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Separability discrimination and decomposition of quantum mixed states
based on the Broyden-Fletcher-Goldfarb-Shanno algorithm
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In this paper, we consider separability discrimination and decomposition problems of quantum mixed states
based on the tensor optimization method. We first convert the separability determination problem of quantum
mixed states to the positive Hermitian decomposition problem of Hermitian tensors. Then we study a rank-R
positive Hermitian approximation model of Hermitian tensors and introduce a Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm for rank-R positive Hermitian approximation. We prove that the BFGS algorithm
can be used to compute a decomposition of a mixed state if it is separable. Finally, we propose a BFGS
algorithm for separability determination and decomposition of quantum mixed states. Numerical examples show
the effectiveness of the algorithm.
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I. INTRODUCTION

The concept of quantum entanglement was first introduced
by Schrödinger [1], Einstein, Podolsky, and Rosen [2]. At
present, quantum entanglement has played an important role
in quantum information theory and in the development of
the quantum technologies. Many mixed-state entanglement
measures have been developed. However, so far, a directly
or numerically computable measure for the entanglement of
multipartite mixed states is difficult to find [3]. Hence, the
question of whether a given mixed state is entangled or sep-
arable is still one of the fundamental problems in quantum
information theory [4,5].

In fact, it is known to be NP hard to decide whether
a given mixed state is entangled or separable [6,7]. In the
past 20 years, it has aroused great interest from experts and
scholars. Halder et al. [8] indicated that nontrivial mixtures
of an arbitrary pair of an entangled state and a product
state in any bipartite quantum system are always entangled.
Vesperini et al. [3] proposed an entanglement measure of
mixed states, derived from the quantum correlation measure
using a regularization procedure for the density matrix. In
addition, some separability discrimination methods for the
quantum states also have been proposed, such as Bell’s in-
equality, the positivity of the partial transposition of a state
criterion (PPT criterion) [9,10], computable cross norm or
rearrangement criterion (CCNR criterion) [11], entanglement
witness [9,12], covariance matrix criterion [13], and other
methods. However, these methods cannot decompose a mixed
state if it is separable. For solving this problem, Li and Ni
[5] proposed a semi-definite relaxation algorithm to detect
the mixed state’s separability and obtain its decompositions if
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it is separable. However, the semi-definite relaxation is hard
to calculate a decomposition if the mixed state has higher
order and higher dimension since the number of moments will
increase sharply with the increase of its order and dimension.

Motivated by the above, we consider a numerical algorithm
to detect the mixed state’s separability and decompose it if it
is separable. We first convert the separability determination
problem of quantum mixed states to the positive Hermitian
decomposition problem of Hermitian tensors. Then we study a
rank-R separable approximation model of Hermitian tensors,
introduce a Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm for rank-R separable approximation. Finally, we
design a BFGS algorithm to determinate the separability of
an m-partite quantum mixed state and decompose it if it is
separable. Numerical examples show that the BFGS algorithm
has good numerical performance.

The rest of the paper is structured as follows. In Sec. II,
we introduce some basic concepts, including some opera-
tions of tensors, tensor representation of quantum states, and
the geometric measure of quantum mixed states. In Sec. III,
we establish a rank-R separable approximation optimization
model of Hermitian tensors, then we deduce the gradient
of the objective function FH(Ĥ, Ĥ∗). Finally, we introduce
a BFGS algorithm for rank-R separable approximation. In
Sec. IV, we study a numerical algorithm for separability
discrimination and decomposition of quantum mixed states.
Through the Algorithm 4.1, we can know whether a quantum
mixed state is separable. If the quantum mixed state is a
separable state, its decomposition is given. In Sec. V, we
give numerical examples on the computation of separability
of several quantum mixed states. Numerical examples verify
the correctness of the theoretical analysis and the effectiveness
of the Algorithm 4.1. A conclusion is indicated in Sec. VI.

