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Bell nonlocality in two-mode Gaussian states revealed via local squeezing
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Local unitary operations cannot affect the quantum correlations between two systems sharing an entangled
state although they do influence the outcomes of local measurements. By considering local squeezing operations
we introduce an extended family of observables allowing violation of the Clauser-Horne-Shimony-Holt Bell
inequality for two-mode Gaussian systems. We show that local squeezing can enable or enhance the identifi-
cation of nonlocal two-mode states. In particular, we show that local squeezing followed by photon–no-photon
discrimination can suffice to reveal nonlocality in a broad ensemble of pure and mixed two-mode Gaussian
states.
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I. INTRODUCTION

Nonlocality occurs while the correlations between mea-
surement outcomes performed in two systems (Alice’s and
Bob’s) cannot be explained as the result of random processes
driven by stochastic variables (the so-called hidden variables)
described by local probability distributions.

Nonlocality is the strongest quantum correlation between
two systems. It implies bidirectional steering and entangle-
ment [1,2]. In his seminal work, Bell has derived inequalities
that all hidden variable processes must verify [3]. In conse-
quence, violation of a Bell inequality implies Bell nonlocality
(BNL).

A convenient form of Bell inequality suitable for binary
output measurements was introduced by Clauser, Horne, Shi-
mony, and Holt (CHSH) [4]. It states

BCHSH ≡ |〈AB〉 + 〈AB′〉 + 〈A′B〉 − 〈A′B′〉| � 2 (1)

where {A, A′} and {B, B′} are pairs of observables (also des-
ignated as setups), acting on Alice’s and Bob’s systems,
respectively, whose possible outcomes are +1 and −1. The
maximum violation of the CHSH inequality allowed by quan-
tum mechanics is BCHSH = 2

√
2 � 2.83 [5]. After extensive

theoretical advances and sophisticated experimental tests,
BNL remains a topic of large current interest [6–8].

Most initial work regarding BNL was concerned with
low-dimensional systems [2]. Regarding continuous variable
systems, a strong argument against the possibility of BNL in
Gaussian states was raised by Bell [9]. In essence the argu-
ment states that since Gaussian states are represented in phase
space by positive Gaussian quasiprobability distributions (one
example being the Wigner function), such distributions could
effectively behave as a probability distribution for hidden vari-
ables (here complex numbers designating position in phase
space) determining the results of possible measurement out-
comes.
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However, an important detail seems to have escaped the
attention of Bell. In order for this argument to hold it is neces-
sary that the function relating the measurement outcome to the
hidden variable is bounded by the maximum and minimum
outcome values. While this is true in classical physics, it is
not necessarily the case in quantum physics. A paradigmatic
example is the parity operator � = (−1)n̂ where n̂ is the
number operator. Its possible outcomes are ±1, however its
Wigner representation is πδ(α)/2, where δ(α) is the complex
Dirac delta function which is unbounded [10–12].

The possibility to demonstrate nonlocality in Gaussian
states was first suggested by Grangier, Potasek, and Yurke
(GPY) [13] considering a scenario where the fields received
by Alice and Bob are first displaced in phase space by mixing
with coherent states in a beamsplitter and then detected. A
CHSH Bell inequality was constructed based on coincidence
and single counts of the two detectors. It was also shown
that a two-mode squeezed vacuum state (TMSV), also known
as a generalized Einstein-Podolsky-Rosen (EPR) state, would
violate such inequality.

Banaszek and Wódkiewicz (BW) [11] were first to es-
tablish that measurements of the displaced parity operator
can lead to a CHSH Bell inequality violation in the case of
TMSVs. In their derivation BW assumed that only one of the
two displacements performed by Alice or Bob was nonzero.
Under such assumption (often designated as the BW maxi-
mization scheme) they have shown that a maximum value of
BCHSH = 2.19 [14] can be reached in the case of an infinitely
squeezed TMSV (EPR state).

It is interesting to observe that the experimental scheme
suggested in GPY only required detectors able to discrimi-
nate between the presence and absence of photons (a realistic
assumption in view of the detectors available at that time).
On the other hand, measurement of the parity operator as in
BW requires photon number resolving detectors, not available
until recently.

