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Understanding multipartite entanglement is a key goal in quantum information. Entanglement in pure states
can be characterized by considering transformations under local operations assisted by classical communication
(LOCC). However, it has been shown that, for n � 5 parties, multipartite pure states are generically isolated,
i.e., they can be neither reached nor transformed under LOCC. Nonetheless, in any real laboratory, one never
deterministically transforms a pure initial state exactly to a pure target state. Instead, one transforms a mixed
state near the initial state to an ensemble that is on average close to the target state. This motivates studying
approximate LOCC transformations. After reviewing in detail the known results in the bipartite case, we present
the gaps that remain open in the multipartite case. While the analysis of the multipartite setting is much more
technically involved due to the existence of different stochastic LOCC (SLOCC) classes, certain features simplify
in the approximate setting. In particular, we show that it is sufficient to consider pure initial states, that it
is sufficient to consider LOCC protocols with finitely many rounds of communication, and that approximate
transformations can be approximated by ensemble transformations within an SLOCC class. Then we formally
define a hierarchy of different forms of approximate transformations that are relevant from a physical point of
view. Whereas this hierarchy collapses in the bipartite case, we show that this is not the case for the multipartite
setting, which is fundamentally richer. To wit, we show that optimal multipartite approximate transformations are
not generally deterministic, that ensemble transformations within an SLOCC class can achieve a higher fidelity
than deterministic transformations within an SLOCC class, and that there are approximate transformations with
no deterministic transformations nearby.
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I. INTRODUCTION

Entanglement lies at the heart of quantum information
theory [1]. A key insight into entanglement is that it cannot
be created with local operations. As a result, entanglement
can be studied through the “distant labs” model in which spa-
tially separated parties are each constrained to be able to act
only on their local system but are allowed to coordinate their
actions by communicating the results of any measurements.
The set of operations achievable in this setting is referred
to as local operations assisted by classical communication
(LOCC) [2]. From this perspective, entanglement becomes a
resource which enhances the information processing power of
the separated parties (see, e.g., Refs. [1,3]). As entanglement
cannot be created locally, if |ψ〉 →LOCC |φ〉 then E (|ψ〉) �
E (|φ〉) for any measure of entanglement, E . Note, it may
be the case that |ψ〉 �→LOCC |φ〉 nor |φ〉 �→LOCC |ψ〉. In this
case, the entanglement of the states cannot be compared.
Thus, LOCC transformations induce only a partial order in
the Hilbert space. Nonetheless, in cases where LOCC trans-
formations are possible, this resource theoretic approach to
studying entanglement gives us a physically motivated means
to quantitatively compare entanglement.

Bipartite entanglement is very well understood. Ref. [4]
provided necessary and sufficient conditions for LOCC trans-
formations. As a result, one can identify a unique (up to local

unitaries [LUs]) maximally entangled state, capable of reach-
ing the entire Hilbert space. In the three-qubit case, contrary
to the bipartite case, not all fully entangled states (pure states
with maximal local rank) can be converted to one another
with some nonzero probability [5]. Instead, fully entangled
three-qubit states are partitioned into two stochastic LOCC
(SLOCC) equivalence classes with incomparable forms of
entanglement. Nonetheless, Ref. [6,7] successfully character-
ized state conversions for three qubits. While there is no single
maximally entangled state, Ref. [8] identified a zero-measure
maximally entangled set (MES), a minimal set of states, ca-
pable of reaching the entire Hilbert space. However, for five
or more qubits, Refs. [9,10] showed that states are generically
isolated under LOCC. That is, for almost all states, |ψ〉, there
neither exists a fully entangled state that can be transformed
to |ψ〉 via LOCC, nor can |ψ〉 be transformed with LOCC into
any other fully entangled state (up to LUs). Consequently, the
MES is full-measure, and the partial order induced by LOCC
is trivial. Thus, generically, the entanglement of pure states
cannot be compared.

This result motivates studying physically motivated mod-
ifications to the standard entanglement theory picture. One
of the most natural modifications is to study approximate
transformations instead of exact transformations. Indeed, in
any physically realistic situation, one will not be interested in
exact, deterministic transformations of pure states but instead
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TABLE I. Summary of some known results on state transformations under LOCC that are particularly relevant for the analysis of
approximate transformations. The table does not include many copy, catalytic, many-state, or asymptotic transformations, nor results regarding
n = 3, 4. The multipartite column lists two different cases: “General” refers to all states, and “Generic” refers to known results with respect
to the full-measure set of states referred to as generic in the preliminaries. We see that there are many open questions regarding faithful
multipartite transformations, which are addressed in subsequent sections.

Transformation Notation Bipartite Multipartite

SLOCC equivalence |ψ〉 �SLOCC |φ〉 iff Sr(|ψ〉) = Sr(|φ〉) General: NP hard [33]
Generic: iff ratios of SLIPs

coincide [36]
LU equivalence |ψ〉 �LU |φ〉 iff �ψ = �φ Qubits: Algorithm to find LUs if

they exist [34]
Generic: iff same SLOCC class
and G = H [10]

Deterministic LOCC |ψ〉 →LOCC |φ〉 iff �ψ � �φ [4] General: Necessary constraints
from SEP [49,50]

Generic: Isolated [9,10]

Conclusive LOCC |ψ〉 →LOCC {(p, |φ〉), . . .} pmax = minl
El (|ψ〉)
El (|φ〉) and achievable

with OSBP [16]
General: Bounds on pmax from

SEP [49]
Generic: pmax(|ψ〉 → h|ψ〉) =

n2
h/λmax(H ) and achievable

with OSBP [9,10]

Ensemble LOCC |ψ〉 →LOCC {(pi, |φi〉)} iff El (|ψ〉) � ∑m
i=1 piEl (|φi〉)∀l

[17]
General: States in output

ensemble may belong to ∞
different SLOCC classes

Ensemble LOCC within
SLOCC class

|ψ〉 →LOCC {(pi, |φi〉)}st
|φi〉 ∼=SLOCC |ψ〉

(As above [17]) General: Necessary constraints
from SEP (Thm 2)

Generic: Only if
E |ψs〉

�x (|ψ〉)�∑
i piE

|ψs〉
�x (|φi〉)

∀|�x〉 [54]

Faithful LOCC |ψ〉 →LOCC

{(pi, |φi〉)}st ∑
i piF (φi, φ) >

1 − ε

Optimal transformation is always a
deterministic transformation.
Moreover, it leads to pmax [17]

n = 3 : Numerical results [12]

approximate, ensemble transformations of mixed states close
to pure states. This approximate setting has already been stud-
ied and solved in the bipartite case [11]. There it was shown
that if the initial state is pure, then the optimal approximate
transformation is surprisingly a deterministic transforma-
tion to a nearby state. The multipartite setting is less well
studied. Reference [12] briefly comments on approximate
transformations of three qubits, and approximate transfor-
mations under “resource nongenerating operations” (i.e., a
class of operations larger than LOCC) have been studied in
the context of generalized resource theories [13]. Otherwise,
multipartite approximate LOCC transformations have been
largely unexplored. This is precisely the setting we study in
this work.

The remainder of the paper is structured as follows. In
Sec. I we introduce our notation and give a summary of known
results on state transformations under LOCC (see Table I).
This also motivates the study of multipartite, approximate
LOCC transformations presented here. In Sec. II we then pre-
cisely define the approximate transformations that we study in
this paper. We also show that it is sufficient to consider pure
initial states, finite round LOCC protocols and that general
faithful transformations can be arbitrarily well approximated
by faithful transformations within an SLOCC class. Then
in Sec. III we set out to better understand the approximate

transformations we have defined. We first show faithful trans-
formations within an SLOCC class are more powerful than
deterministic transformations within an SLOCC class. We
then consider general faithful transformations and show that,
unlike in the bipartite case, optimal multipartite faithful trans-
formations are not generally deterministic. Finally, we inves-
tigate the question of whether, for any given faithful transfor-
mation, there is always a nearby deterministic transformation.
We provide strong numerical evidence that faithful transfor-
mations are indeed more powerful than deterministic transfor-
mations between the vicinities of the states. A recapitulation
of our main contributions in this paper is given in Sec. III D
once all the more technical definitions have been introduced.

II. PRELIMINARIES

A. Preliminary results on state transformations

In this section we will introduce our notation and will
give an overview of known results on state transformations
under LOCC. This will allow us to put the results derived in
this paper into a wider context. We do this by first reviewing
the bipartite results regarding LOCC transformations and
how these results were expanded to various approximate
transformations. To this end, we review the results on
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deterministic, probabilistic, ensemble, faithful, finite-copy,
catalytic, and asymptotic LOCC transformations in the
bipartite setting. We then move on to multipartite systems and
consider the corresponding known results in each of these
different settings. The results reviewed here are summarized
in Table I.

Throughout this paper, we will generally use |ψ〉 to denote
the initial state of a transformation and |φ〉 [{(pi, |φi〉)}i∈I ,
with I some index set] to denote the final state (final ensemble)
of a transformation. We use |ψ〉 →LOCC |φ〉 to denote that |ψ〉
can be converted to |φ〉 via an LOCC protocol. We will refer
to a desired output state as the target state. Sometimes we will
use mixed states, in which case ρ and σ will be typically
used for the input and output states respectively. Moreover,
given a pure state, |ψ〉, we denote the corresponding mixed
state as ψ , i.e., ψ = |ψ〉〈ψ |. We will mainly consider the
situation where n spatially separated parties each have access
to a local quantum system of dimension d . Thus, we study
transformations of states in the Hilbert space H ∼= C⊗n

d . We
denote the set of mixed states on H by D(H). Finally, we will
use the phrase “fully entangled” to refer to pure states which
have maximum local rank on all sites, i.e., rk(ρi ) = d for all
single-site reduced density matrices, ρi.

One of the main motivations for studying exact transforma-
tions is that the existence of an LOCC protocol transforming
one state into the other (deterministically) ensures that the
entanglement of the initial state is at least as high as the
entanglement of the final state. This holds for any entangle-
ment measure. Hence, the study of LOCC transformations
allows one to partially order the entanglement contained
in states.1 Local unitary (LU) operations are the simplest
example of LOCC transformations and do not alter the en-
tanglement of states. Indeed, two pure states are reversibly,
exactly interconvertible via LOCC iff they are related by an
LU transformation [14]. States related by LUs naturally form
an equivalence class. The largest equivalence classes under
local operations are stochastic LOCC (SLOCC) classes [15].
Two states are said to be SLOCC equivalent if they both
can be converted into one another via LOCC with nonvan-
ishing probability in both directions. Thus, the entanglement
of SLOCC-inequivalent, fully entangled states is incompa-
rable in the LOCC framework. For this reason, one usually
considers initial and final states that correspond to the same
SLOCC class. Mathematically, two states are called LU equiv-
alent (SLOCC equivalent) if they are related by local unitary
(local invertible [5]) operators. We write this as |ψ〉 ∼=LU |φ〉
(|ψ〉 ∼=SLOCC |φ〉). We typically choose a representative for
the SLOCC equivalence class, called the “seed” state, |ψs〉,
and then write (unnormalized) states in the SLOCC class as
g|ψs〉, with g ∈ GL(d,C)⊗n.

1. Bipartite LOCC state transformations

We begin with the bipartite setting. Any pure bipartite
state can be written up to LUs as |ψ〉 = ∑d−1

i=0

√
ψi|i, i〉,

where ψ0 � · · · ψd−1 � 0 and
∑d−1

i=0 ψi = 1 (via its Schmidt

1The order is only partial as even within an SLOCC class two states
need not be convertible in either direction via LOCC.

decomposition). Thus, |ψ〉 can be identified uniquely (up
to LUs) with its Schmidt vector, �ψ = (ψ0, . . . , ψd−1). An
immediate consequence is that two states are LU equivalent
(SLOCC equivalent) iff their Schmidt vectors (the number of
nonvanishing Schmidt coefficients, aka their Schmidt rank,
Sr) coincide. A deterministic LOCC transformation from
|ψ〉 to |φ〉 is possible iff the Schmidt vector of |ψ〉 is ma-
jorized by the Schmidt vector of |φ〉, i.e., �ψ � �φ [4]. This
condition can equivalently be characterized with the entangle-
ment monotones introduced in Ref. [16], El (|ψ〉) = ∑d−1

i=l ψi.
Namely, a deterministic LOCC transformation from |ψ〉 to |φ〉
is possible iff El (|ψ〉) � El (|φ〉),∀l ∈ {0, . . . , d − 1}. These
necessary and sufficient conditions allow one to identify
a unique (up to LUs) maximally entangled state, |�+〉 =

1√
d

∑d−1
i=0 |i, i〉, capable of reaching the entire Hilbert space

via LOCC. That is, |�+〉 can be transformed to any other state
in H via deterministic LOCC transformations.

In the event one cannot transform |ψ〉 to |φ〉 determinis-
tically, the transformation might be possible probabilistically.
Such transformations are referred to as “conclusive” transfor-
mations [11]. In the bipartite setting, such a transformation is
possible if and only if the Schmidt rank of |φ〉 is less than
or equal to that of |ψ〉, Sr(|ψ〉) � Sr(|φ〉). In this setting, it
is natural to ask what is the maximum success probability of
transforming |ψ〉 to |φ〉 with an LOCC protocol, pmax(|ψ〉 →
|φ〉) (which we shorten to pmax when the argument is obvious
from the context). The entanglement monotones from above
can be used to determine pmax. Namely, pmax is given by the
minimum of all the ratios of El (|ψ〉) and El (|φ〉) [16]. More-
over, this maximum success probability is achievable with a
one successful branch protocol (OSBP), in which only one
sequence of measurement outcomes yields the desired state
and all others yield states that are no longer fully entangled.