Notations. R and C denote the real field and complex field,
respectively. An uppercase letter in calligraphic font denotes
a tensor, e.g., T . An uppercase letter represents a matrix, e.g.,
U . A boldface lowercase letter represents a vector, e.g., v. A
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lowercase letter represents a scalar, e.g., x. (U )i j denotes the
element with row index i and column index j in a matrix U ,
[also (v)i and (T )i1i2... iN = Ti1i2... iN ]. Let m > 0 be an integer,
denote [m] := {1, 2, . . . , m} as an integer set. For vectors,
‖ · ‖ refers to the two-norm. For tensors and matrices, ‖ · ‖F

refers to the Frobenius norm.
∏n

i=1 ‖ai‖ = ‖a1‖‖a2‖ · · · ‖an‖
represents a continuous multiplication. (·)∗ denotes its conju-
gation. (·)† denotes its conjugate transposition.

II. PRELIMINARIES

A. Tensor and matrix operations

An mth-order complex tensor denoted by A = (Ai1...im ) ∈
Cn1×···×nm is a multiarray consisting of numbers Ai1...im ∈ C
for all ik ∈ [nk] and k ∈ [m]. If tensors A ∈ CI1×I2×···×Im and
B ∈ CJ1×J2×···×Jm , then the tensor product of tensors A and B
is defined as

A ◦ B := (
Ai1... imB j1... jm

) ∈ CI1×···×Im×J1×···×Jm .

If tensors A, B ∈ Cn1×···×nm , then their inner product, denoted
as 〈A,B〉 or A · B, is defined as

〈A,B〉 :=
n1,n2,··· ,nm∑
i1,i2,...,im=1

A∗
i1i2... imBi1i2... im ,

where A∗
i1i2... im represents the complex conjugate of Ai1i2... im .

The Frobenius norm of a tensor A is

||A||F :=
√

〈A,A〉.
Definition 2.1 [14]. A 2mth-order tensor H =

(Hi1...im j1... jm ) ∈ Cn1×···×nm×n1×···×nm is called a Hermitian
tensor if

Hi1...im j1... jm = H∗
j1... jmi1...im ,

for all ik, jk ∈ [nk], k ∈ [m]. The space of all Hermitian ten-
sors is denoted by H[n1, . . . , nm]. A Hermitian tensor H is
called a symmetric Hermitian tensor if n1 = · · · = nm and
its entries Hi1...im j1... jm are invariant under any permutation
operator P of {1, . . . , m}, i.e.,

Hi1...im j1... jm = HP[i1...im]P[ j1... jm],

where P[i1 . . . im] denotes [iP(1), . . . , iP(m)]. The space of all
symmetric Hermitian tensors is denoted by sH[n1, . . . , nm].

Definition 2.2 [14]. Let H ∈ H[n1, . . . , nm] be a Hermi-
tian tensor. If it can be written as

H =
R∑

i=1

λi v(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i , (1)

where λi ∈ R, v(k)
i ∈ Cnk , ‖v(k)

i ‖ = 1, and k ∈ [m], then
Eq. (1) is called a Hermitian decomposition of H. If λi � 0
for all i ∈ [R], then Eq. (1) is called a positive Hermitian
decomposition of H and H is called positive Hermitian de-
composable or separable.

The set of all positive Hermitian decomposable Hermitian
tensors in Hilbert space H[n1, . . . , nm] is denoted by phd(H).
The Hermitian rank of a Hermitian tensor H ∈ H[n1, . . . , nm]
is the smallest number of R in Eq. (1), denoted by rankHH.

Definition 2.3 [14]. The matrix trace of Hermitian tensor
H ∈ H[n1, · · · , nm] is defined as

TrM (H) :=
n1,...,nm∑

i1,··· ,im=1

Hi1... imi1...im .

If matrices A ∈ CI×K and B ∈ CJ×K , then the Khatri-Rao
product of A and B, denoted by A � B, is defined as

A � B :=

⎡
⎢⎢⎣

a11b1 a12b2 · · · a1K bK

a21b1 a22b2 · · · a2K bK
...

...
. . .