Several works have extended the initial suggestions of
GPY and BW either by generalizing the BW maximization
scheme through the consideration of all four phase-space

2469-9926/2023/108(5)/052219(6) 052219-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2840-160X
https://orcid.org/0000-0002-7398-4341
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.052219&domain=pdf&date_stamp=2023-11-20
https://doi.org/10.1103/PhysRevA.108.052219


A. LEZAMA AND A. AUYUANET PHYSICAL REVIEW A 108, 052219 (2023)

displacements (two performed by Alice and two by Bob)
[15,16] or through the introduction of new observables al-
lowing CHSH Bell inequality violations for Gaussian states
[12,15,17].

It was established that measurements of the displaced par-
ity operator or the displaced presence or absence of photons
cannot lead to a maximal violation of the CHSH inequality,
the largest values of BCHSH being 2.32 and 2.45, respectively
[15,16]. However, maximal violation of the CHSH inequality
in Gaussian states is possible with more complex (pseudospin)
observables obeying angular momentum commutation rules
[12,15,17].

The first experimental demonstration of Bell nonlocality
in two-mode Gaussian states is due to Kuzmich et al. [18]
essentially following the experimental scheme suggested by
GPY [13]. Evidence of violation of the CHSH inequality
consistent with the upper limit BCHSH = 2.45 was presented.

The possibility to violate CHSH Bell inequalities in Gaus-
sian states using binary outcome operators was extensively
analyzed in Ref. [16]. Generalizing the proposals in GPY
and BW, a broad family of observables Ô(α; s) depending
on a complex variable α (corresponding to a displacement in
phase space) and parametrized by a nonpositive real number s
was introduced. Each of these observables has an unbounded
representation in the corresponding s parametrized (Gaus-
sian) quasiprobability distribution (sQPD) [19] although the
maximum and minimum possible measurement outcomes are
always ±1.

As shown in Ref. [16], for each of these observables a
CHSH Bell inequality can be derived where the required se-
tups correspond to two different choices of displacements (α,
α′) for Alice and (β, β ′) for Bob. In practice, the necessary ex-
perimental setups involve combining the corresponding field
mode with a coherent state local oscillator, followed by light
detection using a photon number resolving detector [20]. An
important exception concerns the case s = −1 for which the
detector is only required to discriminate the vacuum from non-
vacuum states. The observables considered in BW (displaced
parity) or in GPY correspond to the particular cases s = 0 and
−1, respectively.

In the previously mentioned work only phase-space dis-
placements were considered to be applied by Alice or Bob
prior to detection. However, it was noticed in Ref. [21] that
nonlinear local (Kerr) interactions could lead to a significant
increase in the CHSH inequality violation in the case of
entangled two-mode coherent states. Following this result,
Paternostro et al. [22] considered the Gaussian states pro-
duced by dividing a single-mode squeezed state in a balanced
beamsplitter which can be expressed as a linear combination
of two-mode entangled coherent states. They have shown that
nonlinear Kerr interactions can assist to reveal CHSH inequal-
ity violation in such states. They also noticed that since such
states can be obtained from TMSV states by local squeezing
operations, the considered scheme could be used to reveal
nonlocality in TMSV states. More recently, Kitzinger et al. [7]
considered the use of local squeezing operations in a proposal
for the observation of BNL between two Bose-Einstein con-
densates. Local squeezing operations were also included in an
automated protocol designed for device-independent quantum
key distribution [23].

FIG. 1. Schematic representation of the setup corresponding to
the implementation of the extended family of observables introduced
in this paper. Complementing previous schemes, the setup includes a
local squeezing operation.

The aim of the present paper is to present an extension
of the set of observables considered in Ref. [16] by includ-
ing local squeezing operations S(ξ ) = exp[ 1

2 (ξ ∗a2 − ξa†2)]
where a and a† are the annihilation and creation operators and
ξ is a complex parameter. The setups corresponding to the
extended family of observables Ô(ξ ; α; s) are schematically
represented in Fig. 1. The new observables depending on two
independent complex parameters ξ and α lead to a gener-
alization of the CHSH Bell inequalities. We show that such
generalization increases the ensemble of two-mode Gaussian
states for which BNL can be proven. Moreover, we show that
for some states squeezing-only observables Ô(ξ, 0, s), where
the displacement parameters α and β are zero, are sufficient
to reveal BNL.

II. EXTENDED OBSERVABLES FAMILY

We begin with a reminder of the s-parametrized observ-
ables {Ô(α; s)} presented in Ref. [16] and their connection
with the corresponding s-parametrized quasidistributions.