Conclusive transformations are a subset of the more
general set of ensemble transformations. These are trans-
formations in which an initially pure state is transformed
into an ensemble of states. In the case of a finite ensemble
of pure states, Ref. [17] showed that |ψ〉 can be trans-
formed to {(pi, |φi〉)}m

i=1 iff El (|ψ〉) � ∑m
i=1 piEl (|φi〉), ∀l ∈

{0, . . . , d − 1}.
Another particularly physically relevant subset of ensem-

ble transformations are “faithful” transformations [11]. Here
one constrains ensemble transformations to those in which an
input state, |ψ〉, is transformed to an output ensemble that has
a large enough average fidelity with some desired, pure, target
state, |φ〉. Recall, the fidelity between two mixed states, ρ and
σ , is given by [18]

F (ρ, σ ) = (tr
√√

ρσ
√

ρ )2 (1)

and is a measure of how indistinguishable two states are [19]
(see also Sec. II B). Thus, faithful transformations approxi-
mate transformations from |ψ〉 to |φ〉. In Ref. [11] it was
shown that, in the bipartite setting, the optimal fidelity via a
faithful transformation (i.e., the maximum achievable fidelity
of an output ensemble with respect to the target state) is
always achievable with a deterministic transformation.

Note, conclusive and faithful transformations are inti-
mately related. If one can conclusively transform |ψ〉 to |φ〉
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with a high success probability, then one can also transform
|ψ〉 to |φ〉 faithfully. To see this, it is sufficient to note that for
any conclusive transformation from |ψ〉 to |φ〉 with success
probability 1 − ε (where ε > 0 is small), one can also trans-
form |ψ〉 via LOCC to the ensemble {(1 − ε, |φ〉), (ε, |0〉⊗n)}.
The average fidelity that this ensemble has with the target state
|φ〉 is at least 1 − ε. However, the converse does not hold: a
faithful transformation does not imply a conclusive transfor-
mation, even in the bipartite setting. To see this, consider two
states, |ψ〉 and |φ〉 such that F (ψ, φ) > 1 − ε, yet |φ〉 has a
higher Schmidt rank than |ψ〉. |ψ〉 can be transformed into
|φ〉 via a faithful transformation trivially (by doing nothing).
However, the probability of transforming |ψ〉 to |φ〉 is zero.
With this said, if the initial and final state both have the
same Schmidt rank, then the optimal faithful transformation
(which as mentioned, can be chosen deterministic) outputs
a state, |χ〉, that also has the same Schmidt rank. Moreover,
pmax(|χ〉 → |φ〉) = pmax(|ψ〉 → |φ〉). That is, the maximum
success probability is not reduced by first applying the optimal
faithful transformation [11].

Due to physical constraints, it is also relevant to consider
transformations which begin with a state which is not exactly,
but only close to, the desired initial state. Reference [11]
extended their results on bipartite faithful transformations to
include nearby (potentially mixed) initial states via the in-
equality

|D(ρ1 → σ1) − D(ρ2 → σ2)| � D(ρ1, ρ2) + D(σ1, σ2), (2)

where D is the trace distance (which is intimately related to the
fidelity; see Sec. II B), and D(ρ → σ ) is the minimum trace
distance between a (generally mixed) state, σ , and any state
to which ρ can be transformed via LOCC. Thus, Eq. (2) tells
us that if we have a known faithful transformation, |ψ〉 →
{(pi, |φi〉)}i∈I , with respect to a target state, |φ〉, and then we
take a (generally mixed) state, ρ, in the vicinity of |ψ〉, i.e.,
F (ρ,ψ ) � 1 − δ for some δ > 0, then the optimal faithful
transformation from ρ to φ will be at most

√
δ worse than

the original known faithful transformation.2 More precisely
we have

D(ρ → φ) � D(ψ → φ) +
√

δ. (3)

In all the aforementioned scenarios the initial state was
a single copy of a state. However, one can consider more
general transformations, where the initial state corresponds
to multiple copies of a state, or multiple different states.
Exact transformations of finitely many copies of states have
been studied [20–22], yielding interesting features; for exam-
ple, multiple copies of a state may be transformable while
a single copy is not [21]. Expanding from multicopy trans-
formations to transformations of multiple different states
(“multistate” transformations) yields further interesting re-
sults. The best known example of this setting is entanglement
catalysis [22–25], in which a state, |ψ〉, is transformed into
another state, |φ〉, with the help of a catalyst, |χ〉, i.e.,

2The square root appears due to the relationship between the trace
distance and the fidelity, which is discussed further in Sec. II B [see
Eq. (15)].

|ψ〉 ⊗ |χ〉 →LOCC |φ〉 ⊗ |χ〉. Indeed, multicopy transforma-
tions and catalysis were shown to be deeply connected in
Ref. [22]. General multistate transformations have also been
studied [26,27], yielding a yet wider array of possibilities.
For instance, it has been shown that a pair of bipartite states
|ψ1〉 ⊗ |ψ2〉 can be LU equivalent to another pair of states
|φ1〉 ⊗ |φ2〉, even though none of the input and output states
are LU equivalent, i.e., |ψi〉 �∼=LU |φ j〉 for i, j ∈ {1, 2} [27].
Moving away from exact transformations, multicopy, cat-
alytic, and multistate bipartite transformations have also been
studied in the probabilistic setting [21,28] and approximate
setting [29].

Finally, one can consider the asymptotic limit. Here it is
well known that n copies of a pure state can be asymptotically,
reversibly transformed to m copies of the maximally entangled
state at a rate, m/n, given by the entanglement of formation of
the initial pure state, the von Neumann entropy of the reduced
state [30]. Moreover, the transformation of asymptotically
many copies of a mixed state to a state arbitrarily close to a
pure state has been widely studied in the literature, where it is
known as entanglement distillation (see, e.g., [31]).

2. Multipartite LOCC state transformations

We now consider the multipartite setting. All the results in
the previous section change significantly in the multipartite
scenario. This is for two predominant reasons. The first is
the increased complexity in the entanglement structure of the
states. The second is the increased complexity of LOCC.

The increased complexity in the entanglement structure
of states is due to the fact that fully entangled multipartite
states are not necessarily SLOCC equivalent [5]. In fact, for
four-qubit and larger systems, there exist generically infinitely
many SLOCC classes [5,32]. Furthermore, for three-qudit
systems, it has been shown that deciding SLOCC conversion
is NP hard [33].

Nonetheless, there has been considerable progress in re-
cent years. To solve the problem of LU equivalence of
multipartite states, Ref. [34] introduced an algorithm to de-
termine the local unitaries that relate two n-qubit states in
the event they are LU equivalent. The problem of SLOCC
equivalence has been tackled with the use of SL invariant
polynomials (SLIPs) (see Ref. [35] and references therein).
These are functions on the Hilbert space that are polynomials
with respect to the coefficients of a state and are invari-
ant under determinant-1, local operators, i.e., f (⊗gi|ψ〉) =
f (|ψ〉),∀gi ∈ SL(di,C),∀|ψ〉 ∈ H. In particular, SLOCC
classes that contain a critical state (a state such that the single
party reduced density matrices are maximally mixed for all
sites) can be distinguished by ratios of SL-invariant poly-
nomials [36].3 Moreover, for each such SLOCC class, the
critical state is unique (up to LUs) [37] and an algorithm for
determining the corresponding critical state from any state in
the SLOCC class is provided in Ref. [38]. The union of all
such classes is full-measure [37]. That is, the complement is
of a lower dimension than the Hilbert space.

3SLOCC classes which do not contain a critical state have also been
studied (see, e.g., Ref. [64]).
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In fact, for n � 5, the set of states that (a) are SLOCC
equivalent to a critical state and (b) do not possess any local
symmetry but the trivial one, 1⊗n, is full-measure [9,10]. This
set of states will play an important role in this paper. We
will refer to these states as “generic.” The lack of symmetry
also means that two SLOCC equivalent generic states, g|ψs〉
and h|ψs〉, are LU equivalent iff G = H , where |ψs〉 is a
representative seed state for the SLOCC class. Here and in
the following, G = g†g and H = h†h are both local operators
[10]. Not only is this set of generic states full-measure, it is
also open and dense (wrt to the standard topology on H).

While some work has been done into characterizing state
transformations from fully entangled to non-fully entangled
states (e.g., Refs. [39,40]), typically one considers transforma-
tions within an SLOCC class. The reason for this is that this
allows one to order the entanglement contained in these pure
states. If we restrict ourselves to considering transformations
among fully entangled states in the same SLOCC class, then
we can choose the same seed state, |ψs〉, for both states.
We then typically express the initial state as |ψ〉 = g|ψs〉/ng

and the final state as |φ〉 = h|ψs〉/nh, where g = ⊗igi, h =
⊗ihi with gi, hi ∈ GL(d,C), and ng, nh are normalization con-
stants. In case one considers more general transformations
where one changes SLOCC class, such a description is no
longer possible, and the analysis becomes even more involved.
This is further complicated by the existence of infinitely many
SLOCC classes. For instance, to characterize transformations
from a five qubit, fully entangled state to a four-qubit state,
i.e., |ψ〉12345 →LOCC |0〉1 ⊗ |φ〉2345, one must deal with the
fact that |φ〉 can potentially belong to infinitely many different
SLOCC classes.

The second reason characterizing LOCC transformations
in the multipartite setting is more complicated than the bi-
partite setting is that the mathematical description of LOCC
protocols is considerably more complicated in the multipartite
setting [15]. Unlike in the bipartite setting, in which one round
of communication is sufficient for any LOCC transformation
among pure states [41], multipartite LOCC transformations
may require infinitely many rounds of communication [42],
as well as probabilistic intermediate steps [43].

Despite these challenges, deterministic transformations
of three-qubit states have been completely characterized
[6–8]. In three-qubit Hilbert spaces, one finds that, instead
of a single maximally entangled state, one must settle for a
maximally entangled set (MES) [8]. This is a minimal set of
states with the property that all states in the Hilbert space can
be reached deterministically via LOCC from a state inside
the MES. For three qubits, the MES is zero-measure. The
MES for four qubits has also been studied [44]. For n � 5
qubits and n � 4 qudits, the MES has been shown to be a
full-measure set [9,10].

One can obtain considerable insight by considering more
mathematically tractable super-sets of LOCC transformations.
One such super-set of LOCC is the set of separable maps
(SEP), which are characterized by local Kraus operators. SEP
is a strict superset of LOCC [45–48]. Nonetheless, it can
be used to provide necessary conditions for the existence
of LOCC transformations. The necessary and sufficient con-
ditions for the existence of a SEP map between SLOCC
equivalent states have been derived in Ref. [49] (see also

Ref. [50]). As will become immediately apparent, the local
symmetries of states are central here. Given a state, |ψ〉, we
define the stabilizer of |ψ〉, S|ψ〉, to be the set of local invertible
operators that leave the state invariant,

S|ψ〉 = {S = ⊗iSi ∈ GL(d,C)⊗n : S|ψ〉 = |ψ〉}. (4)

We also define the set of local operators which annihilate
the state,

N|ψ〉 = {N = ⊗iNi ∈ Mat(d,C)⊗n : N |ψ〉 = 0}. (5)

The necessary and sufficient conditions for the existence of a
SEP map between SLOCC equivalent states are then given by
the following theorem.

Theorem 1 ([49,50]). The state g|ψs〉 can be transformed
to h|ψs〉 via SEP if and only if there exists a finite set of
probabilities {pk}, local symmetries {Sk} ⊆ S|ψs〉, and local
singular operators {Nq} ⊆ Ng|ψs〉 such that

1

r

∑
k

pkS†
k HSk + g†

∑
q

N†
q Nqg = G, (6)

where r = ||h|ψs〉||2/||g|ψs〉||2.
Let us emphasize here that the operators in the set N|ψ〉

annihilate the state |ψ〉. Consequently, the corresponding
measurement outcomes do not occur. Nevertheless, it has been
shown that some SEP transformations among pure states only
exist if these operators are taken into account [50]. This is
due to the fact that the completeness relation [leading to
Eq. (6)] for the measurement operators can be satisfied by
including these operators but cannot without them. Separa-
ble transformations which do not use operators from the set
Nψ are referred to as SEP1. An explicit example of such a
transformation that is possible with SEP but not with SEP1

is provided in Ref. [50]. Moreover, it is easily seen that if the
stabilizer is trivial, i.e., S|ψs〉 = {1⊗n}, then a transformation of
g|ψ〉 to h|ψ〉 is possible with SEP iff it is possible with SEP1

iff it is possible with LOCC.
As well as super-sets, one can consider physically relevant

subsets of LOCC. From a practical point of view, a partic-
ularly relevant subset of LOCC transformations are LOCC
transformations which utilize only finitely many rounds of
classical communication (LOCCN). In this case, simple nec-
essary and sufficient conditions for fully entangled states to be
reachable via LOCCN and/or convertible via LOCC with one
round of communication are known [43]. Note, Ref. [50] also
shows that the set of LOCCN transformations between fully
entangled states is a subset of SEP1.

Considering Theorem 1, we see that symmetries are essen-
tial for the existence of local (deterministic) transformations
among fully entangled pure states. Indeed, if a state has only
trivial symmetries, i.e., S|ψ〉 = {1⊗n}, then the only SLOCC
equivalent states it can be transformed to via SEP are LU
equivalent states [9,10]. This has dramatic consequences for
entanglement theory. As discussed above, the set of generic
states is a full-measure set of states with only trivial symme-
tries. Consequently, almost all states are isolated under LOCC
(and SEP). That is, almost all states can neither be transformed
via LOCC to another fully entangled non-LU-equivalent state,
nor can they be reached via LOCC from another non-LU-
equivalent state. This implies that the partial order induced
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by LOCC in multipartite systems is trivial. Furthermore, it
implies that the maximally entangled set (MES) is generically
a full-measured set [8–10].

