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Cooperative isentropic charging of hybrid quantum batteries
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Quantum batteries are quantum systems used to store energy to be later extracted by an external agent in the
form of work to perform some task. Here we study the charging of a hybrid quantum battery via a collisional
model mediated by an anti-Jaynes-Cummings interaction obtained from an off-resonant Raman configuration.
The battery is made of two distinct components: a stationary infinite-dimensional single quantum system (e.g.,
a harmonic oscillator) and a stream of small-dimensional ones (e.g., qutrits). The charging protocol consists of
sequentially interacting the harmonic oscillator with each element of the stream, one at a time, under the action
of an external energy source and the goal is to analyze how the charging of both the harmonic oscillator and the
qutrits is affected by the correlation properties of the stream.
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I. INTRODUCTION

With the development of new quantum technologies, it
is a new fundamental task to understand the mechanisms of
energy exchange in the quantum realm, and the role played by
quantum resources in microscopic devices. In this framework,
a topic that has attracted lots of attention in recent years is
the charging of quantum batteries. Researchers on this topic
explore how quantum effects, such as quantum coherence and
entanglement, can be useful to speed up the charging and
increase the input power and the work extraction in quan-
tum batteries [1–15]. This field has also met experimental
advancements in the production of such microscopic devices
[13,16–18]. Quantum batteries can be considered standing
still systems from which one can draw stored energy whenever
needed, or they can be considered moving active media used
to feed energy into other systems.

Quantum optics is one of the research fields where the
exchange of energy between external sources, heat baths, and
microscopic quantum systems has been extensively studied
for the last 60 years [19–24]. Therefore, it comes as no sur-
prise that it has also been a powerful test bed for the concepts
and the development of the recent research area of quantum
thermodynamics. In fact, the maser, a system that can be
considered as the experimental origin of quantum optics, is
also one of the first quantum heat engines analyzed as such
[19]. More recently, quantum optical setups have been used to
understand or simulate the charging of quantum batteries and
the implementation of microscopic heat engines [25–33].

One of the advantages of exploring quantum optical setups
in the study of quantum thermodynamics is the possibility to
design well-controlled scenarios of distinct interacting sys-
tems where the roles played by each part is clearly defined and
quantities such as work and exchanged heat can be quantified
and, sometimes, even measured or at least simulated [34–37].
Moreover, some of the most canonical setups involve the
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coupling of systems of different natures such as few atomic
levels, addressed as d-level atoms, where d is typically two or
three, coupled with one or more quantum harmonic oscillators
such as modes of the electromagnetic field or vibrations of
those same atoms in some trapping potential. The control level
over these interactions allow for a multitude of applications
including the interplay of different roles played by each sys-
tem. For example, two-level atoms sequentially interacting
with a cavity field can play the role of a heat reservoir for
the field but one that can be eventually monitored and from
which information can be extracted, allowing, for example,
for the elegant design of Maxwell Deamon’s setups where the
Deamon can be actually probed [38–41]. In this scenario, the
field may be considered the quantum battery where energy
is stored. On a reserved role, leaking cavity modes can play
the role of effective high- or low-temperature reservoirs for
trapped atoms (or ions) but, once again, reservoirs that can be
monitored and from which information can be extracted, lead-
ing to the eventual preservation of coherence or entanglement
in the atomic systems, the testing of fluctuations theorems or
even the implementation of universal and efficient quantum
computation [42–45,45,46]. Now, the trapped atom plays the
role of a quantum battery. Usually, as it is the case in all these
examples, one of the interacting systems is the energy store
(or battery) and the other is the energy provider or extractor
[8,9,15,47–49].