...

aI1b1 aI2b2 · · · aIK bK

⎤
⎥⎥⎦ ∈ CIJ×K ,

where b j ∈ Cn j and j ∈ [K].
The mode-k matricization of tensor A ∈ Cn1×n2×···×nm is

denoted by A(k) with size nk × (
∏m

i=1 ni/nk ) and arranges the
tensor A into a matrix such that tensor element Ai1i2...im is
equal to matrix element (A(k) )ik j , where

j = 1 +
m∑

l=1,l 	=k

⎡
⎣(il − 1)

l−1∏
p=1,p	=k

np

⎤
⎦.

B. Tensor representation of quantum states

Here, we introduce the tensor representation of quantum
pure states and quantum mixed states. For more details, please
refer to Refs. [5,14–17]. An m-partite pure state |ψ〉 of a
composite quantum system can be regarded as a normalized
complex tensor in the space Cn1×···×nm . The pure state |ψ〉 is
written by

|ψ〉 =
n1,...,nm∑

i1,...,im=1

Xi1... im

∣∣e(1)
i1

. . . e(m)
im

〉
,

where Xi1...im ∈ C such that 〈ψ |ψ〉 = 1, {|e(k)
ik

〉 : ik =
1, 2, . . . , nk} is an orthonormal basis of Cnk [17]. Hence,
an m-partite pure state uniquely corresponds to a complex
tensor Xψ = (Xi1...im ) under a given orthonormal basis with
‖Xψ‖F = 1 [15].

For instance, a three-partite pure state |W 〉 = (|001〉 +
|010〉 + |100〉)/

√
3. Assume that XW is the corresponding

tensor of |W 〉. Then it is a third-order two-dimensional
symmetric tensor and its nonzero elements are (XW )112 =
(XW )121 = (XW )211 = 1√

3
.

Definition 2.4. If an m-partite pure state |ψ〉 ∈ Cn1×···×nm

can be expressed as

|ψ〉 = ◦m
k=1|φ(k)〉 := |φ(1)φ(2) · · ·φ(m)〉,

where |φ(k)〉 ∈ Cnk , then |ψ〉 is called a separable state. Oth-
erwise, it is called an entangled state.

For example, a two-partite pure state |ψ〉 = 1√
2
(|00〉 +

|01〉) = |φ(1)〉 ◦ |φ(2)〉 = |φ(1)φ2〉, where |φ(1)〉 = |0〉 and
|φ(2)〉 = 1√

2
(|0〉 + |1〉). Hence |ψ〉 is a separable pure state.

Let u(1) = (1, 0)�, u(2) = (1/
√

2, 1/
√

2)�. Then Xψ = u(1) ◦
u(2), which means that the corresponding tensor Xψ is a rank-1
tensor.
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For an m-partite mixed state, its density matrix ρ is always
written as

ρ =
s∑

i=1

λi|ψi〉〈ψi|,

where
∑s

i=1 λi = 1, λi � 0, |ψi〉 is an m-partite pure state and
〈ψi| is the complex conjugate transposition of |ψi〉.

Under an orthonormal basis of Cnk for k = 1, 2, . . . , m,
assume that Xi is the corresponding complex tensor of |ψi〉
for i = 1, 2, . . . , s. Then the density matrix ρ of the mixed
state corresponds to the following Hermitian tensor:

Hρ :=
s∑

i=1

λiXi ◦ X ∗
i .

Hence, an m-partite mixed state uniquely corresponds to
a Hermitian tensor Hρ ∈ H[n1, . . . , nm] under a given or-
thonormal basis.

For example, if a two-partite mixed state’s density matrix
ρ = 1

2 |00〉〈00| + 1
2 |01〉〈01|, then Hρ is a fourth-order two-

dimensional Hermitian tensor and its nonzero elements are
(Hρ )1111 = (Hρ )1212 = 1

2 .
Definition 2.5 [17]. An m-partite quantum mixed state is

called separable if its density matrix ρ can be written as

ρ =
R∑

i=1

pi

∣∣φ(1)
i · · ·φ(m)

i

〉〈
φ

(1)
i · · ·φ(m)

i

∣∣,

where pi � 0,
∑R

i=1 pi = 1, |φ(k)
i 〉 ∈ Cnk , i ∈ [R], and k ∈

[m]. The set of all separable mixed states in Hilbert space
H[n1, . . . , nm] is denoted by Separ(H).