The fact that almost all states are isolated under LOCC
means that, in the multipartite setting, we must move away
from exact transformations. Due to its physical relevance,
a natural choice of more general transformations are ap-
proximate transformations. The first of such approximate
transformations are multipartite conclusive transformations.
Once again three- and four-qubit systems correspond to a
special case. References [12,51] identified the optimal success
probability of distilling a GHZ state from a fully entangled
three-qubit state, and likewise in Ref. [52] for the W state.
Moreover, upper and lower bounds have been attained for the
maximum probability of general state transformations within
the three-qubit GHZ class (see, e.g., [53]) and W class (see,
e.g., [7]). Bounds on the maximum probability have also been
studied in the case of four qubits (see, e.g., [49]).

For n � 5, the study of probabilistic transformations of
generic states turns out to be simpler than even the bipartite
case. In fact, for generic states, it has been shown that the
maximal success probability with which one state can be
transformed into the other is given by [9,10]

pmax

(
|ψ〉 → ⊗ihi|ψ〉

nh

)
= n2

h

�iμmax(Hi )
, (7)

where again nh is the normalization constant, Hi = h†
i hi, and

μmax is the maximum eigenvalue. As in the bipartite case,
the maximum success probability is achievable with a one
successful branch protocol (OSBP). Moreover, Ref. [54] char-
acterizes the optimal intermediate states and optimal SLOCC
paths. Respectively, these are states that one can first trans-
form the initial state to without reducing the overall success
probability of reaching the final state and continuous paths of
optimal intermediate states.

Using the simple observation that Eq. (7) needs to coincide
with the minimal ratio of all entanglement monotones [16],
a complete set of entanglement monotones within a generic
SLOCC class has been derived [54]. Namely, given a generic
SLOCC class with seed state |ψs〉, the set of functions

E |ψs〉
�x (g|ψ〉/ng) = 〈�x|G|�x〉/n2

g, (8)

where |�x〉 is any product state, are entanglement monotones.
These monotones are easy to calculate as G is a local op-
erator. Moreover, only a finite number suffice to completely
characterize the entanglement of a generic state given its
SLOCC class. It has also been shown that these monotones
are invariant (monotonic) under deterministic (ensemble) SEP
within a generic SLOCC class [54] (see Appendix A 1 for
a further discussion). However, they are not invariant under
SLOCC. Hence, they allow one to compare entanglement
between states in the same SLOCC class.

Let us now consider ensemble transformations. Before dis-
cussing the known results regarding multipartite ensemble
transformations, let us highlight some challenges. As men-
tioned before, deterministic pure state transformations are,
with a few exceptions (e.g., Refs. [39,40]), usually consid-
ered within the same SLOCC class. However, many natural
ensemble transformations output states that are not in the same

SLOCC class; for instance, conclusive transformations that
obtain the target state with the maximum success probabil-
ity necessarily output states in different SLOCC classes in
the failing branches (if they did not, the success probability
could be improved). Thus, for ensemble transformations, both
scenarios—transformations where all the states in the output
ensemble are in the same SLOCC class as the initial state and
transformations where the outputs are not necessarily in the
same SLOCC classes—are physically motivated. Which of
the two settings is more appropriate depends on the scenario
within which one considers the transformation. We will ad-
dress below both scenarios. As the transformation is no longer
deterministic to a single pure state, local symmetries no longer
play such an important role. Furthermore, in the second case,
singular measurement operators that do not simply annihilate
the state need to be taken into account. This fact leads to
the advantage that more transformations are possible and to
the disadvantage that their characterizations are much more
involved.

Let us first discuss the situation where all the states in the
output ensemble are in the same SLOCC class as the initial
and the final state. Note that in this case tools from exact
LOCC transformations can be (at least partially) employed.
In fact, similarly to deterministic transformations, we have the
following theorem.

Theorem 2 ([49,50]). The state g|ψs〉 can be transformed
to the (finite) ensemble {(pi, hi|ψs〉)} (with hi local and in-
vertible) via SEP if and only if there exists a finite set of
probabilities {pi j}, symmetries {S j} ⊆ S|ψs〉, and Nq ∈ Ng|ψs〉
such that

∑
j pi j = pi,∑
i j

1

ri
pi jS

†
i jHiSi j + g†

∑
q

N†
q Nqg = G, (9)

where ri = ||hi|ψs〉||2/||g|ψs〉||2.
This theorem follows directly from Ref. [49] and Theo-

rem 1. However, in order to be complete, we present a proof of
Theorem 2 in Appendix A 1. Analogously to the deterministic
case, we can consider ensemble transformations under SEP1.
In this case, we have∑

i j

1

ri
pi jS

†
i jHiSi j = G. (10)

Note that, as in the deterministic case, LOCCN ensemble
transformations within an SLOCC class are also a subset of
SEP1 (see Appendix A 1).

Moving onto general ensemble transformations, the set of
possible transformations one obtains is considerably more
complex. The example from the beginning of this section,
in which one considers transformations between five- and
four-qubit states, gives a good example of this. Namely, the
output ensemble may include states belonging to infinitely
many different SLOCC classes. This simple example shows
that the set of general ensemble transformations is too rich to
be analyzed in a general way.

It is natural then to restrict the set of ensemble transfor-
mations by imposing physically motivated constraints. As in
the bipartite setting, one of the most natural constraints is to
consider faithful transformations, where the output ensemble
has a high average fidelity with some desired target state.
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Note that considering states up to some finite fidelity blurs
the aforementioned SLOCC classification. For instance, it is
well known that there are states SLOCC equivalent to the
GHZ state that are arbitrarily close to the W state. More
generally, the set of states with fidelity greater than 1 − ε with
any given state |ψ〉 may intersect infinitely many SLOCC
classes. Nonetheless, there are some partial results in this
setting. Reference [12] provides some numerical evidence that
the optimal faithful transformation to the three-qubit GHZ
state is, as in the bipartite setting, deterministic. Moreover,
approximate transformations have been considered under “re-
source nongenerating operations” [13], that is, the class of
transformations which do not create entangled states from
nonentangled states. Finally, some progress has also been
made in studying multicopy, catalytic and multistate trans-
formations [27,28,55], as well as asymptotic transformations
[56,57] in the multipartite setting.

A summary of the known results on state transformations,
as reviewed here, is given in Table I. We see that, despite their
physical relevance, nonasymptotic, faithful transformations
under LOCC remain largely unexplored in the multipartite
setting. As in any real laboratory one never exactly transforms
a pure state into another pure state but instead transforms some
state nearby the desired initial state into an ensemble of states
near the desired final state, the faithful setting is physically
relevant. Consequently, we set out to investigate this setting in
this paper. However, before doing so, we make precise what
we mean by “nearby.”

B. LU-optimized fidelity

In this section, we make precise our notion of “nearby”
by introducing the average LU–optimized fidelity of the en-
semble with the target state and discussing some of its key
properties. The fidelity [see Eq. (1)] is a measure of how
indistinguishable two quantum states are [19], with F be-
ing symmetric, basis independent, F (ρ, σ ) = 1 iff ρ = σ ,
F (ρ, σ ) = 0 iff the states have orthogonal support. However,
the fidelity is obviously not invariant under LUs applied to
only one of the states. Local unitaries do not affect entangle-
ment and can be performed freely and reversibly. Therefore,
physically it makes sense to optimize the fidelity over LUs,
i.e., we consider

FLU(ρ, σ ) = max
U∈LU

F (ρ,UσU †). (11)

Throughout this paper then, ε-close is meant in terms of
the LU-optimized fidelity, i.e., σ ∈ D(H) is ε-close to |φ〉
if FLU(σ, φ) � 1 − ε. Correspondingly, an ε-vicinity around
|ψ〉 is the set of (generally mixed) states ε-close to |ψ〉. Note
that throughout this paper the ε-vicinity refers to (potentially
mixed) states with support that is a subset of H. That is given
a ψ ∈ D(H), we define the ε-vicinity as

{ρ ∈ D(H) : FLU(ρ,ψ ) � 1 − ε}. (12)

Note that the Hilbert space considered here is not neces-
sarily the smallest dimensional Hilbert space containing |ψ〉.
In particular, when studying transformations to a target state,
the underlying Hilbert space, H, is the smallest dimensional
Hilbert space containing both the initial and final state. The
ε-vicinities are defined accordingly.

An ensemble {(pi, σi )} is ε-close to |φ〉, if it is on average
ε-close:

Fav ({(pi, σi )}, φ) =
∑

piFLU(σi, φ) � 1 − ε. (13)

Note, as LU’s can be performed freely when consider-
ing LOCC transformations, wlog we can assume that, for
a given input, ρ, and target state, |φ〉, a map, �, is al-
ways LU-optimized, i.e., �(ρ) = {(pi, σi )} and FLU(σi, φ) =
F (σi, φ), ∀i. For LU-optimized maps with a pure target state,
we have Fav (�(ρ), φ) = F (

∑
piσi, φ). Moreover, it follows

from the purity of φ that, for LU-optimized maps and any
decomposition ρ = ∑

j q jψ j , we have

Fav (�(ρ), φ) �
∑

j

q jFav (�(ψ j ), φ). (14)

We can succinctly summarize approximate transforma-
tions, then, as ensemble transformations which map an input
state δ-close to some ideal pure initial state, |ψ〉, to an output
ensemble ε-close to some ideal pure target state, |φ〉.

Finally, let us mention here a well-known relation between
the fidelity and the trace distance, D(ρ, σ ) = 1

2 ||ρ − σ ||1
(which is also a measure of indistinguishability), namely [58],

1 −
√

F (ρ, σ ) � D(ρ, σ ) �
√

1 − F (ρ, σ ). (15)

In the event one of the states is pure, the lower bound tightens
to

1 − F (ρ, φ) � D(ρ, φ), (16)

and when both states are pure, the upper bound in Eq. (15) is
exact. However, unlike the fidelity, the trace distance has the
advantage of being a metric. Furthermore, the LU-optimized
trace distance, minU∈LU D(UρU †, σ ) is also a metric (be-
tween LU orbits) as can be easily verified.4

III. GENERAL PROPERTIES
OF APPROXIMATE TRANSFORMATIONS

In this section, we define precisely approximate transfor-
mations and illuminate some of their general properties. As
discussed in the preliminaries, approximate transformations
are a subset of ensemble transformations. Consequently, we
begin by introducing several sets of physically motivated
types of ensemble transformation. Next, as motivated above,
we constrain these ensemble transformations by imposing that
the input states and output ensembles are near—wrt to the
LU-optimized (average) fidelity—to some ideal, pure initial
and target states, respectively, thereby restricting our consider-
ation to types of approximate transformations. Having defined
precisely approximate transformations, we recap the bipartite
results in light of these definitions. We then start to consider
the general properties of approximate transformations, which

4This can be easily seen as follows: minU∈LU D(UρU †, σ ) =
minU,V ∈ LU D(UρU †,V ρV †)�D(U0ρU †

0 ,V †
0 ρV0) � D(U0ρU †

0 , η)+
D(η,V †

0 ρV0) = minU∈LU D(UρU †, η) + minV ∈LU D(V ηV †, σ )
where U0,V0 are the unitaries which minimize D(UρU †, η) and
D(V ηV †, σ ), respectively, and we have used the basis independence
and metric properties of D.
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will make our subsequent analysis of the multipartite setting
easier. We show that, when studying these transformations, we
are in fact justified in restricting ourselves to transformations
where the initial state is pure. Furthermore, we show that,
unsurprisingly, it is sufficient to consider LOCC protocols
with only finitely many rounds of communication. We also
prove that approximate transformations within an SLOCC
class can approximate arbitrarily well general approximate
transformations.

A. Types of ensemble transformations

To begin, we consider LOCC transformations, �, which
transform a given initial pure state, |ψ〉, to some fi-
nite ensemble of pure states, {(pi, |φ〉i )}m

i=1, i.e., �(ψ ) =∑m
i=1 pi|φi〉〈φi| ⊗ |i〉〈i|, where

∑m
i=1 pi = 1. Throughout this

paper, we make the physically motivated assumption that any
measurement performed by a single party during a given
round of an LOCC protocol has only finitely many outcomes.
To ease the notation, we write �(ψ ) = {(pi, |φ〉i )}m

i=1 for an
ensemble transformation. That is, we consider

Tens(ψ ) = {
� ∈ LOCC : �(ψ ) = {(pi, |φ〉i )}m

i=1

}
. (17)

Following the discussion in the preliminaries, we also con-
sider the following physically relevant subsets of Tens(ψ ).
First, we have deterministic transformations, i.e., those where
there is only one state in the output ensemble:5

Tdet (ψ ) = {� ∈ Tens(ψ ) : ∃ φ : �(ψ ) = {(1, |φ〉)}}. (18)

Note, the output of these deterministic transformations need
not be in the same SLOCC class as |ψ〉. For instance, any
transformation to a product state is always included in Tdet (ψ ).

Second, we have optimal conclusive transformations. Here
one considers a specific target state, |φ〉. Optimal conclu-
sive transformations are then transformations of |ψ〉 which
reach |φ〉 with the maximum success probability, pmax(|ψ〉 →
|φ〉) = pmax; i.e., if pmax(|ψ〉 → |φ〉) > 0 then we define

Tp max(ψ, φ) = {� ∈ Tens(ψ ) : �(ψ ) = {(pmax, |φ〉), . . .}},
(19)

and otherwise Tp max(ψ, φ) = ∅. In Ref. [54], the optimal
intermediate states, i.e., those that can be reached from the
initial state without reducing the overall maximum probability
of transforming to the final state, have been characterized for
the bipartite and multipartite case. For this reason, we will not
focus too much on this set of transformations in this paper.