In this work, we will employ standard quantum optical
techniques to focus on a different approach: we will consider
the entire interacting system as a hybrid quantum battery,
one that has a standing still component of infinite dimension
(e.g., a quantized mode) and an assembling line of effec-
tive two-level batteries built upon a stream of three-level
atoms, as depicted in Fig. 1. We will study their concomitant
charging, particularly focusing on the effects of quantum or
classical correlations previously prepared into the assembling
line. More specifically, each atom of the stream interacts
with the field for a finite time interval during which they
are both coherently pumped by, and extract work from, an
external source. In each step, the total drained energy is split
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FIG. 1. As the stream of atoms pass through the single-mode
electromagnetic field, Rabi oscillations are induced between different
doublets, thus charging both the chain and the field altogether.

into the atom and the quantized mode, and the interaction
is reset for the following atom. We focus our study on the
efficiency of this work extraction not only in terms of the
atom-field coupling parameters but, more important, in terms
of the correlation properties of the assembling line. Our main
goal is to understand how quantum or classical correlations
previously created in the atoms affect the charging process
of each system, which is an ongoing debate in the modern
literature [50–52].

It is worth noticing that, from the thermodynamics point
of view, we will concentrate our results on an isentropic
exchange of energy, where the external source is coherently
coupled to both systems and those are isolated from external
heat reservoirs so that the overall time evolution is unitary.
The paper is organized as follows. In Sec. II we briefly in-
troduce the dynamics of the interaction of each atom of the
stream and the quantized mode. Then, in Sec. III, we pass
to the description of the charging of both the atomic chain
and the quantum field batteries and show how the energetic
gain peaks together for both systems. This result is simple
enough to be derived analytically. In Sec. IV, we discuss the
roles that correlation and entanglement play in the protocol of
charging the quantum field. We analyze each kind of evolution
for their energy gain and stored ergotropy [53], and compare
the relative performances with the resource consumption for
creating each initial state. Finally, we present the conclusions
and interesting limits for the operation of the protocol.

II. SYSTEM DESCRIPTION

One quantum optical interaction that allows for the simul-
taneous energy transferring to both finite and infinite systems
is the so-called anti-Jaynes-Cummings Hamiltonian where a
two-level atom and a quantized harmonic oscillator can both
absorb or emit one quantum of energy at a time. Because this
Hamiltonian does not preserve the overall number of excita-
tions of the system, it typically does not occur spontaneously
and it has to be engineered in most situations. Here, we will
use the same setup presented in Refs. [54,56] where the anti-
Jaynes-Cummings interaction derives from an off-resonant
Raman configuration.

The system under study is composed of a single mode of
a quantized electromagnetic field of frequency ωq, a chain of
K three-level atoms, and a classical power source (PS), which
generates an oscillatory potential of frequency ωL. The ex-
ternal PS pumps energy into the system by intermediating the
coupling between each atom k and the quantized mode, which
takes place for a finite duration time �τk . Each three-level
atom is described by its free energy eigenstates {|g〉, |e〉, |m〉},
with Em > Ee > Eg, and Ej = h̄ω j , and the atomic levels are

coupled to the classical PS and the quantized mode according
to H = H0 + HI , where H0 = ∑

j E j | j〉〈 j| + h̄ωqb†b and

HI = �L(σgmeiωLt + σmge−iωLt ) + gq(σemb† + σmeb). (1)

Here, σmn = |m〉〈n| and the couplings to both the classical PS
and the quantum field are off resonant by a large gap �, mean-
ing � = ωmg − ωL = ωme − ωq � �L, gq (ωi j = ωi − ω j).
Under these conditions, it has been shown in Refs. [54,55] that
we can adiabatically eliminate level |m〉 from the dynamics on
each atom, creating an effective interaction between levels |g〉
and |e〉, given by the Hamiltonian:

He f f = −g2
qN

�
σgg − g2

qb̂†b̂

�
σee + �Lgq

�
(σgeb̂ + σegb̂†). (2)

The first two terms of Eq. (2) correspond to dc Stark shifts
to level |g〉 (|e〉) due to the dispersive coupling to the adiabat-
ically eliminated level |m〉 through the PS (quantized field).
The third term, of the same order of the first two, responds for
an effective interaction between levels |g〉 and |e〉 mediated
by the PS, the quantized field and, once again, level |m〉.
Notice that, following the derivations in Refs. [54,55], He f f

also includes a small correction h̄�N
eg = h̄

�2
L−g2

qN

�
to the energy

difference between levels |g〉 and |e〉, where N is a tunable
parameter. This correction can be physically accounted by a
small dc Stark shift to each atom, which does not affect the
conditions for the elimination of level |m〉.

