78) show that U ∗ is a local maximum of
�S(U ) whose proofs are given in Appendix A. �

There remains a question that, what is the global maximal
value of entropy difference �S(U )? Fortunately, we have
not found any other unitary transformation that get larger
�S(U ). We can use the Adam optimizing algorithm [26],
which is a gradient descending (GD) method, to optimize
function �S(U ). Figures 2(a) and 2(b) show that the numer-
ical results using Adam optimization are actually the same
as that using U ∗, where the relative error is in the order
of 10−8 numerically. Here the relative error is defined by
(�SAdam − �Spermutation)/�SAdam. But we failed to prove that
U ∗ is the global optimal unitary transformation.

B. d = 3 case

In the d = 3 case, the optimal permutation unitary trans-
formation that maximize the entropy difference �S cannot be
given explicitly in a table similar as Table II in the d = 2 case.
We observe that for different {pmn}, the optimal permutation is
different. This arises from a competition between increasing
SA and decreasing SB in the case of d = 3, while the optimal
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FIG. 2. Numerical results of entropy difference based on optimal permutation and Adam optimization in the two-qubit case and two-qutrit
case. (a,c) The maximized entropy difference obtained by permutation �Spermutation via that obtained by Adam optimization �SAdam, where 100
states are randomly generated in each case. (b,d) Relative error of �Spermutation with respect to �SAdam.

permutation maximizes SA and minimize SB simultaneously
in the d = 2 case. The numerical results on optimal permu-
tations in the d = 3 case implies that we should give priority
to maximize SA, which is related with the number partition
problem. In fact, all optimal permutations we found are the
optimal solutions from the number partitioning problem.

In the Adam algorithm for the d = 3 case, we take the
Gellman matrices as the generators of the unitary transfor-
mations whose derivatives are given in detail in Appendix B.
We numerically checked that the optimal permutations are all
local maximal values.

Numerical results on the comparison of optimized entropy
differences between the optimal permutation and the Adam
algorithm are shown in Figs. 2(c) and 2(d). The relative error
can arrive at the number of 10−3 order, which clearly demon-
strates that the optimal permutation is, in general, not a global
maximum of the entropy difference �S. On the other hand, the
entropy difference from the optimal permutation is a relatively
excellent approximation of the global maximum of �S.

C. d � 4 cases

For the systems with d � 4, as discussed in the paragraph
before Sec. IV A, it is difficult to find optimal permutation
directly. Motivated by the experience in the case of d = 3, we
take two steps to find the optimal permutation: first, find one
permutation that maximizes S(ρA); second, minimize S(ρB)
while keeping S(ρA) invariant. The convenient way to describe
the above two steps is by visualizing permutations in Table I,
the first step is to make the row sums as equal as possible,
which is the same aim as the number partition problem. In the
second step, to keep S(ρA) invariant, we keep the row invariant
for every number. To decrease the entropy of S(ρB), we only
need to arrange the numbers in every row in the decreas-
ing order. In the following, we will develop an approximate
algorithm to find one optimized permutation that maximizes
S(ρA) in the first step.

Before we present our algorithm, we first review the greedy
number partitioning (GNP) algorithm for number partitioning
[8] on which our algorithm is constructed. In the number par-
tition problem, we aim to partition n numbers into k set such
that the sums of every set are as equal as possible. The GNP
algorithm can be stated as follows. First, sort the numbers in

the descending order and place the largest k numbers into the
k set. Then process the remaining numbers sequentially, put
the next number to a set that the sum of the set is currently
smallest. We write the GNP in the form of pseudo code in
Algorithm 1. This method is also called longest-processing-
time-first scheduling. It has an approximation ratio that in the
worst case, the largest sum in the greedy partition is at most
4k−1

3k times the optimal largest sum [11–14]. In addition, the
minimum sum is at least 3k−1

4k−2 times the optimal smallest sum
[15–17].