Third, as motivated in the preliminaries, we can consider
transformations within an SLOCC class. That is, we consider

Tens-SLOCC(ψ ) = {� ∈ Tens(ψ ) : �(ψ ) = {(pi, |φi〉)}, with |φi〉 ∼=SLOCC |ψ〉 ∀i}. (20)

Finally, we have deterministic transformations within an
SLOCC class (i.e., deterministic transformations exclud-
ing transformations to, for example, product states).6 We
have

Tdet-SLOCC(ψ ) = Tdet(ψ ) ∩ Tens-SLOCC(ψ ). (21)

B. Approximate and ensemble transformations
and optimal transformations

Having identified five types of ensemble transformations
of interest, we now restrict these transformations to define
the sets of approximate transformations that we study in
this paper. In correspondence to the sets of physically rel-
evant transformations introduced above, we define the sets
of approximate transformations with respect to the δ and ε-
vicinities around the initial and final state respectively. That

5Here and in the following, we consider all states |φi〉 in the ensem-
ble to be distinct. Note, this is not a restriction. An ensemble that has
combined all identical outcomes is reachable via an LOCC protocol
iff the original ensemble is reachable.

6For completeness, we note that the set of conclusive transforma-
tions within an SLOCC class, i.e., Tpmax-SLOCC(ψ, φ), is by definition
empty. This is because any outputs that are not the target state, |φ〉,
yet are SLOCC equivalent to |φ〉 can be converted to |φ〉 with some
nonzero probability, thereby contradicting the assumption that the
transformation achieves |φ〉 with probability pmax(|ψ〉 → |φ〉).

is, given |ψ〉, |φ〉 ∈ H, we define the set

T δ,ε
ens (ψ, φ) = {� ∈ Tens(ψ̃ ) : |ψ̃〉 ∈ H,

FLU(ψ̃, ψ ) � 1 − δ, Fav (�(ψ̃ ), φ) � 1 − ε}. (22)

The sets T δ,ε
det (ψ, φ), T δ,ε

p max(ψ, φ),7 T δ,ε
ens-SLOCC(ψ, φ) and

T δ,ε
det-SLOCC(ψ, φ) are all defined similarly. These transforma-

tions are depicted in Fig. 1. Note that in the case of δ = 0, one
starts exactly with |ψ〉.

For each of these sets of approximate transformations, it is
natural to ask what is the optimal transformation. Therefore,
we define

F δ
X (ψ → φ) = max

ψ̃ :FLU(ψ,ψ̃ )�1−δ
sup

�∈TX (ψ̃ )

Fav (�(ψ̃ ), φ), (23)

where X is a stand-in label for each transformation type.
Note, that the optimal fidelity is defined via the supremum

as it is not in general the case that the set of transformations
is closed. Also, note that, if δ = 0, then F 0

ens is simply the
optimal fidelity achievable via a faithful transformation of
|ψ〉, as studied in the bipartite case in Ref. [11]. We use
Fens as shorthand for F 0

ens. Moreover, note that, due to the
presence of the supremum, the optimal fidelities and the sets

7To be more precise, naturally T δ,ε
p max(ψ, φ) consists

of conclusive transformations in T δ,ε
ens (ψ, φ). That is,

T δ,ε
p max(ψ, φ) = {� ∈ Tp max(ψ̃, φ̃): FLU(ψ̃, ψ ) � 1 − δ, FLU(φ̃, φ) �

1 − ε, Fav (�(ψ̃ ), φ) � 1 − ε} ⊆ T δ,ε
ens (ψ, φ).
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(a)

(b)

FIG. 1. Approximate transformations: Blue dashed lines
represent branches of an ensemble LOCC transformation.
Black solid lines represent deterministic LOCC transformations.
Figure 1(a) concerns general faithful transformations. The orange
(green) disk represents the δ (ε) vicinity around the initial (final)
state. �1 ∈ T δ,φ

ens (ψ, φ) maps a state |ψ̃1〉 (which is δ-near |ψ〉) to
an ensemble of states, {(pi, |φ̃i〉)}, such that the average fidelity
with |φ〉 (represented by the gray dot) is greater than or equal to
1 − ε. �2 ∈ T δ,ε

det (ψ, φ) is a map that corresponds to a protocol
which deterministically transforms |ψ̃2〉 to |φ̃4〉. Transformation in
T δ,ε

p max(ψ, φ) ⊆ T δ,ε
ens corresponds to transformations with the structure

of �1 but with the additional constraint that pi = pmax(|ψ̃〉 → |φ̃i〉)
for one of the outputs in the ε vicinity (i.e., in the above example,
either |φ̃1〉 or |φ̃3〉). Figure 1(b) considers transformations within
SLOCC classes. In this case, we consider only output states
that are SLOCC equivalent to a state in the initial δ vicinity
(indicated by the incomplete orange fill in the final vicinity).
�3 ∈ T δ,ε

ens-SLOCC(ψ, φ) transforms a state |ψ̃1〉 to an ensemble
of states SLOCC equivalent to |ψ̃1〉. �4 ∈ T δ,ε

det-SLOCC(ψ, φ)
deterministically transforms |ψ̃2〉 to an SLOCC equivalent
state |φ̃3〉.

of transformations are subtly related: given two types of trans-
formations, X and Y , F δ

X (ψ → φ) = F δ
Y (ψ → φ) does not

imply that T δ,ε
X (ψ, φ) = T δ,ε

Y (ψ, φ) for ε = 1 − F δ
X (ψ → φ);

nor does the existence of an ε > 0 such that T δ,ε
X (ψ, φ) �= ∅

while T δ,ε
Y (ψ, φ) = ∅ imply that F δ

X (ψ → φ) > F δ
Y (ψ → φ).

C. Recap of bipartite results

Having defined these sets, let us recap how they relate to
one another in the bipartite case. As mentioned, Ref. [11]
studied faithful transformations in the bipartite setting. There
it was shown that, for any pure state input, the optimal fidelity

achievable with a faithful transformation, F , can always be
achieved with a deterministic transformation to a pure state
whose fidelity with the target state is F . We can express these
results using the terminology introduced above. First, note
that if δ > 0, then the above results still hold as we simply
optimize over pure states δ-close to the initial state. Thus, for
all δ � 0, we have

F δ
ens(ψ → φ) = F δ

det(ψ → φ), (24)

where the supremum in Eq. (23) is always obtainable. Conse-
quently, whenever an approximate ensemble transformation is
possible, an approximate deterministic transformation is also
possible:

T δ,ε
ens (ψ, φ) �= ∅ iff T δ,ε

det (ψ, φ) �= ∅. (25)

We can also consider bipartite SLOCC preserving transfor-
mations. Here we note that the optimal faithful transformation
with respect to |ψ〉 and |φ〉, transforms |ψ〉 to a state with
Schmidt rank equal to the minimum of the Schmidt ranks
of |ψ〉 and |φ〉 [11]. Now consider |ψ〉 ∼=SLOCC |φ〉 to be
fully entangled and consider a state |ψ̃〉 δ-close to |ψ〉 (note,
|ψ̃〉 need not be fully entangled but can at most have the
same Schmidt rank as |ψ〉). Let � ∈ Tdet(ψ̃ ) be the deter-
ministic transformation that achieves the optimal fidelity with
respect to |φ〉. Then � must output a state that has the
same Schmidt rank as |ψ̃〉 (as the Schmidt rank of |φ〉 is
maximal and hence, might be larger than the one of |ψ̃〉).
Therefore, � ∈ Tdet-SLOCC(ψ̃ ). This holds for all |ψ̃〉 δ-close to
|ψ〉. This is all to say, if |ψ〉 ∼=SLOCC |φ〉 are fully entangled,
then

F δ
ens(ψ → φ) = F δ

ens-SLOCC(ψ → φ) (26)

= F δ
det-SLOCC(ψ → φ). (27)

Moreover, we have, for all δ � 0 and ε � 0,

T δ,ε
ens (ψ, φ) �= ∅ iff T δ,ε

ens-SLOCC(ψ, φ) �= ∅ (28)

iff T δ,ε
det-SLOCC(ψ, φ) �= ∅. (29)

In this sense, the hierarchy of approximate transformations
collapses for fully entangled states in the bipartite setting.

D. The main results: Comparison of multipartite and bipartite
approximate transformations

We have introduced a hierarchy of approximate transfor-
mations that are well motivated, both from an operational and
an entanglement theory perspective. Moreover, we have seen
that this hierarchy collapses in the bipartite setting. In this
paper, we explore this hierarchy in the multipartite setting.
In particular, our main result is that this hierarchy does not
generally collapse in the multipartite setting, instead yielding
a much more intricate structure. To see how dramatically
different the multipartite setting is, it is useful to compare it
to the aforementioned bipartite results. In particular, we will
show that, both when considering ensemble transformations
within an SLOCC class and general ensemble transforma-
tions, deterministic transformations need not be optimal (see
Result 1 in Sec. IV B 1 and Result 2 in Sec. IV B 2). This
stands in stark contrast to the bipartite case. Moreover, we
go a step further and provide strong numerical evidence
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that, in the multipartite setting, there are approximate trans-
formations with no nearby deterministic transformation (see
Result 3 in Sec. IV C). Consequently, we show that not
only are deterministic transformations sometimes subopti-
mal but that approximate transformations can also be more
than simply deterministic transformations up to some error.
Before demonstrating these results, we first derive a few
simplifications that are useful for the study of approximate
transformations.

E. Simplifications of approximate transformations

We now make some general observations which simplify
our subsequent analysis in the multipartite setting. Namely,
we first show that it is indeed sufficient to study approximate
transformations of pure states. Then we show it is sufficient
to consider LOCC protocols with finitely many rounds of
communication. Finally, we show that faithful transformations
within an SLOCC class approximate general faithful transfor-
mations arbitrarily well.

1. Mixed vs pure initial states

We begin by showing that it is sufficient to consider trans-
formations with a pure state input. More precisely, we have
the following lemma.

Lemma 3. Let ρ be δ-close to |ψ〉 and �(ρ) be ε-close
to |φ〉, with � ∈ Tens(ψ ). Then for all α, β > 0 such that
1
α

+ 1
β

� 1 there exists some state |ψ̃〉 and transformation

�̃ ∈ Tens(ψ ) such that |ψ̃〉 is (αδ)-close to |ψ〉 and such that
�̃(ψ̃ ) is (βε)-close to |φ〉. �

Proof. See Appendix A 2
This lemma tells us that approximate transformations with

mixed state inputs can be studied by considering approximate
transformations with pure state inputs but with slightly bigger
δ- and ε-vicinities (α = β = 2 is sufficient). This is why,
when defining Tens(ψ ), we consider pure state inputs. Note
that a less tight constraint follows directly from Eq. (2) (see
Appendix A 2).

2. LOCC vs LOCCN

Not only is it sufficient to restrict the initial state to be pure,
but it is also sufficient to restrict ourselves to LOCC trans-
formations with only finitely many rounds of communication,
LOCCN [15,50]. To see this, let us first recall the definition
of an (infinite)-round LOCC protocol [15,50]. A map, �, is in
LOCC, if there exists a sequence of LOCCN protocols with
corresponding maps (�i )i∈N with the following three prop-
erties: (1) the ith protocol consists of i rounds; (2) the first i
rounds in the (i + 1)th protocol coincide with the ith protocol;
and (3) the sequence (�i )i∈N converges to � with respect to
the diamond norm [15]. This implies that, for all states |ψ〉,
limi→∞ D(�i(|ψ〉〈ψ |),�(|ψ〉〈ψ |)) = 0, where D is the trace
distance. This means that for all η > 0, there exists an N ∈ N
such that, for all i � N , D(�i(|ψ〉〈ψ |),�(|ψ〉〈ψ |)) < η.

Applying this notion to approximate transformations, it
follows that for any infinite round protocol that gets ε-close to
a target state, |φ〉, and ∀η > 0, the protocol can be truncated
to a finite number of rounds, such that (by the metric property
of the trace norm) the truncated protocol yields a state that is

(ε + η)-close to |φ〉. Hence, up to arbitrarily small η, it is suf-
ficient to study LOCCN . Moreover, as we assume throughout
this paper that each measurement performed by a party during
a round of an LOCC protocol has only finitely many outputs,
the LOCCN protocol has only finitely many outputs. Thus, we
see why we may consider finite ensembles as outputs when
defining Tens.

3. Ensemble transformations within an SLOCC class vs general
ensemble transformations

We now show that in fact faithful transformations
within an SLOCC class, i.e., � ∈ Tens-SLOCC(ψ ), can ap-
proximate general faithful transformations, i.e., �̃ ∈ Tens(ψ ),
arbitrarily well. Specifically, we prove the following
theorem.

Theorem 4. For all states, |ψ〉, |φ〉, and δ > 0,

F δ
ens(ψ, φ) = F δ

ens-SLOCC(ψ, φ). (30)

Proof. Before proving this theorem, note that the equal-
ity in Eq. (30) clearly relies on the fact that the optimal
fidelity is defined with respect to the supremum. Thus,
we will show that, for any ensemble transformation which
achieves a given average fidelity, there is an SLOCC preserv-
ing transformation that achieves an arbitrarily close average
fidelity.

Now, consider n-qudit systems and set δ = 0 (we extend
the argument to δ > 0 at the end). By Sec. III E 2, for all
ε > 0 there exists a finite round LOCC protocol8 with corre-
sponding map, �ε , such that Fens(ψ, φ) − Fav (�ε (ψ ), φ) �
ε. Any such finite-round protocol is equivalent to another
protocol in which all parties only ever apply two outcome
measurements [59] (equivalent in the sense that for any input,
the new protocol outputs the same outputs with the same
probabilities). Therefore, wlog let �ε correspond to such a
protocol for each ε. For any two-outcome measurement dur-
ing this protocol with measurement operators {M0, M1}, we
can use the polar decomposition to write Mi = UiQi, with Ui

unitary and Qi � 0. It follows from the completeness relation
that Q0 and Q1 share a common eigenbasis. Thus we may
write Mi = UiV DiV †, where V is unitary and Di � 0 is a
positive, diagonal matrix. Note, we have two possibilities for
each two outcome measurement: (1) both measurements are
full-rank and (2) at least one Mi is not full rank (at least one
Di has at least one zero diagonal entry). At the end of the
protocol, there will be finitely many outputs. We write �ε =∑m

i=1 �ε
i ⊗ |i〉〈i|, where �ε

i are the CP maps corresponding to
the m ∈ N final outputs.9

We construct now an SLOCC-preserving protocol with
outputs arbitrarily close to the original outputs and hence lead-
ing to the same average fidelity. To do so, we now modify each
noninvertible measurement in the protocol above by an arbi-
trarily small amount, ensuring that all measurement operators

8This, as we always assume, has finitely many measurement out-
comes per measurement round.