As previously discussed, this effective Hamiltonian splits
the total Hilbert space of each atom and the quantized field
into doublets {|gn〉, |en + 1〉} (where n is the number of pho-
tons in the quantized mode of the field) and draws energy from
the classical potential to induce Rabi oscillations in each of
them. It corresponds to an anti-Jaynes-Cummings (anti-JC)
configuration, where a photon extracted from the external
power source is split into two excitations, one for the atom
and one for the quantized field. In a recent paper [56], we
have shown that this anti-JC configuration plus the vacuum
of the quantized mode combine to allow for a full population
inversion of the atom in an isentropic dynamics, regardless of
its initial temperature.

As the evolution of each atom has already been discussed
[56], we now focus on the process of charging the whole
chain and the quantum field. We work with a collisional model
of noninteracting atoms, where the individual state of each
atom in the chain, before the interaction with the field, is
thermal, and we compare three different scenarios for the
global state of the atomic chain: (i) it is uncorrelated; (ii) it
presents classical correlation; and (iii) it is an entangled state.
In every case, each atom of the chain evolves unitarily with the
quantum field under the effective Hamiltonian (2) for a time
�τk , where k represents the interaction with the kth atom of
the chain.

III. HYBRID QUANTUM BATTERY
CHARGING PROTOCOL

We assume that each atom in the streamline and the
single-mode electromagnetic field (EM) are initially in a
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Gibbs state

ρ j = e−Hj/kBT

Z
, (3)

where Z = Tre−Hj/kBT ( j = atom, field). At each collision, a
single atom of the assembling line interacts with the EM
field for a finite time interval �τk = τk − τk−1, and energy is
injected in both systems by the external PS represented by �L

in Eq. (1). After each interaction, the energy gained by the
interacting atom is given by

�U atom
k = h̄ωegS(τk ) (4)

and the energy gained by the EM field is

�U field
k = h̄ωqS(τk ), (5)

where U j
k = Tr(ρ j

k H j
0 ) and

S(τk ) ≡
∞∑

n=0

An
[
pT

g pn(τk−1) − pT
e pn+1(τk−1)

]

× sin2

(
�n�τk

2

)
. (6)

Here �n = gq�L

�

√
r2(n + 1 − N )2 + 4(n + 1) is the Rabi

frequency of oscillation for the doublet {|g, n〉, |e, n + 1〉},
with r ≡ gq

�L
the ratio between the couplings, pn(τk ) is the

field’s population after the kth collision, and pT
g = e−β h̄ωg ,

pT
e = e−β h̄ωe are the atomic’s initial population, which are

thermal by construction (each atom is individually in a ther-
mal state before interacting with the field). Depending on the
value of r, the selectivity amplitude factor An ≡ 1

1+ r2 (n+1−N )2

4(n+1)

allows one to choose which doublet will influence more the
dynamics by choosing a specific value N for the dc Stark shift.
In the limit of r � 1, choosing N = n + 1 selects a single
doublet to be involved in the energy exchange (An goes to
zero for every n except for n = N − 1) [54,55]. In the opposite
limit of r � 1 the dynamics approaches that of a standard
anti-JC interaction. In this case, all the doublets take part in the
unitary evolution and the exact value of N becomes irrelevant
for the dynamics since both An and the Rabi frequency �n

in each doublet become independent of N . Both regimes have
been explored in the context of understanding quantum effects
in the charging of quantum batteries in Refs. [56,57] but never
related to any kind of correlation in the systems.

In our protocol, we operate with r � 1, which is the regime
with the highest energy gain for single-shot interactions, as
shown in Ref. [56], and we choose the time interval �τk in
such a way that the energy gained after each interaction is
maximized, i.e., the function S(τk ), given by Eq. (6), reaches
its maximum value in each collision. Note that, by comparing
Eqs. (4) and (5) it can be seen that the ratio between ωeg and
ωq defines which system will have the highest energy gain
after the collision. Also note that, in general, �τk changes as
the EM mode charges and higher n doublets become more
relevant. Finally note that since charging only occurs during
the interaction with each individual atom, maximizing the
total charging of the batteries or the power efficiency of the
protocol is equivalent.