Similarly, if Hρ is the corresponding Hermitian tensor of
ρ, then we have that

Hρ =
R∑

i=1

pi v(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i ,

where pi � 0,
∑R

i=1 pi = 1, v(k)
i ∈ Cnk , ‖v(k)

i ‖ = 1, i ∈ [R],
and k ∈ [m]. Hence, the mixed state ρ is separable if and only
if its corresponding Hermitian tensor Hρ is separable.

C. Geometric measure of quantum mixed states

For a quantum mixed state ρ, E (ρ) denotes the distance
between the state and the nearest separable mixed state, called
the geometric measure of the quantum mixed states ρ.

Definition 2.6. Assume that ρ is quantum mixed state. Its
geometric measure E (ρ) is defined by

E (ρ) := min
ρsep∈Separ(H)

‖ρ − ρsep‖F .

Assume that a Hermitian tensor Hρ corresponds to the state
ρ. Then the geometric measure E (ρ) can be written as the
following tensor optimization problem:

E (ρ) = min
H̄∈Separ(H)

||Hρ − H̄||F .

Denote Rmax := maxH̄∈Separ(H) rankHH̄. For every H̄ ∈
Separ(H), it can be written as

H̄ =
Rmax∑
i=1

piv
(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i ,

with pi � 0, v(k)
i ∈ Cnk , ‖v(k)

i ‖ = 1, k ∈ [m], i ∈ [Rmax].
Hence, the computation problem of E (ρ) can be converted

to a rank-Rmax approximation problem of Hermitian tensors.
Furthermore, the state ρ is separable if and only if E (ρ) = 0.
So, we discuss a rank-R separable approximation optimization
problem of Hermitian tensors in the next section.

III. RANK-R SEPARABLE APPROXIMATION
OF HERMITIAN TENSORS

Given a positive integer R and a Hermitian tensor H ∈
H[n1, . . . , nm], the rank-R separable approximation problem
of H is the following optimization problem:

min
Ĥ∈phd(H)

||H − Ĥ||2F . (2)

For every Ĥ ∈ phd(H), the tensor can be expressed as

Ĥ =
R∑

i=1

λi v(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i , (3)

where λi � 0, v(k)
i ∈ Cnk , ‖v(k)

i ‖ = 1, i ∈ [R], k ∈ [m].
Since λi � 0 for all i ∈ [R], we rewrite the tensor Ĥ as

Ĥ =
R∑

i=1

u(1)
i ◦ · · · ◦ u(m)

i ◦ u(1)∗
i ◦ · · · ◦ u(m)∗

i ,

where u(k)
i = 2m

√
λiv

(k)
i , u(k)

i ∈ Cnk , i ∈ [R], k ∈ [m].
The constrained optimization problem (2) becomes the fol-

lowing unconstrained optimization problem:

min
u(1)

i ,··· ,u(m)
i

∣∣∣∣∣
∣∣∣∣∣H −

R∑
i=1

u(1)
i ◦ · · · ◦ u(m)

i ◦ u(1)∗
i ◦ · · · ◦ u(m)∗

i

∣∣∣∣∣
∣∣∣∣∣
2

F

.

(4)

Let Uk = (u(k)
1 , u(k)

2 , . . . , u(k)
R ) be a complex matrix, where

u(k)
i ∈ Cnk , i ∈ [R], k ∈ [m]. U1, . . . ,Um are called factor

matrices of Hermitian tensor Ĥ. Ĥ can be expressed as
Ĥ := [[U1, . . . ,Um,U ∗

1 , . . . ,U ∗
m]].

In addition, denote

FH(Ĥ, Ĥ∗) := ||H − Ĥ||2F . (5)

Then the optimization problem (4) can be concisely
expressed as

min
Ĥ

FH(Ĥ, Ĥ∗). (6)

In the next subsection, we deduce the gradient of the objective
function.