9Note, in the protocol, we also implicitly assume that the parties
never “forget” measurement outcomes. Thus, �ε

i are Kraus-rank 1
CP maps.
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FIG. 2. Approximate transformations within an SLOCC class are
more powerful than deterministic transformations within an SLOCC
class.

are invertible. To this end, for each ε > 0, we consider a fam-
ily of alternative finite-round protocols, �ε,χ , parameterized
by χ ∈ (0, 1), by replacing each measurement above accord-
ingly: in case (1), we retain the original measurement; in case
(2), we implement instead the measurement {M̃χ

i } with M̃χ
i =

UiV [
√

(1 − χ )D2
i + χD2

i⊕1]V † (with ⊕ indicating addition
modulo 2). It is easy to verify these measurement operators
satisfy the completeness relation ∀χ ∈ (0, 1). Moreover, it
is clear that M̃χ

i are invertible ∀χ ∈ (0, 1), as the diagonal
entries of D0 and D1 are greater than or equal to zero and never
vanish for the same entry (otherwise {M0, M1} would not be
complete). Therefore, �ε,χ ∈ Tens-SLOCC(ψ ), ∀χ ∈ (0, 1).

For the final step of the argument, note that, since there are
finitely many rounds, for each ε, each of the outputs of �ε,χ ,
{�ε,χ

i (ψ )}m
i=1, is continuous in χ .10 In particular, ∀ε′ > 0,

∃χ > 0 such that D(�ε,χ
i (ψ ),�ε

i (ψ )) � ε′, ∀i ∈ {1, . . . , m}.
Moreover, piF [�ε,χ

i (ψ )/pi, φ] ≡ tr[�ε,χ
i (ψ )|φ〉〈φ|] is also

continuous in χ and thus so is Fav (�ε,χ (ψ ), φ). Therefore,
for each given ε, it holds that ∀ε′′ > 0 ∃χ > 0 such that
|Fav (�ε,χ (ψ )) − Fav (�ε (ψ ), φ)| � ε′′.

Thus, for any η > 0, choose ε, ε′′ > 0 such that ε + ε′′ �
η, and then

|Fens(ψ, φ) − Fav (�ε,χ (ψ ))|
� |Fens(ψ, φ) − Fav (�ε (ψ ), φ)|

+ |Fav (�ε (ψ ), φ) − Fav (�ε,χ (ψ ))|
� ε′′ + ε � η, (31)

which proves the result for δ = 0. �
To extend to the δ > 0 case, it is sufficient to consider

the maximum achievable fidelity from any state within the δ-
vicinity. Let |ψ̃〉 with F (ψ̃, ψ ) � 1 − δ be the input state for
this optimal transformation. Then the above argument applied
to this transformation proves the claim.

As a final comment, we recall that LOCCN ensemble
transformations within an SLOCC class are a subset of SEP1

ensemble transformations [50] (see Appendix A 1 for further
details).

10Note, �
ε,χ

i (ψ ) are not normalized.

FIG. 3. In the multipartite case, the optimal transformation is not
always deterministic. There are choices of states |ψ〉 and |φ〉 and
ε > 0 such that a faithful ensemble transformation of |ψ〉 is possible
(blue dashed lines), but there is no deterministic transformation of
|ψ〉 into the ε vicinity around |φ〉.

IV. APPROXIMATE TRANSFORMATIONS

Having introduced approximate transformations and iden-
tified five physically relevant types [T δ,ε

ens (ψ, φ), etc.], we now
set out to better understand these transformations. A complete
characterization of these sets of transformations seems unfea-
sible. To see this, consider for instance the set T δ,ε

det (ψ, φ).
In order to characterize this set, one must characterize all
deterministic transformations from any state in the δ-vicinity
around |ψ〉 to a state in the ε-vicinity around |φ〉. However, for
any finite δ > 0, there may be an infinite number of SLOCC
classes intersecting the δ-vicinity around |ψ〉. Moreover,
in the general cases, one must also consider transforma-
tions to non-fully entangled states, which is challenging by
itself.

Nonetheless, in the coming sections, we will lay out the
landscape of approximate transformations. We have seen
that, in the bipartite setting, the hierarchy between these
transformations collapses as the optimal fidelity is always
achievable with a deterministic transformation. In the fol-
lowing, we will show that the multipartite landscape is
considerably richer. In Sec. IV A we begin by considering
the maximally entangled set (MES) under approximate trans-
formations. Then in Sec. IV B we consider transformations
in which we start exactly with the initial state; that is, we
set δ = 0. Here we start in Sec. IV B 1 with the simplest
approximate transformations, i.e., T 0,ε

ens-SLOCC and T 0,ε
det-SLOCC.

We show that, unlike the bipartite case, there are ensem-
ble transformations within an SLOCC class that are better
than any deterministic transformation within an SLOCC class
(see Fig. 2).

From here, we move on to study general faithful trans-
formations in Sec. IV B 2. Here we study how T 0,ε

ens , and
T 0,ε

det relate to one another. We show that, unlike the bipar-
tite case, there are cases in the multipartite setting where
the optimal approximate transformation is nondeterministic
(see Fig. 3). We also present a multipartite example where
the optimal faithful transformation is deterministic and ex-
tend these results to the setting where δ > 0, but sufficiently
small. In Appendix A 3 we also discuss the limiting case
where ε → 0.
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FIG. 4. Strong numerical evidence for the existence of a faithful
transformation for which no deterministic transformations between
the ε vicinities of the initial and final states exist. Thus, ap-
proximate transformations are more powerful than deterministic
transformations.

Finally, in Sec. IV C we tackle the question of whether
there are really significantly more approximate transforma-
tions than deterministic transformations; namely, are there
approximate transformations which are not in the vicinity
of any exact, deterministic transformation? More precisely,
in Sec. IV C we set δ = ε > 0—in effect, fixing a resolu-
tion, up to which we can identify states—and provide strong
numerical evidence for the existence of an approximate trans-
formation with no deterministic transformation between the
corresponding ε-vicinities around the initial and final states
(see Fig. 4).

A. MES

We begin by studying the maximally entangled set (MES)
under approximate transformations. To begin, contrary to de-
terministic LOCC in the multipartite setting [9,10] (see the
preliminaries), multipartite states can never be isolated under
general approximate transformations for any finite δ and/or ε.
The reason for this is trivial: all states are always convertible to
states ε-close by simply doing nothing. This observation has
direct consequences for the MES. Namely, for any finite ε >

0, we can cover the Hilbert space in finitely many ε-vicinities.
Therefore, under general approximate transformations, the
MES is always finite. However, unlike in the exact case,
the MES under faithful transformations is nonunique (for a
further discussion of the MES under larger sets of operations
than LOCC; see Ref. [27]). In the case of SLOCC preserving
transformations, by the same argument, we also have that, for
any given SLOCC class and any finite ε and/or δ > 0, a finite
set of states in the SLOCC class are sufficient to reach every
state in the SLOCC class via SLOCC-preserving approximate
transformations.

B. Transformations from a fixed initial state (δ = 0)

In this section, we consider the case where we start exactly
with |ψ〉 (i.e., set δ = 0) and transform it ε-close (with ε > 0)
to some desired state, |φ〉. We will show ensemble transforma-
tions within an SLOCC class, T 0,ε

ens-SLOCC, are more powerful
than deterministic transformations within an SLOCC class,
T 0,ε

det-SLOCC. We will also show the optimal transformation is
not always deterministic, and thus ensemble faithful transfor-
mations, T 0,ε

ens , are in general more powerful than deterministic

faithful transformations, T 0,ε
det . Finally, we will provide exam-

ples where the optimal transformation is deterministic.

1. Transformations within an SLOCC class

We begin our investigation by studying ensemble
transformations within an SLOCC class and comparing
T 0,ε

ens-SLOCC(ψ, φ) and T 0,ε
det-SLOCC(ψ, φ). Throughout this sub-

section, we consider |ψ〉 and |φ〉 to be SLOCC equivalent.
Recall in the bipartite case, we had that the optimal fidelity un-
der Tens-SLOCC is equal to the optimal fidelity under Tdet-SLOCC.
Moreover, the optimal fidelity is always achievable, and thus
T 0,ε

ens-SLOCC(ψ, φ) is empty iff T 0,ε
det-SLOCC(ψ, φ) is empty in the

bipartite case.
In this section, we show that this result does not generally

hold in the multipartite case. More precisely, we show the
following result.

Result 1: There exist SLOCC equivalent states,
|ψ〉 ∼=SLOCC |φ〉, and an ε > 0 such that

T 0,ε
ens-SLOCC(ψ, φ) � T 0,ε

det-SLOCC(ψ, φ) = ∅ (32)

and

F 0
ens-SLOCC(ψ → φ) > F 0

det-SLOCC(ψ → φ) (33)

(see Fig. 2).
We will show this by constructing an ensemble trans-

formation that is not SLOCC-preserving, i.e., � ∈ Tens(ψ ) \
Tens-SLOCC(ψ ), but has a considerably higher fidelity than
F 0

det-SLOCC(ψ → φ). We will then use the fact that trans-
formations in Tens-SLOCC(ψ ) approximate transformations in
Tens(ψ ) arbitrarily well (see Theorem 4) to prove that there
is a transformation in Tens-SLOCC(ψ ) which is better than any
transformation in Tdet-SLOCC(ψ ).

To construct our example, we consider the following initial
state:

|ψ〉 ∝
√

7|00000〉 +
√

5|11111〉 +
√

10|D5,3〉, (34)

where |D5,3〉 is the Dicke state of five qubits with three ex-
citations. This state is generic in the sense described in the
preliminaries [10]; in particular, it is isolated. Moreover, it
is critical and permutationally symmetric, which will make
calculations simpler.

As a target state, we consider a one-parameter family of
states given by

|φ(λ)〉 ∝ D⊗5
λ |ψ〉, (35)

where Dλ = diag(1/2 + λ, 1/2 − λ) and λ ∈ (0, 1/2). Note,
in the limit λ → 1/2, the local operator Dλ converges to the
projector |0〉〈0|. As 〈0|⊗5|φ(λ)〉 �= 0, |φ(λ)〉 therefore con-
verges to |0〉⊗5.

We begin with T 0,ε
det-SLOCC(ψ, φ). As the initial state

is generic and therefore isolated, the only fully entan-
gled states it can deterministically reach with LOCC are
LU equivalent states. Therefore, F 0

det-SLOCC(ψ → φ(λ)) =
FLU(ψ, φ(λ)). Moreover, we have

T 0,ε
det-SLOCC(ψ, φ(λ)) �= ∅ iff FLU(ψ, φ(λ)) � 1 − ε. (36)

Note that, even though both |ψ〉 and |φ(λ)〉 are per-
mutationally invariant states with positive coefficients in
the computational basis [60–62], an analytic expression for
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FLU(ψ, φ(λ)) is still not easily attainable. As such, we
will often consider bipartite unitaries to determine upper
bounds, namely, FLU(ψ, φ(λ)) = max⊗Ui F (|ψ〉,⊗iUi|φ〉) �
maxU,V F (|ψ〉,U ⊗ V |φ〉). This last expression, can be easily
evaluated [11]. For instance, we have that

FLU(ψ, φ(λ)) � 1

2

(∑
i

√
μi(ρ1(λ))

)2

, (37)

where μi(ρ1(λ)) are the eigenvalues of the reduced density
matrix on qubit 1 for |φ(λ)〉. We will use this upper bound
frequently throughout this paper.11

As a general ensemble transformation, we consider the
standard one successful branch protocol (OSBP). In this
protocol, all parties measure simultaneously. If they are
all successful, they will have transformed |ψ〉 to |φ(λ)〉.
This successful outcome occurs with maximum probabil-

ity, pmax(|ψ〉 → |φ(λ)〉) ≡ pmax(λ) = n2
λ

(1+λ)10 , where n2
λ =

||D⊗5
λ |ψ〉||2 [9,10] [see Eq. (7)]. In the event, at least one party

does not get a successful outcome, then all parties convert the
postmeasurement state to a product state. For our protocol,
we choose this product state to be |00000〉. We choose this
because (as is easy to verify using the fact that |φ(λ)〉 is
permutationally symmetric and has only positive coefficients
[60–62]), the product state nearest to |φ(λ)〉 is |00000〉, ∀λ ∈
(0.00416, 1/2):

|00000〉 = arg max⊗i|ẽi〉F (⊗i|ẽi〉, |φ(λ)〉). (38)

∀λ ∈ (0.00416, 1/2).12 The average fidelity of this protocol is
then given by

Fav

(
�λ

OSBP(ψ ), φ(λ)
) = pmax(λ) + (1 − pmax(λ))F0(λ),

(39)

where F0(λ) = F (|0〉⊗5, |φ(λ)〉).
It is easy to verify that, for λ > λ0 = 0.0696,

Fav (�λ
OSBP(ψ ), φ(λ)) is strictly larger than FLU(ψ, φ(λ)). As,

by Theorem 4, we have that there is an SLOCC-preserving
ensemble transformation with an average fidelity arbitrarily
close to Fav (�λ

OSBP(ψ ), φ(λ)), we can therefore conclude that
there is an SLOCC-preserving ensemble transformation with
a strictly better average fidelity than F 0

det-SLOCC(ψ → φ(λ));
that is, for λ ∈ (λ0, 1/2)

F 0
ens-SLOCC(ψ → φ(λ)) > F 0

det-SLOCC(ψ → φ(λ)). (40)

Moreover, for λ ∈ (λ0, 1/2), we also have that there exists an
ε > 0 such that

T 0,ε
ens-SLOCC(ψ, φ) � T 0,ε

det-SLOCC(ψ, φ) = ∅. (41)

A few comments are now in order. First, it is easy to see
that this argument extends to any generic initial state and any

11Note, we could use the reduced density matrix for qubits 1 and 2
to obtain a tighter bound, but it makes the expression more compli-
cated and doesn’t change any of the subsequent analysis.