Algorithm 1. Greedy Number Partitioning (GNP)

Input: n numbers and the number of partitions k
Output: k sets, with an indefinite number of numbers

in each set
sort n numbers in descending order;
create k empty sets;
for num in the first k largest numbers do

append num to one empty set;
end
for num in the remained n − k numbers do

sum each set, and append num to the set that has
the smallest sum;

end
for each set do

sort set in descending order;
end
return k sets

Note that, in the GNP algorithm, the size of every set is
not required to be the same. For our problem, however, we
need to partition d2 numbers, {pmn} into d rows, every row
has exactly d numbers. The relative number partition problem
can be stated as follows. To partition kAkB numbers into kA

sets with each set having kB numbers, such that the sum of
numbers in every set as equal as possible. In our algorithm,
we recurrently call function GNP and we name it the recurrent
greedy number partitioning (RGNP). The procedure of the
RGNP is given as follows. In the first partitioning iteration,
by applying GNP to kAkB numbers, we get k0 sets having kB

numbers, k+
0 sets having more than kB numbers, k−

0 sets having
less than kB numbers. We cut all the smaller numbers from
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any set having more than kB numbers until the set remains kB

numbers. Keep the sets having exact kB numbers remained.
Then we mix all the cut numbers with sets that have less than
kB numbers, and using GNP to partition them into k−

0 sets.
Then we get k1 sets having kB numbers, with k+

1 sets having
more than kB numbers, k−

1 sets having less than kB numbers.
Then repeat the procedure above until the jth iteration, k+

j =
0, the iteration is finished. We write RGNP in the form of
the pseudocode in Algorithm 2. In Appendix C, we give an
example for the RGNP algorithm.

Algorithm 2. Recurrent greedy number partitioning (RGNP)

Input: kAkB eigenvalues of initial state
Output: kA sets with each set containing kB numbers

in descending order
partitiondone = empty set;
settodo = kAkB eigenvalues of initial state;
k, k+ = 0;
k− = kB ;
i = 0;
while k+ �= 0 do

i to i + 1;

partitioni = GNP(settodo, k−);
settodo = empty set;
k, k+, k− = 0;

for set in partitioni do
if the number of elements in set ≤ kB then

append numbers in set into settodo;
k− ← k− + 1;

end
if the number of elements in set ≥ kB then

remain the first largest kB numbers, cut
other numbers;

append cut numbers into settodo, append
the set containing remained numbers into
partitiondone;

k+ ← k+ + 1;

end
if the number of elements in set = kB then

append set into partitiondone;
k ← k + 1;

end

end

end
return partitiondone

The time complexity of greedy number partitioning is
O(d2lnd2) [8], where d is the dimension of one subsystem. As
for the Gradient Descending algorithm, there is not a general
expression O(·) of time complexity. However, we know that
we need to optimize d2d2 − 1, which is O(d2d2) independent
parameters using GD, which is much slower than greedy
number partitioning.

We use this method to maximize the entropy difference for
d = 3, 4, 5, 6, and 8 cases. We generate 100 random states for
each case, and compare with Adam algorithm. Here we set
the GD algorithm convergence condition is �S < 1 × 10−8,
which we find this condition is sufficient to converge. The
results are shown in Fig. 3. The relative error is shown in

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ΔSpermutation(bits)

Δ
S

A
d
am

(b
it

s) y − x = 0
d = 3

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ΔSpermutation(bits)

Δ
S

A
d
am

(b
it

s) y − x = 0
d = 4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ΔSpermutation(bits)

Δ
S

A
d
am

(b
it

s) y − x = 0
d = 5

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ΔSpermutation(bits)

Δ
S

A
d
am

(b
it

s) y − x = 0
d = 6

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ΔSpermutation(bits)

Δ
S

A
d
am

(b
it

s) y − x = 0
d = 8

(a) (b)

(c) (d)

(e)

FIG. 3. Numerical results of entropy difference based on greedy
permutation and Adam optimization for d = 3, 4, 5, 6, and 8 cases
corresponding to (a)–(e). The maximized entropy difference obtained
by permutation �Spermutation via that obtained by Adam optimization
�SAdam, where 100 states are randomly generated in each case.

Table. III. We find that the maximized entropy differences
agrees well in all the cases, and the average relative error
becomes smaller with the increasing of d . In particular, for
a larger system, e.g., the systems with d = 8, the maximized
entropy difference from RGNP is larger than those from Adam
algorithm. In other words, when the system has a larger di-
mension, our RGNP is better than the Adam in most cases,
which may be attributed to too many local maximums for
a larger system such that the Adam finds only one of local
maximums in most cases. The numerical results show that
our RGNP is an excellent approximate algorithm to present a
protocol to maximize the entropy difference by an analytical
unitary transformation.