A. Gradient calculation of FH(Ĥ, Ĥ∗)

Here, the function FH(Ĥ, Ĥ∗) is defined as in
Eq. (5), where Ĥ = [[U1, . . . ,Um,U ∗

1 , . . . ,U ∗
m]]. Obviously,
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FH(Ĥ, Ĥ∗) is continuous and differentiable. Specifically, for
every k ∈ [m], fix {U1, . . . ,Uk−1,Uk+1, . . . ,Um}, we regard
FH(Ĥ, Ĥ∗) as a function of Uk and U ∗

k . Then, its fastest
growth direction, defined as the gradient of FH(Ĥ, Ĥ∗),
denoted by Gk , is

Gk := ∇U ∗
k
FH(Ĥ, Ĥ∗) = ∂FH(Ĥ, Ĥ∗)

∂U ∗
k

.

Theorem 3.1 [18]. Let H ∈ H[n1, . . . , nm] be a Hermi-
tian tensor, R be a positive integer, Uk ∈ Cnk×r for all k ∈
[m] be factor matrices of Hermitian tensor Ĥ, and Ĥ =
[[U1, . . . ,Um,U ∗

1 , . . . ,U ∗
m]]. Then, for each k ∈ [m], the par-

tial derivative of FH(Ĥ, Ĥ∗) defined in Eq. (5) with respect to
U ∗

k is

∂FH(Ĥ, Ĥ∗)

∂U ∗
k

= −2(H(k+m) − Ĥ(k+m) )
∗ (U ∗

m � · · ·

� U ∗
k+1 � U ∗

k−1 � · · · � U ∗
1 � Um

� · · · � U1), (7)

where Ĥ(k+m) represents the mode-(k + m) unfolding matrix
of tensor Ĥ.

The proof of Theorem 3.1 is shown in Appendix A. Hence,
we obtain the gradient of the objective function FH(Ĥ, Ĥ∗),
denoted by G, as follows:

G := ∇FH(Ĥ, Ĥ∗) = [G1, G2, . . . , Gm]�.

B. BFGS algorithm for rank-R separable approximation

In this subsection, we deduce the BFGS method combined
with the Wolfe line search for solving the optimization prob-
lem (6). For every k ∈ [m], we also denote FH(Uk,U ∗

k ) :=
FH(Ĥ, Ĥ∗) as a function of Uk and U ∗

k . For more details,
please refer to Ref. [18]. We choose the initial point U 1 and B1

first, i.e., U 1 = {U 1
1 ,U 1

2 , . . . ,U 1
m}, B1 = {B1

1,B1
2, . . . ,B1

m}.
In iteration t , for every k ∈ [m], the search direction of the

algorithm, denoted as Dt
k , is computed by

Bt
k · Dt

k = −Gt
k,

where

Gt
k = ∂FH

(
Ut

k ,Ut∗
k

)
∂U ∗

k

,

(
Bt

k · Dt
k

)
i1i2

=
nk∑

j1, j2=1

(
Bt

k

)
i1i2 j1 j2

(
Dt

k

)
j1 j2

.

We denote by Dt = (Dt
1, Dt

2, . . . , Dt
m),Ut=(Ut

1,Ut
2, . . . ,Ut

m).
The iteration step αt of line search algorithm satisfies the
Wolfe condition, i.e.,

FH(Ut + αt Dt ,Ut∗ + αt Dt∗) � FH(Ut ,Ut∗) + ηαt 〈Gt , Dt 〉,
〈∇FH(Ut + αt Dt ,Ut∗ + αt Dt∗), Dt 〉 � σ 〈Gt , Dt 〉, (8)

where 0 < η < 0.5, η < σ < 1. η and σ are the parameters of
the line search algorithm. Then the next iteration is computed
by Ut+1 = Ut + αt Dt . Let St

k = Ut+1
k − Ut

k and Y t
k = Gt+1

k −
Gt

k with St = {St
k|k = 1, . . . , m} and Y t = {Y t

k |k = 1, . . . , m}.