12As in all the following arguments we end up considering λ >

0.0696, we simplify our analysis by choosing |00000〉 as the failing-
outcome product state, ∀λ ∈ (0, 1/2), rather than modifying the
protocol for the case of λ < 0.00416.

SLOCC equivalent target state sufficiently far away. That is,
for almost all states (generic states are full-measure), |ψ〉,
and any SLOCC equivalent state, |φ〉, such that FLU(ψ, φ) <

Fav (�OSBP(ψ ), φ), there is an ε > 0 such that Eq. (41) holds.
Second, this argument can easily be extended to sufficiently
small δ > 0. This holds as the set of generic states is open
[9,10],13 and therefore, for sufficiently small δ, all states in
the δ-vicinity are also generic. On must also choose |φ〉 suffi-
ciently far away that the δ and ε-vicinities do not overlap (see
Appendix A 4). Finally, as the results of Ref. [10] apply for
n � 5, these results also hold for larger system sizes.

2. Comparison between general transformations

In this section we continue to consider transformations
with δ = 0 but now consider general transformations. Specif-
ically, we study how T 0,ε

ens (ψ, φ) and T 0,ε
det (ψ, φ) relate to one

another. Recall that, in the bipartite setting, we have that
the optimal fidelity is always achievable with a determinis-
tic transformation and T 0,ε

ens (ψ, φ) is empty iff T 0,ε
det (ψ, φ) is

empty. In this section, we show that the multipartite setting is
considerably more nuanced. In particular, we show that, un-
like the bipartite case, the optimal fidelity cannot generally be
achieved with a deterministic transformation. More precisely,
we show the following result.

Result 2: There exist states |ψ〉 and |φ〉 such that

F 0
ens(ψ → φ) > F 0

det(ψ → φ), (42)

and that, for these states, there exist ε > 0 such that

T 0,ε
ens (ψ, φ) � T 0,ε

det (ψ, φ) = ∅ (43)

(see Fig. 3).
To round out this result, we will also show, unsurprisingly,

that there exist pairs of states where the optimal transforma-
tion is deterministic.

So, as outlined, we begin by proving that, contrary to
the bipartite setting, the optimal fidelity cannot generally be
achieved with a deterministic transformation. To see this,
consider two five-qubit states |ψ〉 and |φ〉, such that a de-
terministic transformation from |ψ〉 to |φ〉 is possible, but
|ψ〉 is not close to |φ〉. Now let us pick a generic state,
|ψ̃ε〉, δ = ε2-close to |ψ〉. It follows from the inequalities
Eq. (2)14 and Eq. (15) that F (|ψ̃ε〉 → |φ〉) � 1 − ε; that is,
we can faithfully transform |ψ̃ε〉 to |φ〉. Note that, as the set
of generic states is dense [9,10], ε can be chosen arbitrarily
small. We now show that we can choose ε such that there is
no deterministic transformation from |ψ̃ε〉 to |φ〉. As |ψ̃ε〉 is
generic, it can be transformed into only either (a) a non-fully
entangled state or (b) an LU equivalent state. Regarding (a),
we can choose ε sufficiently small that the ε-vicinity around
|φ〉 contains only fully entangled states (we can do this as
the set of separable states is closed). Regarding (b), it is
easy to verify, using Eq. (15) and the metric properties of
the trace distance, that provided max⊗Ui F (|ψ〉,⊗iUi|φ〉) �

13Note, normalized generic states are also open and dense in the set
of normalized states with respect to the topology induced by the trace
distance and are full measure; see [64].

14It is easy to verify that Eq. (2) also holds in the multipartite case.
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1 − (
√

ε + ε)2, |ψ̃ε〉 cannot be transformed into the ε-vicinity
around |φ〉 with LUs. Thus, we have constructed a faithful
transformation from |ψ̃ε〉 to |φ〉 such that there is no deter-
ministic transformation from |ψ̃ε〉 to the ε-vicinity around
|φ〉. Consequently, Eq. (43) holds and the optimal faithful
transformation is strictly not deterministic.

As a concrete example, consider the transformation
|ψ〉 = |GHZ5〉 ∝ |00000〉 + |11111〉 to |φ〉 ∝ (1⊗4 ⊗
diag( 2

3 , 3
2 ))|GHZ5〉. Such a transformation is possible

via LOCC [6]. By considering all possible bipartite
splittings, we find that the closest biseparable, pure
state has fidelity 81

97 ≈ 0.835 with |φ〉. Moreover, the
maximum fidelity over bipartite unitaries upper bounds
the maximum fidelity over local unitaries. Thus, from
Ref. [11], we have maxUi F (⊗Ui|ψ〉, |φ〉) < 169

194 ≈ 0.871.

Now let ε <
1−

√
1+4

√
1− 169

194 +2
√

1− 169
194

2 ≈ 0.0786 and consider
a generic state, |ψ̃〉 such that F (|GHZ5〉, |ψ̃〉) > 1 − ε2

(which, as previously argued, is guaranteed to exist). Then by
the above argument, |ψ̃〉 can be transformed ε-close to |φ〉
with an ensemble transformation, whereas no deterministic
transformation can achieve this accuracy.

Finally, note that this argument easily extends to the case
of sufficiently small δ > 0 (chosen independently from ε). As
in the previous section, this is true because the set of generic
states used in the above argument is open [9,10] (see the
preliminaries). Consequently, for any generic state, |ψ̃〉, there
is a δ > 0 such that the δ-vicinity around |ψ̃〉 consists of only
generic states. Therefore (assuming δ- and ε-vicinities do not
overlap; see Appendix A 4]), the entire argument above goes
through. We emphasise that this only holds for small enough
δ, as the argument depends on all states in the δ-vicinity
being generic; for example, in our construction above, the
deterministically transformable state |ψ〉 was ε2-close to |ψ̃〉.
Therefore, in order for the δ-vicinity around |ψ̃〉 to consist
only of generic states, δ must be necessarily smaller than ε2,
i.e., δ < ε2 � ε (indeed, it most likely will have to be chosen
yet smaller). Last, as the above argument follows from the ex-
istence of a dense, open set of isolated states, the conclusions
also hold true for n � 5 and qudits [9,10].15

Having demonstrated that, in general, optimal transforma-
tions are not deterministic, we now round out this insight
and demonstrate that, while in general deterministic trans-
formations are suboptimal, there are cases where the optimal
approximate transformation is deterministic. That is, we show
that, for all system sizes, there is a |ψ〉 and a |φ〉 such that
|ψ〉 �→LOCC |φ〉, yet F 0

ens(|ψ〉 → |φ〉) = F 0
det(|ψ〉 → |φ〉).

To see this, we build a construction using the arguments
from Ref. [11]. Consider as an initial state the following
states in the GHZ class, |ψλ〉 = √

d (
√

Dλ ⊗ 1⊗n−1)|GHZd
n〉,

where |GHZd
n〉 = 1√

d

∑d−1
i=0 |ii . . . i〉 is the n-qudit GHZ state

and
√

Dλ = diag(
√

λ0,
√

λ1, . . .
√

λd−1) is a diagonal positive
matrix such that

∑
i λi = 1. As a target state, we consider

the n-qudit GHZ state itself, i.e., |φ〉 = |GHZd
n〉. Note that

if λi �= 1/d for any i ∈ {0, . . . , d − 1}, then |ψλ〉 �→LOCC |φ〉.
The fact that the optimal faithful transformation is determin-

15In the case, d � 3, the result holds for n � 4.

istic then follows from a similar argument as in Ref. [11].
Namely, it is easy to see that the optimal bipartite LOCC
transformation is to do nothing, which naturally is achievable
in the multipartite setting too.

As a final comment, one can consider the case of δ > 0.
Here we do not provide a proof, but Ref [12] reported strong
numerical evidence that, in the case of three qubits, the opti-
mal protocol for transforming any GHZ-like state to the GHZ
state is to apply LUs.

C. Transformations with respect to a fixed resolution (δ = ε > 0)

In the previous section, we considered faithful transfor-
mations that start precisely with the initial state (δ = 0).
Moreover, we saw that whenever our results hold due to the
initial state being a generic state, then our results also hold for
sufficiently small δ. This is because the set of generic states is
open, and so, for sufficiently small δ, the δ-vicinity around a
generic state consists only of generic states. However, the con-
structions in the previous sections were nevertheless “near” a
known deterministic transformation. This begs the question
of whether approximate transformations are more than just
deterministic transformations between the ε-vicinities around
the initial and final state. It is this question that we tackle in
this section.

To this end, we consider the case where δ = ε. Physically,
this is motivated by imagining a scenario in which we have
some fixed resolution, ε > 0. In this case, both the initial
and final state can only be known up to a resolution of ε.
Thus, we wish to know if any of the pure states that could
be misidentified as the initial state can be deterministically
transformed into a pure state that could be misidentified as
the target state. Note that it is not straightforward to simply
use the inequality in Eq. (2) to construct an approximate
transformation that is not near a deterministic transformation
(as done in Sec. IV B 2). In fact, it is easy to verify that setting
δ = ε rules out such a construction.

We note that in the bipartite case, we still have
T ε,ε

ens (ψ, φ) = ∅ iff T ε,ε
det (ψ, φ) = ∅. In the remainder of this

section, we provide strong numerical evidence that approx-
imate transformations are more powerful than deterministic
transformations between the ε-vicinities around |ψ〉 and |φ〉.
More precisely, we show that the following result holds.

Result 3: There is strong numerical evidence that there is a
|ψ〉, a |φ〉 and an ε > 0 such that

T ε,ε
ens (ψ, φ) � T ε,ε

det (ψ, φ) = ∅ (44)

(see Fig. 4).
Thus, in the multipartite case, approximate transformations

really are more than deterministic transformations between
the ε-vicinities around the initial and final state.

The idea of our construction is to consider generic states
and have ε small enough such that the ε-vicinity around the
initial state consists only of generic states. Consequently, our
protocol will have to have an average fidelity of almost 1 as, in
order for � ∈ T ε,ε

ens (ψ, φ), we must have Fav (�(ψ ), φ) � 1 −
ε. This will ultimately lead us to considering transformations
to target states that, though still entangled, are very close to
|0〉⊗5. Nonetheless, by choosing ε this way, we simplify our
problem considerably as all states in the initial ε-vicinity can
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only be transformed into either (a) LU equivalent states or (b)
non-fully entangled states.

We introduce a family of protocols, �λ with λ ∈ (0, 1/2),
which transform an initial, generic state, |ψ〉, towards a
generic, target state, |φ(λ)〉. We find in the limiting case
limλ→1/2 Fav (�λ(ψ ), φ(λ)) = 1. Therefore, by a suitable
choice of λ ∈ (0, 1/2), our protocol does indeed achieve
an average fidelity Fav (�λ(ψ ), φ(λ)) � 1 − ε, with ε suffi-
ciently small to ensure that all states in the ε-vicinity around
the initial state are generic states. We then upper bound
the maximum achievable fidelity of deterministic transfor-
mations from the ε-vicinity around the initial state; that is,
we upper bound F ε

det(ψ, φ(λ)). Finally, we put these results
together, showing strong numerical evidence that there is a
λ ∈ (0, 1/2) and ε > 0 such that Fav (�λ(ψ ), φ(λ)) � 1 −
ε > F ε

det(ψ, φ(λ)) and thus there is a |ψ〉, |φ〉 and ε > 0 such
that

T ε,ε
ens (ψ, φ) � T ε,ε

det (ψ, φ) = ∅. (45)

Our construction is a modification of the one we intro-
duced in Sec. IV B 1. Once again, we consider the generic,
permutationally invariant state in Eq. (34), |ψ〉, as the ini-
tial state and consider the family of states |φ(λ)〉 ∝ D⊗5

λ |ψ〉,
with Dλ = diag(1/2 + λ, 1/2 − λ) and λ ∈ (0, 1/2), as target
states. As a protocol, we consider a modification of the OSBP
from Sec. IV B 1.16 Recall, in the original protocol, all parties
measure simultaneously; if all the parties get a successful
outcome, then they will have transformed the initial state to
the target state (this occurs with maximal probability); but if
one of the parties gets an unsuccessful outcome, then they all
transform the postmeasurement state to the nearest product
state.

In our modified protocol, the parties do not perform their
measurements simultaneously but instead perform them se-
quentially (see Fig. 5). Each party performs in turn the
measurement:

M0 = 1

1/2 + λ
Dλ, (46)

M1 =
√
1 − M†

0 M0 ∝ |1〉〈1|. (47)

This is the measurement that would be used in an OSBP.
In the event each party measures M0 (which happens for each
party with probability pi), they obtain the target state. This
outcome occurs with probability �i pi(λ) = pmax(|ψ〉 →LOCC

|φ(λ)〉) ≡ pmax(λ) [9,10]. Thus indeed, this protocol will
be an optimal conclusive transformation [i.e., belongs to
Tp max(ψ, φ(λ))].