V. SUMMARY AND DISCUSSION

We introduce a mutual entropy redistribution protocol via
a bipartite unitary transformation in a tripartite pure state. We
show that if the dimension of Hilbert space of Alice is not less
than that of Charlie, then the mutual entropy between Charlie
and the other two can be completely redistributed into that
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between Charlie and Alice. Otherwise, the maximization of
the mutual entropy between Alice and Charlie via a bipartite
unitary transformation becomes complex, especially when the
Hilbert space dimension of Alice (and Bob) is large.

Furthermore we develop an approximate algorithm for the
above complex problem, which is based on the greedy number
partitioning algorithm and combined with applications of the
two basic properties of von Neumann entropy, majorization,
and concavity. Our numerical experiments show that, in a
small system, this algorithm gives a nearly same results as
the optimal result using gradient descending algorithm. In a
large system, our algorithm gives better results with a faster
speed. In practice, this algorithm helps us get the unitary for
redistributing mutual information with a relative small time
complexity.

However, we do not understand completely why our
approximate RGNP algorithm is so successful for our
maximization problem. In the RGNP algorithm, we first dis-
entangle the initial state ρ0

AB, then we perform an optimal
permutation related unitary transformation to complete the
maximization, where the final optimal state keeps disentan-
gled. In our RGNP algorithm we disentangle A and B, which is
due to the monogamy of entanglement [27], i.e., the entangle-
ment between A and B decreases some degrees to maximize
the mutual entropy between A and C.

In Fig. 4 we demonstrate entanglement monogamy in re-
distributing the mutual information. We find that in Fig. 4(a),
rC = 2 � dA = 2, by theorem 1, IAC can be optimized to
2S(ρC ), and IBC can be optimized to 0. We see that NAB, NBC ,
and CKW three-tangle are all 0 after the optimization. Here
IAC is maximized to up bound, thus A and C cannot share
entanglement with B, the entanglement between B and other
party is 0. And the three-way entanglement CKW three-tangle
is also 0.

In Fig. 4(b), NAB is 0 after the optimization, but NBC > 0.
Here rC = 4 > dA = 2, by theorem 1, IAC cannot be optimized
to 2S(ρC ), and it always holds that IBC > 0. Thus B and C can
have entanglement. To increase the entanglement between A
and C, the entanglement between A and B must be 0 since the
entanglement between A and B will prevent us from increasing
the entanglement between A and C. On the other hand, it is the
entanglement between B and C that decreases some degrees
to maximize the mutual entropy between A and C. This is
consistent with the entanglement monogamy.

In Fig. 4(c), NAB > 0 after the optimization, but NBC = 0.
Here rC = 2 � dA = 4, by theorem 1, IAC can be optimized to
2S(ρC ). The reason for NAB > 0 is that the Hilbert dimension
of A is sufficiently large. After maximizing IAC , A still has
capacity to entangle with B. This is also consistent with the
entanglement monogamy. The in-depth theoretical analysis
of our RGNP algorithm is left as an open problem to be
investigated in future.

Our results can be intuitively summarized as follows. If the
dimension of the Hilbert space of A is sufficient large, we
can always find a unitary transformation that transforms all
the entanglement between two parties (A, B) and C into the
entanglement between A and C, and in the same time B is
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FIG. 4. (a) Numerical results of IAC (in graph we use SA − SB

to represent IAC , note that IAC = SA − SB + SC), CKW three-tangle,
negativity between A and B (NAB), negativity between A and C (NAC)
and negativity between B and C (NBC) during the Adam optimization
for a random 2 ⊗ 2 ⊗ 2 pure state ρABC , where rC = 2 � dA = 2.
(b) Numerical results of IAC , NAB, NAC , and NBC during the Adam
optimization for a random 2 ⊗ 2 ⊗ 4 pure state ρABC , where rC =
4 > dA = 2. (c) Numerical results of IAC , NAB, NAC , and NBC during
the Adam optimization for a random 4 ⊗ 2 ⊗ 2 pure state ρABC ,
where rC = 2 � dA = 4. Note that the three-tangle is not computed
in (b) and (c) because numerically computable three-tangle is only
defined for three-qubit states [27]. The units of above quantities
are bits.

disentangled with C. It is worth pointing out that the entan-
glement between A and B can exist after optimization in this
case since our aim is to maximize I (A,C) [or equivalently to
minimize I (B,C)], which does not make any direct constraint
on I (A, B).