The building blocks of the single-mode observables
{Ô(α; s)} are the projectors |α, n〉〈α, n| onto the dis-
placed photon number states |α, n〉 = D(α)|n〉 where D(α) ≡
exp(αa† − α∗a) is the displacement operator and |n〉 is a Fock
state.

We directly extend the family {Ô(α; s)} to {Ô(ξ ; α; s)}
by considering the broader ensemble of projectors onto the
squeezed displaced number states |ξ, α, n〉 = S(ξ )D(α)|n〉. In
consequence the observables �(α; s) introduced in Ref. [16]
are replaced by

�̂(ξ ; α; s) =
∞∑

n=0

(
s + 1

s − 1

)n

|ξ, α, n〉〈ξ, α; n| (2)

from which the observables Ô(ξ ; α; s) are defined as in Eq. (3)
of Ref. [16]:

Ô(ξ ; α; s) =
{

(1 − s)�̂(ξ ; α; s) + s1, if −1 < s � 0.

2�̂(ξ ; α; s) − 1, if s � −1.

(3)

By construction, the states |ξ, α, n〉 are eigenstates of
�̂(ξ ; α; s) and the corresponding eigenvalues are ( s+1

s−1 )n. As a
result, the maximum and minimum outcomes of observables
Ô(ξ ; α; s) are ±1.

Considering the joint observables ÔA(ξa, α; s) ⊗
ÔB(ξb, β; s) acting on two systems A and B results in the
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FIG. 2. Surface representation of four extended quasiprobability
distributions W (u, α; s) for the vacuum [u ≡ exp(2ξ )]. (a) W (u =
1, α; s = 0), the Wigner function. (b) W (u = 3, α; s = 0), the
stretched Wigner function resulting from squeezing. (c) W (u =
1, α; s = −1), the Husimi Q function. (d) W (u = 3, α; s = −1), the
Q function after the squeezing operation.

CHSH Bell inequality:

|〈Ô(χa; s) ⊗ Ô(χb; s) + Ô(χa; s) ⊗ Ô(χ ′
b; s)

+ Ô(χ ′
a; s) ⊗ Ô(χb; s) − Ô(χ ′

a; s) ⊗ Ô(χ ′
b; s)〉| � 2

(4)

where χa and χb are shorthand notations for {ξa; α} or {ξb; β}.
The operators defined in Eq. (2) are directly linked to an ex-

tension of the family of sQPDs. We will refer to the functions
in the extended family as squeezing-extended quasiprobability
distributions (SEQPDs). For a single mode the s parametrized
SEQPD is defined as

W (ξ ; α; s) = 2

π (1 − s)
Tr[ρ̂�̂(ξ ; α; s)] (5a)

= 2

π (1 − s)
Tr[S(ξ )†ρ̂S(ξ )�̂(α; s)] (5b)

where �̂(α; s) ≡ �̂(0, α; s) is the operator appearing in the
definition of the usual sQPD W (α; s) [16].

From (5b) it can be seen that a SEQPD corresponds to
the usual sQPD evaluated after a squeezing operation on the
state (see Fig. 1). Since a squeezed Gaussian state remains
a Gaussian state, it results that the extended quasiprobability
distributions of Gaussian states are also Gaussian functions in
phase space.

As an illustration of SEQPDs, Fig. 2 depicts four differ-
ent representations of the vacuum. Figures 2(a) and 2(c) are
the sQPD W (α; s) for s = 0 (Wigner function) and s = −1
(Husimi Q function), respectively. Figures 2(b) and 2(d) cor-
respond to the SEQPD W (ξ ; α; s = 0) and W (ξ ; α; s = −1)
for exp(2ξ ) = 3.

It is worth noticing that, consistent with Eq. (A7), for s = 0
the SEQPD in [Fig. 2(b)] can be generated from the sQPD
[Fig. 2(a)] through changes in scale along two orthogonal axes
by factors with a unit product. Also the maximum values of
the two representations are equal. The same does not occur for
s = −1 [Figs. 2(c) and 2(d)]. In particular the maximum val-
ues of the representations in Figs. 2(c) and 2(d) are different.
As will be shown below, the change in the maximum value
of the sQPD evaluated after squeezing conveys information
which can be used to demonstrate nonlocality.