However, unlike in the standard OSBP, in the event one
party in the sequence does not get the successful outcome,
the parties do not simply transform to a product state. Let
party k ∈ {1, . . . , 5} measure outcome M1. In this case, the
postmeasurement state will be

|χk (λ)〉 ∝ D⊗k−1
λ ⊗ 1⊗6−k|χ̃k〉, (48)

16Note that neither the OSBP nor the natural extension of it involv-
ing a single four-qubit state leads to a higher fidelity than the protocol
presented here.

FIG. 5. The protocol proposed in this section. Instead of a stan-
dard OSBP, the parties sequentially measure. In the event one fails,
yielding a four-qubit state, the parties transform the state proba-
bilistically with a standard OSBP to a four-qubit state such that the
output fidelity is optimized. In case of an unsuccessful measurement,
yielding a three-qubit state, the state is transformed deterministically
to a product state.

with

|χ̃k〉 = |1〉k ⊗
(√

5

11
|1111〉 +

√
6

11
|D4,2〉

)
{1,...,5}\{k}

. (49)

|χk (λ)〉 is no longer fully entangled, and thus there is zero
probability of transforming it to |φ(λ)〉. Instead of simply
transforming this failing branch into a product state, the par-
ties apply a conclusive transformation to a four-qubit state that
optimizes the average output fidelity.

To be more precise, first note that for any given state,
|ξ̃〉 ∼=SLOCC |χk (λ)〉, we can analytically lower bound the max-
imum probability of transforming |χk (λ)〉 to |ξ̃〉 by [9,10]

pmax(|χk (λ)〉 → |ξ̃〉) � ||⊗gi|χk (λ)〉||2
�iμmax(g†

i gi )
≡ qλ,k (ξ̃ ). (50)
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Here ⊗igi|χk (λ)〉 = |ξ̃〉 and μmax(X ) is the largest eigenvalue
of X .

Returning to our protocol, in the event party k does not
get a successful outcome, the parties instead implement the
ensemble transformation

|χk (λ)〉 →{(qk (λ), |ξk (λ)〉), ((1 − qk (λ)), |0〉⊗5)}, (51)

where qk (λ) ≡ qλ,k (ξk (λ)), and |ξk (λ)〉 is defined such that the
average fidelity of this protocol is optimized,

|ξk (λ)〉 ≡ arg max|ξ̃〉∼=SLOCC|χk (λ)〉(qλ,k (ξ̃ ) F (|ξ̃〉, |φ(λ)〉)

+ [1 − qλ,k (ξ̃ )]F0(λ)), (52)

with F0(λ) being the overlap of |φ(λ)〉 and |0〉⊗5 [recall |0〉⊗5

is the nearest product state for λ ∈ (0.00416, 1/2)].
Thus, in the event party k has an unsuccessful measure-

ment, i.e., measures M1, the parties coordinate to transform
|χk (λ)〉 to |ξk (λ)〉 with probability qk (λ). If they fail to
transform the state into |ξk (λ)〉, all parties determinstically
transform the postmeasurement state to |0〉⊗5.

Putting this altogether, we have an optimal conclusive pro-
tocol in which (a) with probability �i pi(λ) = pmax(λ), we get
exactly the target state |φ(λ)〉 and (b) with probability

q̃k (λ) = [
�k−1

j=0 p j (λ)
]
[1 − pk (λ)]qk (λ) (53)

we reach the state |ξk (λ)〉, which has fidelity Fk (λ) ≡
F (|ξk (λ)〉, |φ(λ)〉) with the target state, and (c) in the remain-
ing branches, the protocol outputs |0〉⊗5 (see Fig. 5). Thus, the
average fidelity of the protocol is given by

Fprot(λ) = pmax(λ) +
5∑

k=1

q̃k (λ)Fk (λ)

+
(

1 − pmax(λ) −
5∑

k=1

q̃k (λ)

)
F0(λ). (54)

As analytically evaluating the optimization in Eq. (52) is
not straightforward,17 we numerically optimize to find |ξk (λ)〉.
As a result, the remainder of this proof remains numerical in
nature.

A numerically derived Fprot(λ) is plotted in Fig. 6 (the red
line). Recall that in order for all states in the initial vicinity
to be generic, we require ε to be very small and thus the
protocol fidelity to be very large. Considering Fig. 6, we
therefore see that we have two limiting cases of interest:
limλ→0 Fprot(λ) = 1 and limλ→1/2 Fprot(λ) = 1. We can rule
out the first of these limits by the following argument. If the
overlap between the two states is greater than 1 − ε, then a
deterministic transformation is trivially possible (by simply
doing nothing). Indeed, if λ = 0, then one can obviously do
the transformation deterministically as the initial and final
state are the same. Thus, our protocol must have a greater
fidelity than this overlap. The blue line in Fig. 6 shows the
overlap between the initial and target state. We can see that

17See Ref. [61] for a discussion of optimizing the fidelity between
permutationally symmetric states over general invertible (as opposed
to unitary) operators.

FIG. 6. Plot of the fidelities relevant to the proof that approx-
imate transformations are more than deterministic transformations
between ε vicinities. The red line corresponds to Fprot(λ), the blue
line corresponds to |〈ψ |φ(λ)〉|2, the yellow line corresponds to
F UB

triv (λ), and the green line corresponds to F max
1|2345(λ). As λ approaches

1/2, if one chooses ε = 1 − Fprot(λ), then ε becomes sufficiently
small that all states in the initial vicinity are isolated. Moreover, we
see that, in this limit, Fprot(λ) (the red line) is greater than the fidelity
achievable with deterministic transformations. Therefore, there is
a λ < 1/2 and ε = 1 − Fprot(λ) such that an approximate transfor-
mation is possible, but there are no deterministic transformations
between the ε vicinities.

Fprot(λ) is less than this overlap for λ < 1/10. This rules out
the limiting case λ → 0. Therefore, we have to consider the
limiting case λ → 1/2. We see that for all ε > 0, there is
a λ ∈ (0, 1/2) such that Fprot(λ) � 1 − ε. Consequently, we
can choose λ ∈ (0, 1/2) such that all states in the initial vicin-
ity are generic states. Next, we upper bound the achievable
fidelity of a deterministic transformation, F ε

det(ψ, φ(λ)). As
they are all generic, states in the initial ε-vicinity can only
be transformed into either (a) LU equivalent states or (b)
non-fully entangled states. Therefore, it remains to show that
our protocol has a higher average fidelity than both of these
options.

With regard to (a), we want to ensure the initial and final
ε-vicinities (up to LUs) do not overlap, i.e., there is no state
ε-close to both |φ〉 and |ψ〉 (up to LUs). To show that this is
indeed the case, we can use the following upper bound (see
Appendix A 4):

max
Ui,Vi

max
|χ〉

min {F (⊗iUi|ψ〉, |χ〉), F (|χ〉,⊗iVi|φ(λ)〉)}

� 3

4
+ 1

8

(∑
i

√
μi(ρ1(λ))

)2

≡ F UB
triv (λ), (55)

where μi(ρ1(λ)) are the eigenvalues of the reduced density
matrix on qubit 1 for |φ(λ)〉. If Fprot(λ) > F UB

triv (λ), then for
ε = 1 − Fprot(λ), there is no state that is in both ε-vicinities.
This upper bound converges to 7/8 � 1 − ε as λ approaches
1
2 (see Fig. 6), thus proving that, for large λ, there are no LU
transformations between the initial and final ε-vicinities.

Next we must show (b): that there are no transforma-
tions from states ε-close to the initial state to non-fully
entangled states ε-close to the final state. The task of cate-
gorizing LOCC transformations from fully entangled states
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to non-fully entangled states is challenging (see the prelimi-
naries), let alone all such transformations from states in the
initial ε-vicinity. So instead, we consider a necessary condi-
tion for such a transformation. Namely, we look for the closest
non-fully entangled state to |φ(λ)〉. If there are no non-fully
entangled states with fidelity greater than Fprot(λ), then there
are certainly no deterministic transformations from the initial
ε-vicinity to non-fully entangled states with fidelity greater
than Fprot(λ).18

As the target state is permutationally symmetric, it is suf-
ficient to consider two cases of non-fully entangled states: (1)
states which are not entangled in the partition 1|2345 and (2)
states which are not entangled in the partition 12|345; i.e., it
is sufficient to consider [11]

F max
1|2345(λ) ≡ max

|e1〉1|e2〉2345

F (|e1〉1|e2〉2345, |φ(λ)〉) (56)

= μmax(ρ1(λ)), (57)

F max
12|345(λ) ≡ max

|e1〉12|e2〉345

F (|e1〉12|e2〉345, |φ(λ)〉) (58)

= μmax(ρ12(λ)), (59)

where μmax(ρ1(λ)) [μmax(ρ12(λ))] is the maximum eigen-
value of the one-(two)-qubit reduced density matrix of |φ(λ)〉.
All other partitions are combinations of refinements and per-
mutations of these partitions. It is easy to verify that F max

1|2345 >

F max
12|345.

In summary, provided Fprot(λ) is greater than F UB
triv (λ) and

F max
1|2345(λ), then we may choose ε = 1 − Fprot(λ) and ensure

that (a) there are no LU transformations between the ε-
vicinities and (b) there are no transformations to non-fully
entangled states between the ε-vicinities. In this case, pro-
vided ε is small enough [Fprot(λ) is large enough] to ensure the
initial ε-vicinity consists of only generic states, we can rule
out the possibility of a deterministic transformation between
the ε-vicinities.

We now complete this argument demonstrating that ap-
proximate transformations really are more than simply
deterministic transformations from the ε-vicinities around our
states. Figure 6 shows the protocol fidelity, Fprot(λ), plotted
with F UB

triv (λ) and F max
1|2345(λ). As mentioned, Fprot(λ) > F UB

triv (λ)
for large λ. We have numerically verified that Fprot(λ) >

F max
1|2345(λ) at a resolution of 10−2 across the range (0, 1/2), i.e.,

∀λ ∈ {10−2, 2 × 10−2, . . . , 1/2 − 10−2}. Moreover, we have
also verified this holds in the vicinity of λ = 1/2 (which is the
limit of interest) up to a resolution of 10−10. This provides
strong numerical evidence that Fprot(λ) > F max

1|2345(λ) ∀λ ∈
(0, 1/2). Assuming this inequality does hold for all λ in the
interval (0, 1/2), then we can freely choose λ < 1/2 large
enough and ε = 1 − Fav (�λ(ψ ), φ(λ)) such that the initial
ε-vicinity consists only of generic states, the final ε-vicinity
consists of only fully entangled states, there are no LU trans-

18As an alternate necessary condition, one can consider whether
one can reach an ensemble of SLOCC-equivalent four-qubit states
from the initial state. However, for this initial state, one can in-
deed show that such transformations are possible. Therefore, this
necessary condition cannot be used to rule out deterministic LOCC
transformations to four-qubit states.

formations between the epsilon vicinities and Fprot(λ) � 1 −
ε. Thus, by the above argument, we have an example of a
faithful ensemble transformation, for which there is no ε-close
deterministic pure-state transformation.

To sum up, we have demonstrated strong numerical evi-
dence that there does indeed exist a |ψ〉, |φ〉, and ε > 0 such
that

T ε,ε
ens (ψ, φ) � T ε,ε

det (ψ, φ) = ∅. (60)

This demonstrates that approximate transformations are more
powerful than simply deterministic LOCC transformations
between states in the ε-vicinities around the initial and final
state.

V. CONCLUSION

Approximate LOCC transformations arise naturally as any
real implementation of a quantum process in a laboratory
is subject to noise. Thus, states are never pure, and any
map can be implemented only within experimental error.
Furthermore, in the multipartite case this study is also very
relevant from the theoretical point of view given that in
general almost every pure state is isolated. This means that
it is generically impossible to transform a pure state into
another with perfect fidelity. Thus, given a pair of input
and target pure states, this raises the question of whether
a faithful transformation with a reasonably large fidelity is
possible.

This problem has already been studied in the bipartite
case, where the optimal fidelity has been determined for any
pair of pure states. There it has been shown that the optimal
fidelity is achieved by a deterministic protocol. However, an
analogous result in the multipartite case seems completely
out of reach. In the multipartite case, even transformations
that can be achieved with fidelity equal to 1 are yet to be
fully characterized outside of the generic case. Things only
get more complicated in the approximate case due to the
fact that the pure states in the target ensemble might belong
to different SLOCC classes (including non-fully entangled
ones), which have an extremely complex structure in the
multipartite domain. However, we have argued that certain
simplifications take place when considering faithful LOCC
transformations in this setting. In particular, we have shown
that it is enough to consider pure input and output states when
considering transformations from and to noisy mixed states in
the vicinity of pure states, that finite round LOCC protocols
approximate faithful transformation arbitrarily well, and that
in fact SLOCC class preserving, finite-round LOCC protocols
approximate faithful transformations arbitrarily well. In addi-
tion to this, when considering approximate transformations,
no state is isolated and the MES is finite.