When the dimension of the Hilbert space of A is not suffi-
cient large, we cannot find such a unitary transformation. Then
there is an indirect constraint on decreasing I (A, B), which
makes the entanglement between A and B very weak after
optimization. According to the monogamy of entanglement,
the entanglement between A and B will prevent to build en-
tanglement between A and C as large as possible.
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APPENDIX A: PROOF OF THEOREM 2

In this Appendix, we aim to prove Theorem 2 in the main text. Specifically, we are going to prove Eqs. (77) and (78) by
evaluating second derivatives of the function with respect to parameters hmn

�S(U ) ≡ S
(
ρU

A

) − S
(
ρU

B

)
= S

(
TrB

[
W ρ

s5
ABW †

]) − S
(
TrA

[
W ρ

s5
ABW †

])
, (A1)

where S is von Neumann entropy, U = WU ∗ is the unitary transformation, U ∗ is the optimal transformation, and unitary
transformation W can be parameterized as

W = W00(h00)
3∏

j=1

Wj0(h j0)
3∏

k=1

W0 j (h0 j )
3∏

m,n=1

Wmn(hmn), (A2)

with

Wmn(hmn) = exp(ihmnσm ⊗ σn). (A3)

Proof. We can take ∂�S
∂h31

|h31=0 and ∂2�S
∂h2

31
|h31=0, for example,

W31(h31) = exp(ih31σ3 ⊗ σ1)

=

⎛
⎜⎜⎝

cos h31 i sin h31 0 0
i sin h31 cos h31 0 0

0 0 cos h31 −i sin h31

0 0 −i sin h31 cos h31

⎞
⎟⎟⎠.

(A4)

The density matrix ρ
W31V ∗
AB is

ρ
W31V ∗
AB (h31) = W31 × ρV ∗

AB × W †
31, (A5)

and the corresponding reduced density matrix ρ
W31V ∗
A and ρ

W31V ∗
B are

ρ
W31V ∗
A (h31) =

(
p1 + p4 0

0 p2 + p3

)
,

ρ
W31V ∗
B (h31) =

(
1
2 + (

p1 + p2 − 1
2

)
cos(2h31) −i(−1 + 2p1 + 2p3) cos(h31) sin(h31)

i(−1 + 2p1 + 2p3) cos(h31) sin(h31) 1
2 − (

p1 + p2 − 1
2

)
cos(2h31)

)
. (A6)

Then we evaluate �S[W31(h31)U ∗] = S[ρW31V ∗
A (h31)] − S(ρW31V ∗

B (h31)). Finally, we can obtain

∂�S

∂h31

∣∣∣∣
h31=0

= lim
h31→0

[
�S[W31(h31)U ∗] − �S[W31(0)U ∗]

h31

]
,

∂2�S

∂h2
31

∣∣∣∣
h31=0

= lim
h31→0

[ ∂�S
∂h31

(h31) − ∂�S
∂h31

(0)

h31

]
. (A7)

We evaluate these expressions above by MATHEMATICA 12.0 and we find that all first-order derivatives are equal to 0 at W = 0
(these expressions are not shown below because they are too long) while the diagonal second-order derivatives are less than or
equal to 0:

∂2�S

∂h2
mn

= 0, mn = 00, 01, 02, 03, 10, 20, 30, 33, (A8)