The CHSH Bell inequalities derived in Ref. [16] can be
immediately generalized under the substitution of W (α; β; s)
by W (χa; χb; s). They are

BCHSH ≡
∣∣∣∣π

2(1 − s)4

4
C(χa, χ

′
a, χb, χ

′
b)

+ πs(1 − s)2[W (χa, s) + W (χb, s)] + 2s2

∣∣∣∣ � 2

(6a)

if −1 < s � 0 or

BCHSH ≡
∣∣∣∣π

2(1 − s)2

4
C(χa, χ

′
a, χb, χ

′
b)

− 2π (1 − s)[W (χa, s) + W (χb, s)] + 2

∣∣∣∣ � 2

(6b)

if s � −1, where

C(χa, χ
′
a, χb, χ

′
b) ≡ W (χa, χb, s)

+ W (χa, χ
′
b, s) + W (χ ′

a, χb, s) − W (χ ′
a, χ

′
b, s). (7)

We next assume that Alice and Bob share a two-mode
Gaussian state whose covariance matrix is given in the stan-
dard form [24,25]:

σ =

⎛
⎜⎜⎝

p 0 m 0
0 p 0 n
m 0 q 0
0 n 0 q

⎞
⎟⎟⎠. (8)

Alice and Bob may perform local squeezing operations.
We consider only real squeezing parameters and introduce the
notation u ≡ exp(2ξa) and v ≡ exp(2ξb). The corresponding
symplectic transform S will be referred to as Suv We have

Suv = diag(u
1
2 , u− 1

2 , v
1
2 , v− 1

2 ). (9)

In the following we refer to W (χa; χb; s) as
W (u; v; α; β; s). In particular, W (1; 1; α; β; s) designates
the sQPD for a covariance matrix in the standard form.

The details of the evaluation of W (u; v; α; β; s) are de-
scribed in the Appendix.

III. RESULTS

The use of local squeezing operations enlarges the set
of setups available to Alice or Bob for nonlocality tests. In
previous work the setups were determined by the choices
of displacement pairs. The generalization introduced in this
paper allows the setups to be chosen within an enlarged set of
combinations of squeezing and displacement.

An interesting possibility, not previously explored, results
from the use of setups involving local squeezing operations
and no displacements. Specifically, we refer to the case
where Alice and Bob consider two setups corresponding to
squeezings parameters {u, u′} and {v, v′}, respectively, while
keeping α = β = 0.

In this case the SEQPD are evaluated at the phase-
space origin. Consequently their values are entirely deter-
mined by the corresponding covariance matrix determinant
[see Eq. (A1)]. The CHSH inequality for −1 � s � 0
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becomes [16]∣∣∣∣(1−s)4D(u, u′, v, v′, s)+2s(1−s)2

[
1√

(pu + |s|)(p/u + |s|)

+ 1√
(qv + |s|)(q/v + |s|)

]
+ 2s2

∣∣∣∣ � 2 (10)

with

D(u, u′, v, v′, s) = (det σuvs)−
1
2 + (det σu′vs)−

1
2

+ (det σuv′s)−
1
2 − (det σu′v′s)−

1
2 (11)

where σuvs ≡ SuvσST
uv + |s|14 (see the the Appendix for de-

tails).
We first notice that for s = 0 (corresponding to measure-

ments of the parity operator) all four determinants appearing
in (11) are equal, which is a consequence of (A4) and the
fact that the covariance matrix determinant is unchanged by
symplectic operations [26]. In this case the inequality (10)
reduces to 2μ � 2 where μ = 1/

√
det σ is the global state

purity. The inequality is always fulfilled and saturated for
pure states. This result shows that BNL cannot be proven
through local squeezing followed by the measurement of the
(nondisplaced) parity observable.

However, for s < 0, the inequality (10) can be violated. In
the following we concentrate on the s = −1 case for which
the setups required by Alice and Bob to reveal BNL reduce, on
each system, to a squeezer (implementing up to two different
quadrature compressions) and a detector able to discriminate
light from darkness (Fig. 1).

In principle, maximization of the left-hand side of in-
equality (10) requires the variation of all four compressions
factors u, u′, v, and v′. In analogy with the BW maximization
scheme, we have also considered the case where only one of
the compression factors used by each part is different from
one.

We have used several maximization strategies for BCHSH

in (6) for specific examples of two-mode Gaussian states. We
stress, nonetheless, that the BNL test presented above can be
applied to any two-mode Gaussian state.