FIG. 2. Plot of the EM energy gained per collision for two
different temperatures. Here, Ū = U/h̄ωm and T̄ = kBT/h̄ωm are
the dimensionless energy variation and dimensionless temperature.
Parameters: ωq = 0.99ωm, �L/gq = 30, �/2π = 106Hz, gq =
�/600, and ωm/2π = 1012Hz.

To give an example of our charging protocol, we will
consider an assembling line of atoms with K atoms prepared
in a completely uncorrelated state

ρ total
atom(τ0) = ρ

(1)
atom ⊗ ρ

(2)
atom ⊗ ... ⊗ ρ

(K )
atom. (7)

The figure of merit for this scenario is the energetic gain per
collision, which we numerically calculate as a function of the
number of atoms present in the colliding streamline.

In Fig. 2, we plot the field’s energy gain per collision,
which, from Eqs. (4) and (5), has the same behavior as its
atomic counterpart. Notice that the protocol works better for
low temperatures, i.e., the energy gain increases when the
temperature decreases. This is explained by the fact that in
each interaction there is a population inversion between the
energy levels in each doublet. The transfer of population in
each collision is more effective, and hence, the population
inversion larger, the lower the temperature of the systems,
generating, thus, more energy gain. We also see that the en-
ergy gain per collision converges to a finite asymptotic value
greater than zero. This can be understood by verifying that the
charging process for the stationary battery (the EM field in our
example) slowly drags it into an asymptotic distribution. The
high degree of disorder of the initial state of the uncorrelated
atomic chain is responsible for raising the populations of
different levels of the EM field’s state at each collision. More
than that, the fact that every collision is similar and indepen-
dent ends up generating a Poisson distribution in the EM field
as can be checked in Fig. 3. After a certain number of colli-
sions, which varies with the temperature of the initial state,
the EM field converges into a large coherent state. This state,
for the purpose of the atomic dynamics, works as a classical
field, meaning that, after enough collisions with uncorrelated
atoms, all the following collisions just implement Rabi flips
in the atoms and slightly displace the EM field, as can be seen
in Fig. 4. This semiclassical behavior is specifically due to the
uncorrelated nature of the atomic chain’s global state and is
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FIG. 3. Three plots performed at the same dimensionless tem-
perature T = 0.01 for the case of uncorrelated atomic chain. The
number of collisions in each plot is specified in the legend.

FIG. 4. The dashed lines represent the Rabi population inversion
when an atom interacts with a classical field. The asymptotic be-
havior of the field into a coherent state induces an also asymptotic
behavior in the final state’s populations of each atom after interaction
with the FC.

FIG. 5. Here we plot the energy gain per collision for the
EM considering two different initial states for the atoms in the
assembling line: a classically correlated state (CC) and an uncorre-
lated state (NC). Parameters: ωq = 0.99ωm, �L/gq = 30, �/2π =
106 Hz, gq = �/600, ωm/2π = 1012 Hz, and T̄ = 0.01.

not present when correlations are introduced in the system as
we see in the following session.

IV. CORRELATION IN THE INITIAL STATE
OF THE ATOMIC CHAIN

So far, we have discussed the charging process for an
uncorrelated atomic chain. From now on, we will analyze
the impact on the charging protocol of considering correlated
atoms in the assembling line in two possible scenarios: that of
a classically correlated (CC) or entangled (EN) atomic chain.
In both cases, each atom of the assembling line will still be
in a Gibbs state at the same finite temperature T given by (3),
which allows us to immediately compare the new results with
those obtained for the uncorrelated chain.