∂2�S

∂h2
11

= ∂2�S

∂h2
12

= ∂2�S

∂h2
21

= ∂2�S

∂h2
22

= 2

ln 2

[
(p1 + p2 − p3 − p4) ln

(
p3 + p4

p1 + p2

)
+ (p1 + p4 − p2 − p3) ln

(
p1 + p4

p2 + p3

)]
� 0,

(A9)
∂2�S

∂h2
13

= ∂2�S

∂h2
23

= 8(p1 − p2)(p3 − p4)
ln(1 − px ) − ln(1 + px )

px ln 2
� 0, (A10)
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∂2�S

∂h2
31

= ∂2�S

∂h2
32

= 8(p2 − p3)(p1 − p4)
ln(1 − py) − ln(1 + py)

py ln 2
� 0, (A11)

where

px = | − 1 + 2p2 + 2p3|,
py = | − 1 + 2p1 + 2p2|. (A12)

The sign of Eq. (A9) is determined by

(p1 + p2 − p3 − p4) ln

(
p3 + p4

p1 + p2

)
+ (p1 + p4 − p2 − p3) ln(

p1 + p4

p2 + p3

)

� (p1 + p2 − p3 − p4) ln

(
p3 + p4

p1 + p2

)
+ (p1 + p2 − p3 − p4) ln

(
p1 + p2

p3 + p4

)

= 0. (A13)

Assuming p1 �= p2 �= p3 �= p4, all the diagonal second derivatives in Eqs. (A9), (A10), and (A11) are less than 0.
As for those off-diagonal derivatives terms, we can repeat the procedure above by setting

Wmn,m′n′ = exp(ihmnσm ⊗ σn + ihm′n′σm′ ⊗ σn′ ). (A14)

By evaluating using MATHEMATICA, we find all off-diagonal terms ∂2�S
∂hmnhm′n′ are equal to 0. So the Hessian matrix H (�S)mn;m′n′ is

negative-definite and �S(U ∗) is at its local maximal point.
During the computation we find that parameters in Eq. (A8) have no effect on the reduced density matrix, i.e., for m, n in

Eq. (A8), WmnρA(V )W †
mn = ρA(V ) and WmnρB(V )W †

mn = ρB(V ). So we can remove such parameters from the Hessian matrix and
only maintain those “useful” parameters that have nonzero second derivatives. �

APPENDIX B: DERIVATIVES OF TWO-QUTRIT SYSTEM

In this Appendix, we aim to evaluate the derivatives of entropy difference function of two-qutrit system with respect to
parameters of parameterized unitary transformation. In d = 3 cases we cannot give a theorem like theorem 2 because there is no
consistent result for different d = 3 states. Let d = 3 state after being applied the disentanglement unitary transformation and
permutation unitary transformation be

ρqutrit = s1|00〉〈00| + s2|01〉〈01| + s3|02〉〈02| + . . . + s9|22〉〈22|, (B1)

where si are eigenvalues after permutation. There are in total three kinds of forms for two-qutrit states ρqutrit. The first form is,
taking ∂2�S

∂h2
12

, for example,

∂2�S

∂h2
12

= 2

ln 2

[
(s1 + s2 − s4 − s5) ln

(
s1 + s2 + s3

s4 + s5 + s6

)
+ (−s1 + s2 − s4 + s5) ln

(
s1 + s4 + s7

s2 + s5 + s8

)]
. (B2)

The second form is, taking ∂2�S
∂h2

13
, for example,

∂2�S

∂h2
13

= Part1 × Part2, (B3)

where

Part1 = s3s4 + s3s5 − 4s4s5 − (s4 + s5)s6 + s2(−s3 + 4s4 + s6) + s1(−4s2 − s3 + 4s5 + s6)

= 4(s1 − s4)(s2 − s5) + (s6 − s3)(s4 + s5) + (s1 + s2)(s3 − s6), (B4)

Part2 = − 2

ln 2
g(s1 + s2 + s3, s4 + s5 + s6) > 0, (B5)

where

g(x, y) = ln(x + y − |x − y|) − ln(x + y + |x − y|)∣∣x − y
∣∣ .
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The third form is, taking ∂2�S
∂h2

18
, for example,

∂2�S

∂h2
18

= Part1 × Part2, (B6)

where

Part1 = (s1 + s2 − s4 − s5)(s3 − s6) < 0, (B7)

Part 2 = − 6

ln 2
g(s1 + s2 + s3, s4 + s5 + s6) > 0. (B8)

Note that we cannot determine the sign of Eqs. (B2) and (B4) since different {si} will result in different signs. However, by
plugging the eigenvalues of the ρqutrit applied by optimal permutations into these derivative expressions, we find that these
optimal permutations actually make S(ρA) − S(ρB) take a local maximum.