The two examples presented in Fig. 3 belong to the
general category of two-mode squeezed thermal states
(TMSTSs) with squeezing parameter r for which the coef-
ficients of the covariance matrix in its standard form are
given by p = ν1 cosh2(r) + ν2 sinh2(r), q = ν1 sinh2(r) +
ν2 cosh2(r), m = −n = (ν1 + ν2) sinh(2r)/2 with ν1 � 1
and ν2 � 1. Symmetric TMSTSs have ν1 = ν2. The case ν1 =
ν2 = 1 is a pure TMSV state.

Figure 3(a) refers to pure TMSV states. The plots rep-
resent the maximum value of BCHSH in inequality (6) for
s = −1 and different maximization schemes as a function
of the state squeezing parameter r (not to be confused with
the local squeezing operation parameters). Bell inequality
violations occur for all values of r. The solid-blue line cor-
responds to the case where all four local squeezings and four
displacements are freely varied. The largest Bell inequality
violation BCHSH = 2.55 occurs at r = 0.75 for displacements
α = −β = −0.17, α′ = −β ′ = 0.62 and compression fac-
tors u = v = 0.97, u′ = v′ = 1.65. Such value represents
a substantial improvement with respect to the maximum

FIG. 3. Evaluation of the maximum value of BCHSH of the CHSH
combination in inequality (6) for s = −1 as a function of the squeez-
ing parameter r for a pure TMSV state (a) and a symmetrical
TMSTS with global purity 0.7 (b). Solid blue: All compression
factors and displacements are freely varied. Solid red: Only the
displacements are freely varied with no squeezing. Dashed violet:
BW maximization scheme (only one nonzero displacement on each
part), no squeezing. Solid yellow: Freely varied squeezings with no
displacements. Dashed green: Only one compression factor different
from one on each part, no displacements. Bell nonlocality is proven
for BCHSH > 2.

violation BCHSH = 2.45 (r = 0.74) [16] obtained for α =
−β = −0.15, α′ = −β ′ = 0.52 when only the displacements
are freely varied with no squeezing (solid-red line). The
dashed-violet line corresponds to the BW maximization
scheme where only one of the displacements realized by the
two parts is nonzero [11]. BCHSH = 2.28 is achieved in this
case at r = 0.70 for α = −β = 0.86.

The use of squeezing operations not only can improve the
Bell inequality violations obtained by the use of displace-
ments only. It can also suffice to reveal BNL. This is shown
by the solid-yellow and dashed-green plots in Fig. 3(a). The
solid-yellow line corresponds to the case where all four lo-
cal squeezings are freely varied. A maximal BCHSH = 2.21
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FIG. 4. Evaluation of the maximum value of BCHSH of the CHSH
combination in inequality (6) for s = −1 for a pure TMSV as a
function of the state squeezing parameter r. (a) Common detector
efficiency: η = 0.67. BNL cannot be proven at r = 0.4 if observables
involving only displacements are used (red line). It can be revealed
by observables using combined displacements and squeezing (blue
line). (b) Common detection efficiency η = 0.89. BNL can be proven
for r � 0.9 by observables using only local squeezing operations.

is obtained at r = 0.98 for compression factors u = 1/v =
1.41, v′ = 1/u′ = 3.67. In fact, just one local squeezing op-
eration on each side is sufficient to reveal BNL as shown by
the dashed-green line. A maximum BCHSH = 2.13 is obtained
at r = 0.93 for compression factors u = 1/v = 3.2, u′ =
v′ = 1.

Figure 3(b) presents the results for a mixed, symmetrical
TMSTS with ν1 = ν2 = 1.2 (global purity μ = 0.7). In this
case, Bell inequality violations only occur for sufficiently
large r � 0.5. Notice that for r � 0.5 observables relying
only on displacement do not violate the CHSH inequality
while BNL is revealed by observables involving squeezing in
addition to displacement.

The results presented so far show that the possibility to
identify BNL two-mode Gaussian states is increased by the
use of local squeezing operations. A natural concern refers to
the extent to which such advantage can be affected by the use
of nonideal detectors with efficiency η < 1. This problem can
be readily addressed along the same lines as in Ref. [16]. It
is a consequence of the formal similarity between the defini-
tions of the observables �̂(ξ ; α; s) in (2) and the observables
�̂(α; s) in Ref. [16] that the same treatment of the finite
detector efficiency can be applied. It amounts to replacing
the parameter s in the SEQPDs W (χa, χb, s), W (χa, s), and
W (χb, s) appearing in inequalities (6) by s′ = −(1 − s − η)/η
[16].