The updated formula of Bt
k is

Bt+1
k = Bt

k −
(
Bt

kSt
k

) ◦ [
Bt

k

(
St

k

)†]
〈
Bt

kSt
k, St

k

〉 + Y t
k ◦ (

Y t
k

)†

〈
Y t

k , St
k

〉 , (9)

where k ∈ [m]. Bt = {Bt
k|k = 1, . . . , m} is an approximation

of a Hessian.
Then we have the BFGS algorithm for rank-R separable

approximation of Hermitian tensor is shown in Algorithm 3.1.
Algorithm 3.1. (The BFGS algorithm for rank-R separable

approximation).
Input: A Hermitian tensor H and a positive number R.

Select parameters η ∈ (0, 0.5), σ ∈ (η, 1), t = 1, the initial
factor matrice U 1 = {U 1

1 ,U 1
2 , . . . ,U 1

m}, the tolerance error
ε > 0, the initial fourth-order unit Hermitian tensor B1 =
{I1

1, I
1
2, . . . , I

1
m}.

Output: A couple of factor matrices U =
{U1,U2, . . . ,Um} of a rank-R separable approximation of
H.

Step 1: Based on H and Ut = {Ut
1,Ut

2, . . . ,Ut
m}, we cal-

culate Gt = ∇FH(Ĥ, Ĥ∗) from Eq. (7).
Step 2: If ‖Gt‖F � ε, then go to Step 6. Otherwise, go to

the next step.
Step 3: Solving equations Bt Dt = −Gt , the search direc-

tion Dt is obtained.
Step 4: Compute the iteration step αt according to Wolfe

conditions (8).
Step 5: Let Ut+1 = Ut + αt Dt . Update variable Bt+1,

Bt+1 = {Bt+1
k |k = 1, . . . , m} is determined by formula (9).

Let t = t + 1, then go to Step 1.
Step 6: Return U = Ut .

IV. SEPARABILITY CRITERION AND DECOMPOSITION
OF QUANTUM MIXED STATES

In this section, we will use Algorithm 3.1 to study the
separability criterion and decomposition of quantum mixed
states. We know that, under a given standard orthogonal base,
a quantum mixed state ρ corresponds to a Hermitian tensor
Hρ . Hence, we use Algorithm 3.1 to solve a separable ap-
proximation of Hρ . If we find a suitable R(1 � R � Rmax) to
make the residual error satisfy

∣∣∣∣∣
∣∣∣∣∣Hρ −

R∑
i=1

u(1)
i ◦ · · · ◦ u(m)

i ◦ u(1)∗
i ◦ · · · ◦ u(m)∗

i

∣∣∣∣∣
∣∣∣∣∣
F

= 0,

then we can get a positive Hermitian decomposition of Hρ ,
i.e.,

Hρ =
R∑

i=1

u(1)
i ◦ · · · ◦ u(m)

i ◦ u(1)∗
i ◦ · · · ◦ u(m)∗

i .

Let pi = (
∏m

k=1 ‖u(k)
i ‖)2 and v(k)

i = u(k)
i

‖u(k)
i ‖ , i ∈ [R], k ∈ [m].

Then

Hρ =
R∑

i=1

pi v(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i .
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A natural question:
∑R

i=1 pi = 1? If the answer is yes, then
we obtain a decomposition of quantum mixed state ρ and
determine that ρ is separable.

Theorem 4.1. Let the Hermitian tensor

H =
s∑

i=1

λiXi ◦ X ∗
i ,

where λi � 0,
∑s

i=1 λi = 1, ‖Xi‖F = 1, Xi ∈ Cn1×···×nm , i ∈
[s]. Assume that H is separable and has a positive Hermitian
decomposition obtained by Algorithm 3.1 as

H =
R∑

i=1

u(1)
i ◦ · · · ◦ u(m)

i ◦ u(1)∗
i ◦ · · · ◦ u(m)∗

i ,

where u(k)
i ∈ Cnk and k ∈ [m]. Let pi = (

∏m
k=1 ‖u(k)

i ‖)2 and

v(k)
i = u(k)

i

‖u(k)
i ‖ , i ∈ [R], k ∈ [m]. Then

H =
R∑

i=1

pi v(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i ,

with pi � 0 and
∑R

i=1 pi = 1.
Note. The proof of Theorem 4.1 is provided in Appendix B.