APPENDIX C: EXAMPLES OF RECURRENT GREEDY NUMBER PARTITIONING

In this Appendix, we give an example for the recurrent greedy number partitioning algorithm. For a d = 6 state, the
eigenvalues are

p = {0.184233, 0.172701, 0.167875, 0.130484, 0.007168, 0.006866, 0.005525, 0.00415, 0.002577, 0.002313, 0.101274,
0.009832, 0.008887, 0.008416, 0.007561, 0.006997, 0.006116, 0.004571, 0.003275, 0.000357, 0.000128, 0.043433, 0.011384,
0.011262, 0.010695, 0.010573, 0.010166, 0.010124, 0.009745, 0.008469, 0.008223, 0.007007, 0.006151, 0.005061, 0.003894,
0.002506}.

We first partition p into six sets

s1 ={0.184233}, (C1)

s2 ={0.172701},
s3 ={0.167875},
s4 ={0.130484, 0.007168, 0.006866, 0.005525, 0.00415, 0.002577, |0.002313},
s5 ={0.101274, 0.009832, 0.008887, 0.008416, 0.007561, 0.006997, |0.006116, 0.004571, 0.003275, 0.000357, 0.000128},
s6 ={0.043433, 0.011384, 0.011262, 0.010695, 0.010573, 0.010166, |

0.010124, 0.009745, 0.008469, 0.008223, 0.007007, 0.006151, 0.005061, 0.003894, 0.002506}.

So we get three sets having more than six numbers. We denote the number of sets having six numbers in the ith iteration is ki,
the number of sets having more than six numbers is k+

i , the number of sets having less than six numbers is k−
i . We cut numbers

after the “|” and put these cut numbers with s1, s2, and s3, and get a new set p1 to partition, where k−
1 = 3:

p1 = {0.184233, 0.172701, 0.167875, 0.002313, 0.006116, 0.004571, 0.003275, 0.000357, 0.000128, 0.010124, 0.009745,
0.008469, 0.008223, 0.007007, 0.006151, 0.005061, 0.003894, 0.002506}.

Then we partition p1 into three sets:

s1 ={0.184233, 0.007007, 0.005061, 0.003894, 0.000128}, (C2)

s2 ={0.172701, 0.009745, 0.008223, 0.006116, 0.003275, 0.000357},
s3 ={0.167875, 0.010124, 0.008469, 0.006151, 0.004571, 0.002506, 0.002313}.

We find that s2 has six numbers, s1 has five numbers, and s3 has seven numbers, so we move the last number in s3 to s1 and finish
the recurrent greedy number partitioning. The final result is

s1 ={0.184233, 0.007007, 0.005061, 0.003894, 0.000128, 0.002313}, (C3)

s2 ={0.172701, 0.009745, 0.008223, 0.006116, 0.003275, 0.000357},
s3 ={0.167875, 0.010124, 0.008469, 0.006151, 0.004571, 0.002506},
s4 ={0.130484, 0.007168, 0.006866, 0.005525, 0.00415, 0.002577},
s5 ={0.101274, 0.009832, 0.008887, 0.008416, 0.007561, 0.006997},
s6 ={0.043433, 0.011384, 0.011262, 0.010695, 0.010573, 0.010166}.
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FIG. 5. Relative errors of the RGNP algorithm for d = 3, 4, 5, 6, and 8 cases.

APPENDIX D: RELATIVE ERROR OF RGNP ALGORITHM

In this Appendix, we plot the relative errors of the RGNP algorithm. Figure 5 gives the relative errors of the RGNP algorithm
for d = 3, 4, 5, 6, and 8 cases.

Table III writes the average of relative errors of 100 states for each case in Fig. 5.

TABLE III. Relative error of greedy permutation for d = 3, 4, 5, 6, and 8 cases. Relative error is defined by (�SAdam −
�Spermutation)/�SAdam. Minus relative error means RGNP algorithm is better than Adam optimization algorithm.

d = 3 d = 4 d = 5 d = 6 d = 8

1.1378% 0.2503% 0.1017% 0.0266% −1.2422%
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