Figure 4 shows two examples of the performance of the
extended family of observables for the identification of BNL
with inefficient detectors. The same overall detection effi-
ciency η is assumed for Alice and Bob. In both cases the
inequality (6) is evaluated for s = −1 which only requires a
detector discriminating light from no light.

Figure 4(a) illustrates the increased tolerance to detection
inefficiency resulting from the use of observables includ-
ing squeezing operations. It is mentioned in Ref. [16] that
for s = −1 a minimum efficiency η � 0.75 is required to

reveal BNL in a TMSV state with r = 0.4 using observables
involving only displacements. As shown in Fig. 4(a) BNL
can be revealed for such state with a detection efficiency as
low as η � 0.67 using observables involving local squeezing
operations in combination with displacements [α = −β =
−0.13, α′ = −β ′ = 0.62 and compression factors u = v =
1.05, u′ = v′ = 1.65].

If the considered observables only involve squeezing op-
erations and no displacements, BNL can still be revealed for
overall detection efficiencies η > 0.88 for TMSV states with
r � 1 as illustrated in Fig. 4(b).

IV. CONCLUSIONS

Continuous-variable states and Gaussian states in particu-
lar are a useful resource for quantum information and quantum
communications protocols [25,27]. Most protocols rely on
the sharing of an entangled state between two parties. The
observation of Bell nonlocality is a powerful method for en-
tanglement certification [2,28].

In this paper we have presented an extended set of lo-
cal observables involving squeezing operations that can be
used to reveal Bell nonlocality in two-mode Gaussian states
through violations of CHSH inequalities. The extended set of
observables can lead to an increase of the maximum CHSH
inequality violation with respect to previously considered ob-
servables resulting in enhanced nonlocality sensitivity.

The extended set includes observables that do not re-
quire displacements and may suffice to reveal BNL in some
two-mode Gaussian states. The corresponding experimental
scheme, required by each part, is conceptually very simple. It
reduces (for s = −1) to a single-mode squeezer followed by a
light detector only required to discriminate between vacuum
and no vacuum states. Present day photodetectors can achieve
this with large efficiency in the visible and near IR. The
squeezing operation can be realized through degenerate para-
metric down-conversion or four-wave mixing [29,30]. The
required amount of squeezing, less than 6 dB in the examples
considered, is well within state of the art [31,32].
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APPENDIX: EVALUATION OF THE
SQUEEZING-EXTENDED QUASIPROBABILITY

DISTRIBUTIONS

For a two-mode system the Wigner function of a Gaussian
state (ignoring displacements) is given by

W (α, β ) = 4

π2
√

det σ
e− 1

2 X T σ−1X (A1)

where X T is the row vector [α + α∗,−i(α − α∗), β +
β∗,−i(β − β∗)] and σ is the 4 × 4 covariance matrix.

It is well known that for nonpositive s the sQPD can be
obtained from the Wigner function by convolution [33]. For a
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two-mode Gaussian state we have

W (α, β, s) = 1

4s2π2

∫
d4YW (Y )e− 1

2 (Y −X )T |s|−1(Y −X ). (A2)

Using well-known properties of Gaussian convolution, the
sQPD can be obtained from the Wigner function (A1) through
the substitution

σ → σs ≡ σ + |s|14 (A3)

where 14 is a 4 × 4 unit matrix.
Generalization of the previous result to SEQPD is straight-

forward. It is obtained by the following replacement in (A1):

σ → σEs ≡ SσST + |s|14 (A4)

where S is the symplectic transform matrix describing the
local squeezing operation [25].

It is important to remark that for s �= 0 the SEQPD
W (ξ ; α; s) obtained from (A1) by the replacement (A4) is gen-
erally not the result of a variable change in phase space. More
precisely, the SEQPD is not equal to the corresponding sQPD

W (α; s) evaluated at the canonically transformed phase-space
position X ′ = ST X . This is because for squeezing operations

SσST + |s|1 �= S (σ + |s|1)ST (A5)

since SST �= 1. Also,

detσEs �= detσs. (A6)

An important exception to the previous remark is the
Wigner function for which

W (ξ ; X ; s = 0) = W (ST X ). (A7)

In consequence for s = 0 the same information can be ob-
tained from the sampling of the Wigner function or the
SEQPD.

Similarly, no information can be gained by the local appli-
cation of a phase-space rotation (instead of squeezing) since
in such case the symplectic transform matrix is orthogonal
(SST = 1).
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