A. Classically correlated and entangled state

We take, for the classically correlated streamline of atoms,
the density operator

ρCC
atom(0) = pT

g |gg...〉〈gg...| + pT
e |ee...〉〈ee...|, (8)

whereas, for the entangled streamline, the Greenberger-
Horne-Zeilinger (GHZ)-like global state

|ψatom(0)〉 =
√

pT
g |ggg...〉 +

√
pT

e |eee...〉. (9)

In both cases, the coefficients {pT
g , pT

e } are chosen such
that each individual atom is in the same thermal state as
before. The initial state of the hybrid battery (atomic chain
+ field) will be given by ρ(0) = ρ

j
atom(0) ⊗ ρfield(0), where

ρfield(0) is given by Eq. (3) and ρ
j
atom is either ρCC

atom or
|ψatom(0)〉〈ψatom(0)|.

To show how the presence of correlation in the initial state
of the atomic system affects the performance of the charging
protocol, we plot in Fig. 5 the field’s energy gain per collision
in both cases when the atoms are uncorrelated, and when the
atoms are initially in the CC state (8). As in the previous
section, the energy gained in each stroke by the colliding
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atom and the field is still determined by the same expression
[Eq. (6)] and the overall split of the gained energy between
the atom and the EM field still depends on the ratio ωeg/ωq.

It is clear that the correlation in the atomic streamline
increases the energy gain of the EM field. This can be under-
stood by the fact that the correlation reinforces the population
transfer to higher number states: atoms in the ground state are
the ones that allow for the largest overall gain in the anti-JC
scenario, and the probability of having N sequential atoms
in level |g〉 is pT

g for the correlated case and (pT
g )N for the

uncorrelated one. In fact, the number of ground-state atoms
for the uncorrelated case follows a binomial distribution of
rate pT

g and the only way for both overall probabilities to
coincide is at T = 0 (pT

g = 1).
The same result holds for the entangled atomic chain. This

is explained by considering a simple example of only two
atoms in the chain (K = 2) and assuming that the temperature
is small enough for the population of the EM field to be
concentrated in the ground state |0〉, i.e., kBT � h̄ωq. In this
scenario, we can easily neglect the field’s populations pn for
n � 1 (without any further impact on the atomic chain’s state),
so that the total system’s initial state is given by

|ψ (0)〉 = (√
pT

g |gg〉 +
√

pT
e |ee〉) ⊗ |0〉. (10)

In the first collision, the state |g0〉 undergoes a Rabi oscilla-
tion and, since the protocol is set to maximize the energetic
gain, we calibrate the interaction to stop whenever |g0〉 →
|e1〉. The first collision takes |ψ (0)〉 into state |ψ (1)〉 =
|e〉(

√
pT

g |g〉|1〉 +
√

pT
e |e〉|0〉) and the second collision takes

|ψ (1)〉 into |ψ (2)〉 = |ee〉(
√

pT
g |2〉 +

√
pT

e |0〉). The second
atom starts at the partial state |g1〉 and must undergo a Rabi
flip to |e2〉. Notice how, at each stroke, the time window of the
protocol is dictated solely by the |gg〉 part of the initial state,
since the presence of the atomic excited state |ee〉 shields the
population of level |0〉 [the state |e0〉 is an eigenstate of the
effective Hamiltonian (2)]. All the atoms end up in the excited
state, maximizing their charging and the EM field ends up on
a superposition of the vacuum, and a number state equal to the
number of collisions.

A similar calculation carried on for the CC case generates
the EM field state

ρfield(τ2) = pT
g |2〉〈2| + pT

e |0〉〈0|, (11)

while also fully charging the atomic chain. Since the energy
gained by the EM field only depends on the population of each
eigenstate of its free Hamiltonian, (i.e., the coherences that
appear in the entangled case do not affect it) both entangled
and classically correlated cases are energetically equivalent.
That is not to say that both cases are absolutely equivalent as
we see in the following section.

B. Work extraction and ergotropy

Another typical figure of merit to evaluate the performance
of charging a quantum battery is the ergotropy [53] stored
in the final state, which accounts for the maximum amount
of work that can be extracted from the system by a unitary
process. It is widely known that correlations can be used
to boost the performance of a quantum battery [11,58,59],

and we have already checked how they impact the energetic
transfer in our system. Now, we proceed to analyze the stored
ergotropy.