Despite the aforementioned difficulty, in this paper we
have aimed to study the general landscape of approxi-
mate transformations in the multipartite setting. For this,
we have introduced a hierarchy of approximate transforma-
tions that are well motivated by both operational reasons and
from the perspective of entanglement theory; namely, en-
semble, optimal-conclusive, deterministic, ensemble-SLOCC,
and deterministic-SLOCC transformations. Our main re-
sult is that while this hierarchy is trivial in the bipartite
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case [i.e., F δ
ens(ψ → φ) = F δ

det(ψ → φ) = F δ
ens-SLOCC(ψ →

φ) = F δ
det-SLOCC(ψ → φ) for any fully entangled, pure-state

pair |ψ〉 and |φ〉], this is not so in the multipartite case,
thus revealing a fundamentally richer structure. In more
detail, in Theorem 4 we have proven that F δ

ens(ψ → φ) =
F δ

ens-SLOCC(ψ → φ) for any pair of pure states |ψ〉 and |φ〉
and any δ � 0, and we have used this and the properties
of generic states to establish that the general inequali-
ties F 0

ens-SLOCC(ψ → φ) � F 0
det-SLOCC(ψ → φ) and F 0

ens(ψ →
φ) � F 0

det(ψ → φ) can be strict (with both results holding as
well for sufficiently small values of δ > 0). Finally, we have
considered the question of whether there exists an ε > 0 and a
pair of pure states |ψ〉 and |φ〉 such that F ε

ens(ψ → φ) � 1 − ε

but F ε
det(ψ → φ) < 1 − ε. The motivation for this question is

twofold. First, it models the practical case where all states can
be determined up to a fixed resolution ε. Second, if the above
is true, this implies that optimal transformations do not need
to arise by adding noise to a deterministic transformation. In
this respect, we have considered a particular pair of states,
derived an upper bound on F ε

det(ψ → φ) and constructed an
ensemble-transformation type of protocol that we have nu-
merically verified violates the previous bound for any choice
of ε that is sufficiently close to 0.

In addition to the above, in the future it would be in-
teresting to study further what the optimal fidelities can be
for the different types of approximate transformations. While
obtaining the optimal fidelities in general appears to be a
formidable problem, it is worth studying whether reasonably
sharp bounds can be found efficiently. Furthermore, it could
be interesting to study faithful transformations of particularly
physically relevant multipartite states, for instance, stabilizer
states, matrix product states, or nongeneric states with known
physical applications.
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APPENDIX

1. SEP ensemble transformations

Here we derive Theorem 2. The proof is analogous to that
presented in Refs. [9,49,50].

Theorem 2. ([49,50]) The state g|ψs〉 can be transformed
to the (finite) ensemble {(pi, hi|ψs〉)} (with hi local and in-
vertible) via SEP if and only if there exists a finite set of
probabilities {pi j}, symmetries {S j} ⊆ S|ψs〉, and Nq ∈ Ng|ψs〉

such that
∑

j pi j = pi and

∑
i j

1

ri
pi jS

†
i jHiSi j + g†

∑
q

N†
q Nqg = G, (A1)

where ri = ||hi|ψs〉||2/||g|ψs〉||2.
Proof. The state g|ψ〉/ng can be transformed to the en-

semble {(pi, hi|ψ〉/nhi )} iff there is a (CPTP) SEP channel
�, which decomposes into trace-nonincreasing separable CP
maps, �i, corresponding to each output; i.e., � = ∑

i �i ⊗
|i〉〈i|, such that

�i

(
g|ψ〉〈ψ |g†

n2
g

)
= pk

hi|ψ〉〈ψ |h†
i

n2
hi

∀i. (A2)

For the same reasons as in Refs. [9,49,50], we have

�i(·) =
∑

j

Mi j (·)M†
i j +

∑
q

N†
iq(·)Niq, (A3)

where Mi j are invertible, Nqi ∈ Ng|ψ〉s and

Mi jg|ψ〉/ng = √
pi jhi|ψ〉/nhi , (A4)

Niqg|ψ〉/ng = 0, (A5)

where
√

pi j are some positive coefficients. Rearranging the
first equation above we have

1√
pi j

nhi

ng
h−1

i Mi jg|ψ〉 = |ψ〉. (A6)

Hence, the operator belongs to the stabilizer of |ψ〉, and thus
we have

Mi j = ng

nhi

√
pi j hiSi jg

−1. (A7)

Applying this to Eq. (A2), we have
∑

j pi j = p j . Moreover,
applying the completeness relation (and gathering annihilat-
ing operators) we end up with Eq. (A1). �

As final comments, we note that it follows from the same
arguments found in Ref. [50] that LOCCN ensemble trans-
formations within an SLOCC class are a subset of SEP1

ensemble transformations. That is, any LOCCN ensemble
transformation within an SLOCC class does not make use of
noninvertible, local operators [the Niq in Eq (A3)]. Moreover,
it is easy to verify that the entanglement monotones intro-
duced in Ref. [54] [Eq. (8)] are in fact invariant (monotonic)
under deterministic (ensemble) SEP transformations within a
generic SLOCC class. Whereas it was shown in Ref. [54] that
they are invariant under SEP1 within an SLOCC class, it is
straightforward to show that (taking the noninvertible opera-
tors into account) any SEP map (with outputs only within the
same SLOCC class) can never increase those entanglement
monotones.

2. Proof of Lemma 3

Here, we present the proof of Lemma 3: that it is in fact
sufficient to restrict ourselves to transformations where the
initial state is pure. For clarity, we restate the lemma here.

Lemma 3. Let ρ be δ-close to |ψ〉 and �(ρ) be ε-close
to |φ〉, with � ∈ Tens(ψ ). Then for all α, β > 0 such that
1
α

+ 1
β

� 1 there exists some state |ψ̃〉 and transformation
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�̃ ∈ Tens(ψ ) such that |ψ̃〉 is (αδ)-close to |ψ〉 and such that
�̃(ψ̃ ) is (βε)-close to |φ〉.

Proof. Let α, β > 0 such that 1
α

+ 1
β

� 1, which implies
that α, β > 1. We can assume wlog that FLU(ρ, φ) = F (ρ, φ),
�(ρ) = {(pi, σi )} and FLU(σi, φ) = F (σi, φ), ∀i. Let ρ de-
compose as ρ = ∑

i∈I qiψi. Let us now define a subset S ⊂ I ,
such that F (ψi, ψ ) < 1 − αδ (i.e., S is the set of states in
the decomposition that are outside the αδ-vicinity). Note,
naturally this set must be a strict subset [otherwise F (ρ,ψ ) <

1 − αδ < 1 − δ]. If S is empty, then it is easy to see that the
claim must hold for at least one |ψi〉. If not, then we have

1 − δ �
∑
i∈I\S

qiF (ψ,ψi ) +
∑
i∈S

qiF (ψ,ψi )

< q + (1 − q)(1 − αδ), (A8)

where q = ∑
i∈I\S qi. Rearranging, we have

q > 1 − 1

α
. (A9)

We now complete the proof by showing that at least one of
the pure states in I \ S has the property that Fav (�(ψi ), φ) �
1 − βε. To show this, assume the contrapositive, i.e.,
Fav (�(ψi ), φ) < 1 − βε,∀i ∈ I \ S. Then we have

1 − ε � Fav (�(ρ), φ) (A10)

�
∑
i∈I\S

qiFav (�(ψi ), φ) +
∑
i∈S

qiFav (�(ψi ), φ) (A11)

< q(1 − βε) + (1 − q), (A12)

where we have used Eq. (14) to reach the second line. Rear-
ranging, we have

q <
1

β
. (A13)

Combining Eq. (A9) and Eq. (A13), we deduce 1
α

+ 1
β

> 1,
which contradicts our assumptions. Thus, there must exist a
pure state |ψi〉 ∈ I \ S that is αδ-close to |ψ〉 and is mapped
βε-close to |φ〉. �

In addition to this lemma, we can also deduce a less tight
constraint directly from the inequality in Eq. (2). To see this,
assume an initial mixed state, ρ, is δ-close to some pure state,
|ψ〉, and �(ρ) is ε-close to |φ〉, with � being some LOCC
protocol. Then by Eq. (2) we have that

d (ψ → φ) � d (ρ → φ) + d (ψ, ρ). (A14)

Using Eq. (15) and Eq. (16), we have

F (ψ → φ) � 1 − (
√

δ + √
ε). (A15)

Note, however, that the bound in Lemma 3 is tighter
as ε � √

ε.

3. Approximate transformations in the limit ε → 0

In this section, we consider multipartite approximate
transformations in the limiting case where δ = 0 and ε

is arbitrarily small. That is, we fix the initial state (set
δ = 0) and ask which states can be reached via approximate

transformations for all ε > 0, i.e., we consider

A(|ψ〉) = {|φ〉 ∈ H : ∀ε > 0, ∃ � ∈ T 0,ε
ens (ψ, φ)

}
. (A16)

It is easy to see that A(|ψ〉) can be equivalently characterized
as the set of limit points of a sequence of LOCC maps
evaluated on |ψ〉,
A(|ψ〉) = {|φ〉 ∈ H : ∃(�i)i∈N ⊆ LOCC : lim

i→∞
�i(|ψ〉〈ψ |)

= |φ〉〈φ|}, (A17)

where limi→∞ �i(|ψ〉〈ψ |) = |φ〉〈φ| denotes that
�i(|ψ〉〈ψ |) converges to |φ〉〈φ| with respect to the trace
distance.

All LOCC maps are separable maps. As the set of sep-
arable maps, SEP, on a finite Hilbert space is a closed and
bounded subset of a finite vector space, it is compact. There-
fore, by the Bolzano-Weierstrass theorem [63], the sequence
(�i )i∈N ⊆ LOCC ⊆ SEP will contain a subsequence, (�̃i ) ⊆
SEP, which converges to some separable map, E ∈ SEP, i.e.,
�̃i →� E ∈ SEP (where convergence is defined with respect
to the diamond norm). Convergence wrt to the diamond norm
implies that, for all |ψ〉, limi→∞ �̃i(|ψ〉〈ψ |) = E (|ψ〉〈ψ |).
In particular, as limi→∞ �̃i(|ψ〉〈ψ |) = |φ〉〈φ|, we have
E (|ψ〉〈ψ |) = |φ〉〈φ|. That is, every element of A(|ψ〉) can
also be reached from |ψ〉 via a separable map,

A(|ψ〉) ⊆ {|ψ〉 ∈ H : ∃ E ∈ SEP, E (|ψ〉〈ψ |) = |φ〉〈φ|}.
(A18)

This result tells us that the limiting case of approximate trans-
formations is at most as powerful as SEP transformations.
Consequently, all the result regarding isolation and the MES
from Refs. [8–10] (see the preliminaries) also hold in this
limiting case.

4. Overlap between ε-vicinities

In this section we study when the vicinities of the initial
and the final state can overlap. In this case, the trivial transfor-
mation, i.e., not doing anything, would transform the initial
state to the target state. Note that the fact that we have to
consider any LU-equivalent state here complicates the deriva-
tion of conditions which ensure that no trivial transformation
exists.

Let us define

Ftriv(|ψ〉, |φ〉)

≡ max
Ui,Vi

max
|χ〉

min {F (⊗iUi|ψ〉, |χ〉), F (|χ〉,⊗iVi|φ(λ)〉)}

= max
Ui

max
|χ〉

min {F (|ψ〉, |χ〉), F (|χ〉,⊗iUi|φ(λ)〉)}.
(A19)

Given an ε � 0, if Ftriv � 1 − ε, then there exists a state,
|χ〉, that lies in both the ε-vicinities of |ψ〉 and |φ〉, and there-
fore there is a trivial transformation between the two states.
Conversely, if we construct a protocol such that Fprot > Ftriv,
then we know that, for ε = 1 − Fprot, there is no state which
lies in both ε-vicinities at the same time. Hence, the trivial
transformation, i.e., doing nothing, would not lead to a higher
fidelity. We then have the following observation.

052401-19



DAVID GUNN et al. PHYSICAL REVIEW A 108, 052401 (2023)

Observation 5. The following bounds on Ftriv(|ψ〉|φ〉)
hold:

F LB
triv (|ψ〉, |φ〉) � Ftriv(|ψ〉, |φ〉) � F UB

triv (|ψ〉, |φ〉), (A20)

where

F LB
triv (|ψ〉, |φ〉) = F (|ψ〉, |φ〉), (A21)

F UB
triv (|ψ〉, |φ〉) = 3

4
+ 1

4

(∑
i

√
μi(ρ1(ψ ))μi(ρ1(φ))

)2

,

(A22)

where μi(ρ1(ψ )) [μi(ρ1(φ))] are the ordered eigenvalues of
the site-1 reduced density of |ψ〉 (|φ〉).

Before proving this theorem, note that one need not only
consider the site-1 reduced density matrix to obtain a bound.
Any bipartite splitting leads to an upper bound. We chose
to optimize over bipartite unitaries in the bipartition 1|2 . . . n
because this suffices for our examples.

Proof. Whereas the lower bound is trivial, the upper bound
can be shown as follows. We begin by noting that, as |ψ〉, |φ〉
and |χ〉 are all pure, the upper bound in Eq. (15) is an equality.
Therefore, we have

min{F (|ψ〉, |χ〉), F (|χ〉, |φ〉)

= min{1 − D2(|ψ〉, |χ〉), 1 − D2(|χ〉, |φ〉)}. (A23)

Now, although F is not a metric, D is. Therefore, we have

D(ψ, φ) � D(ψ, χ ) + D(χ, φ)

� 2 max{D(ψ, χ ), D(χ, φ)}. (A24)

As D is positive, we have
1
4 D2(φ,ψ ) � max{D2(ψ, χ ), D2(χ, φ)}, (A25)

and thus, we have for any |χ〉
min{F (|ψ〉, |χ〉), F (|χ〉, |φ〉) � 1 − 1

4 D2(φ,ψ ) (A26)

= 3
4 + 1

4 F (|φ〉, |ψ〉). (A27)

Therefore, we have

Ftriv(|ψ〉, |φ〉) (A28)

� 3

4
+ 1

4
max

Ui

F (|ψ〉,⊗iUi|φ〉)

� 3

4
+ 1

4
max
U,V

F (|ψ〉,U ⊗ V |φ〉)

= 3

4
+ 1

4

(∑
i

√
μi(ρ1(ψ ))μi(ρ1(φ))

)2

≡ F UB
triv (|ψ〉, |φ〉), (A29)

where, in the third to last line, we have used bipartite unitaries
instead of fully local unitaries to provide an upper bound, and
the second to last line follows from Ref. [11], with μi(ρ1(ψ ))
corresponding to the sorted eigenvalues of the qubit-1 reduced
density matrix of ψ (and likewise for φ). �
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