If ρ is a density matrix of a separable quantum mixed state and
Hρ is its corresponding Hermitian tensor, then TrM (Hρ ) = 1
satisfying the condition of Theorem 4.1. On the other hand, we
can obtain a positive Hermitian decomposition of Hρ through
Algorithm 3.1, which satisfies pi � 0 and

∑R
i=1 pi = 1 by

Theorem 4.1. So, we can get a decomposition of quantum
state ρ. Hence, we propose an algorithm in the following
for the separability discrimination of a quantum mixed state
ρ and calculating a decomposition of ρ if it is separable.
If Algorithm 4.1 does not converge to zero, then we cannot
guarantee that the output trace is equal to 1. In other words, if
ρ is an entangled state and Hρ is its corresponding Hermitian
tensor, then some numerical results show that the matrix trace
of approximate tensor Ĥ of Hρ is not 1. Refer to Example 5.1
and Example 5.3 for more details.

Algorithm 4.1. (Separability discrimination and decom-
position of quantum mixed states)

Input: A quantum mixed state ρ, a Hermitian rank upper
bound Rmax, an initial point U 1 = (U 1

1 ,U 1
2 , . . . ,U 1

m) and a
small positive number ε.

Output: Answer whether ρ is separable. If it is separable,
we give a decomposition, i.e., {pi � 0|i ∈ [R]} and the state
{|φ(k)

i 〉|i ∈ [R], k ∈ [m]}.
Step 1: Obtain its corresponding tensor Hρ for the mixed

state ρ.
Step 2: Take R = 1:Rmax, we calculate the rank-R separa-

ble approximation of Hρ by Algorithm 3.1. If ‖Hρ − Ĥ‖F �
ε, then we take R = R + 1. Loop until if R = Rmax and ‖Hρ −
Ĥ‖F � ε, then go to Step 5. If there exists a suitable R � Rmax

such that ||Hρ − Ĥ||F < ε, then go to the next step.
Step 3: Compute pi = (

∏m
k=1 ‖u(k)

i ‖)2 and the state

{|φ(k)
i 〉 := v(k)

i = u(k)
i

‖u(k)
i ‖ |i ∈ [R], k ∈ [m]}.

Step 4: Return the mixed state ρ is separable, {pi � 0|i ∈
[R]} and the state {|φ(k)

i 〉|i ∈ [R], k ∈ [m]}.
Step 5: Return the mixed state ρ is entangled.

TABLE I. The matrix trace TrM (Ĥρ(α) ) of approximate tensors
Ĥρ(α).

α 0.3 0.6 1

TrM (Ĥρ(α) ) 1.2 1.1 1.5

V. NUMERICAL EXAMPLES

For a quantum mixed state, we use Algorithm 4.1 to detect
its separability. If it is separable, we give its decomposition.
To test the effectiveness of Algorithm 4.1, we study several
quantum mixed states. From Ref. [19], we know that Rmax �(n+m−1

m

)2
if Hρ is a symmetric Hermitian tensor. Let Ĥ be a

separable Hermitian tensor defined by Eq. (3). The relative
error of Hρ and Ĥ is defined as

δ := ‖Hρ − Ĥ‖F

‖Hρ‖F
.

Example 5.1 [20]. Consider the quantum mixed state

ρ(α) = α|ψ1〉〈ψ1| + (1 − α)|ψ2〉〈ψ2|,
where |ψ1〉 = 1√

2
|00〉 + 1√

2
|11〉, |ψ2〉 = 1√

2
|01〉 + 1√

2
|10〉,

α ∈ (0, 1).
By calculating the geometric measure of ρ(α), Hu et al.

showed that ρ( 1
2 ) is separable and the rest are entangled.