Ergotropy can be thought of, as literature shows, as the dif-
ference between quantum and classical relative entropies with
respect to the Gibbs state [60]. Relative entropy is a measure
of how distant two states are from each other, and therefore
the ergotropy stored in the system must grow as its density
matrix gets distinct from the initial thermal state. Taking into
account that the usage of correlated global states speeds up the
process of shifting the electromagnetic field towards higher
occupation numbers if compared to the uncorrelated case,
one should expect that in the former scenario, the ergotropy
gained by the field in each collision should outperform its
uncorrelated counterpart.

Following Ref. [60], one defines ergotropy as

βE = S(ρ||ρT ) − D(ρ||ρT ), (12)

where S(ρ||ρT ) ≡ Tr{ρ(ln(ρ) − ln(ρT ))} and D(ρ||ρT ) ≡∑
i piln( pi

pT
i

). Here, ρ is the density matrix whose ergotropy
we want to obtain, pi are its eigenvalues in descending order
(i.e., pi � pi+1), and ρT = exp(−βĤ )/Z is the Gibbs state,
with eigenvalues pT

i . The functions S(ρ||ρT ) and D(ρ||ρT )
are, respectively, the quantum and classical relative entropies
between the desired quantum state and the thermal state.

A simple calculation with both quantities leads to

S(ρ||ρT ) = ln(Z ) +
∑

i

pi ln(pi ) + β
∑

i

pi〈pi|Ĥ |pi〉,

D(ρ||ρT ) = ln(Z ) +
∑

i

pi ln(pi ) + β
∑

i

piEi.
(13)

When applied to the system of a quantum field with Ĥ =
h̄ωqN̂ , Ei = h̄ωqi, Eq. (12) results in

E = h̄ωq

∞∑
i=0

pi(〈pi|N̂ |pi〉 − i). (14)

The system’s ergotropy written in the form of (14) eases
the visualization that the positive contribution to the maximal
stored work in the field is due to states with higher mean
occupation numbers, and increases as they get more and more
populated. Therefore the shifting of the field’s population
towards higher mean occupation numbers is directly linked
to the stored amount of extractable work: the faster it shifts,
the more ergotropy it stores with a given chain size. It is then
desirable that the global state of the atomic chain is correlated,
since it contributes to a faster shift of the field’s population,
and therefore to the increment of the total ergotropy.

A simple algebraic calculation can be performed in the
regime in which the population of the EM field is concentrated
in its ground state, i.e., when (kBT � h̄ωq). Following the
same simple evolution we performed on Sec. IV A, one can
easily find that for a chain with K atoms, the final states of the
field for the entangled and the classically correlated schemes
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are, respectively,

ρEN
field(τK ) = pT

g |K〉〈K| + pT
e |0〉〈0|

+
√

pT
g pT

e (|K〉〈0| + |0〉〈K|),
ρCC

field(τK ) =pT
g |K〉〈K| + pT

e |0〉〈0|.
(15)

Diagonalizing the first state to find its eigenvectors and
using formula (14), one finds that the battery’s ergotropies for
each case are given by

EEN = Kh̄ωq

1 + pT
e

pT
g

,

ECC = h̄ωq
(
K pT

g − pT
e

)
,

(16)

and its ratio is given by

EEN

ECC
= K

K − pT
e

pT
g

= K

K − e−β h̄ωeg
, (17)

which approaches unit as T → 0, for whatever chain size
used. Furthermore, even at non-zero, but still low, tempera-
tures, the ergotropic gain ratio diminishes with longer atomic
streams. Altogether, these results illustrate how the entangled
state has effectively no considerable gain upon a classical
correlation between the atoms.

For arbitrary values of the temperature, though, evaluating
the ergotropic difference between the two types of correlation
is a more involved task. This is so because in this case we
can no longer neglect the nonvacuum populations of the field,
which implies that more than a single doublet should evolve
during each collision, and the optimal time for maximizing the
energy extraction must be found numerically. Furthermore,
solving the evolution equations for the entangled initial state
is a hard computational task, since the total Hilbert space
dimension scales exponentially with the number of inputs.
In this paper we compare both cases with a chain size of
up to seven atoms. Even at this regime, the main source of
additional ergotropy is the coherence present in the entangled
state but, as we display in Fig. 6, this increment poses no
significant gain over the CC scenario and from the point of
view of resource theory may not even cover the total entropic
cost for creating the initial entangled state.

Since the entangled global state is a pure state, the en-
tropic cost for creating such a resource is maximal among the
ones we used in the protocol. For the classically correlated
atomic state, on the other hand, the von Neumann entropy can

be shown to be S(ρCC) = χ

T
e−χ/T

Z + ln(Z ), with ωg = 0, ωe =
χωm and T ≡ kBT

h̄ωm
the dimensionless temperature. In order to

maintain the population of level |m〉 under control, to avoid
spoiling the adiabatic elimination condition, we should refrain
from increasing T above a few decimal points. Indeed, in
the present case we have limited it to the maximal value of
T = 0.1, which nears the pT

m population of each atom to be
five orders of magnitude lower than pT

g . We consider this to be
a safe limit for the operation of the protocol, which also grants
us the additional perk of barely neglecting nonvacuum field’s
populations. This is only true, however, if we work under the
assumption of low atomic gap χ .

FIG. 6. Dimensionless ergotropies (normalized by h̄ωm) in the
field for the entangled and classically correlated initial atomic states,
for T = 0.01 (top) and T = 0.1 (bottom). Despite the fact that the
entangled initial state increases the amount of ergotropy stored in the
field, this increment does not substantially scale with temperature
and may even present losses when the cost for producing such a
state is considered. Furthermore, notice that this increment is only
available after the final atom collides with the field, which is expected
since only then the information about the entanglement of the whole
chain state is furnished.

As one may see from the expression for S(ρCC), the re-
duced costs with resource are achieved for low values of χ/T ,
and therefore raising the temperature (within the protocol’s
limits) makes the CC initial state a better resource, since
we reduce the cost for production and, from Eq. (17), the
entangled state presents no absolute gain for longer chains.
The single scenario where the entangled state may outperform
the classically correlated case is for small-sized atomic chains,
where the entropic gain for the field in the former setup can
be up to twice the amount of work the field stores in the latter.

V. CONCLUSION

In this paper we have analyzed a protocol where a quan-
tum single mode of the electromagnetic field is coupled to
a stream of atoms with both systems being pumped by an
external classical power source in an anti-Jaynes-Cummings
configuration. We have considered both the quantum field and
the atomic chain as quantum batteries that are simultaneously
charged by the external classical drive and have focused on

052218-6



COOPERATIVE ISENTROPIC CHARGING OF HYBRID … PHYSICAL REVIEW A 108, 052218 (2023)

studying the role played by correlations in the atomic chain in
the performance of the charging protocol.

In particular, we have shown that while correlations in
the atomic system do not impact the charging dynamics of
each individual atom, they do improve the charging of the
quantized field by decreasing the total time required to reach a
certain level of internal energy. This corresponds to an overall
increase in the power efficiency of the charging process when
compared to the uncorrelated case. Furthermore, the total
amount of stored energy and ergotropy in the field are also
higher when correlation is used.

We have also compared the effects of purely quantum (en-
tanglement) versus purely classical correlations. In particular,
we have tested the collection of atoms both in a GHZ-like
entangled state, with appropriate coefficients to mimic indi-
vidual atoms in a thermal state, or in its classically correlated
equivalent (the equivalent mixture of all atoms up or all atoms
down). We have shown that, in our protocol, even though
entanglement may generate slightly higher values for the er-
gotropy of the quantum field, this extra gain certainly does
not compensate for the much larger entropic cost to produce

GHZ-like states versus their much cheaper classically cor-
related versions. Furthermore, we have also shown that this
small extra gain introduced by entanglement becomes less
relevant the larger the chain is, vanishing for infinite ones.

Finally, it is worth noticing that further developments of
these results may also consider atom-atom interactions within
the chain, in the spirit of the work done in Ref. [61]. Such
interactions could be used to change the correlations between
different pairs of atoms, altogether with their interaction with
the mode of the electromagnetic field. In this case, an interest-
ing program would be to analyze how figures of merit such as
total charging or the power efficiency of charging the quantum
field could be affected by such interactions.
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