ρ( 1
2 ) corresponds to a fourth-order two-dimensional

Hermitian tensor Hρ( 1
2 ) and its nonzero elements are

(Hρ( 1
2 ) )1111 = (Hρ( 1

2 ) )2211 = (Hρ( 1
2 ) )1221 = (Hρ( 1

2 ) )2121 =
(Hρ( 1

2 ) )1212 = (Hρ( 1
2 ) )2112 = (Hρ( 1

2 ) )1122 = (Hρ( 1
2 ) )2222 = 1

4 .
To verify the correctness of Algorithm 4.1, we conduct an
experiment for the mixed state ρ( 1

2 ).
Using Algorithm 4.1 ten times, we compute the rank-R sep-

arable approximation of Hρ( 1
2 ) for all R = 1, 2, . . . , 7. In most

cases, we get all relative errors δρ( 1
2 ) as 0.7071, 5.7941e −

07, 2.0223e − 05, 5.4682e − 05, 9.4914e − 05, 8.9762e −
05, 2.5051e − 04, respectively. It is clear that ρ( 1

2 ) is separa-
ble. We obtain a decomposition of ρ( 1

2 ) in Appendix C 1.
Take α = 0.3, α = 0.6, and α = 1. which correspond to

Hermitian tensors Hρ(0.3), Hρ(0.6), and Hρ(1). Since Hρ(0.3),
Hρ(0.6), and Hρ(1) are symmetric Hermitian tensors, we take

Rmax = (3
2

)2 = 9. When R = Rmax = 9, we calculate the rela-
tive errors δρ(0.3) = 0.2626, δρ(0.6) = 0.1387, and δρ(1) = 0.5
by Algorithm 4.1. Hence ρ(0.3), ρ(0.6), and ρ(1) are entan-
gled.

If we take α equal to 0.3, 0.6, or 1, numerical results
indicate that the matrix traces of approximate tensors Ĥρ(α)

of Hρ(α) are not equal to 1. The results are shown in Table I.
Finally, we plot δ2[ρ(α)] for the mixed states ρ(α) with

parameter α ∈ [0, 1]. The result is shown in Fig. 1.
Example 5.2 [17]. Consider mixtures of three-qubit

|GHZ〉, |W 〉, and inverted-|W 〉 states as

ρ
(

1
4 , 3

8

) = 1
4 |GHZ〉〈GHZ| + 3

8 |W 〉〈W | + 3
8 |W̃ 〉〈W̃ |,

where |GHZ〉, |W 〉, |W̃ 〉 are defined as follows: |GHZ〉 =
(|000〉 + |111〉)/

√
2, |W 〉 = (|001〉 + |010〉 + |100〉)/

√
3,

|W̃ 〉 = (|110〉 + |101〉 + |011〉)/
√

3.
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FIG. 1. The δ2[ρ(α)] for the mixed states ρ(α) in Example 5.1.

Wei and Goldbart said that ρ( 1
4 , 3

8 ) is separable. However,
they did not show its decomposition. ρ( 1

4 , 3
8 ) corresponds to

a Hermitian tensor Hρ( 1
4 , 3

8 ) of size sixth-order two dimen-
sions. Next, we verify whether Algorithm 4.1 can distinguish
whether the mixed state ρ( 1

4 , 3
8 ) is separable.

Using Algorithm 4.1 five times, we calculate the
rank-R separable approximation of Hρ( 1

4 , 3
8 ) for all R =

1, 2, . . . , 7. we obtain all mean relative error values as
0.81009, 0.56565, 2.2225e − 06, 6.8205e − 05, 1.486e −
04, 2.0062e − 04, 1.5276e − 04, respectively. So ρ( 1

4 , 3
8 ) is

separable and its Hermitian rank is 3. We obtain a decompo-
sition of ρ( 1

4 , 3
8 ) in Appendix C 2.

When R = 3, we run the Algorithm 4.1 five times. For fixed
R, Algorithm 4.1 takes different initial values, and its running
time, iteration number, and relative error are slightly different
as in Table II.

Example 5.3 [21]. Consider the quantum mixed state

ρ(x) = x|ψ〉〈ψ | + 1 − x

16
I16,

where |ψ〉 = 1√
2
(|0000〉 + |1111〉) and I16 is defined as

(I16)i1i2i3i4 j1 j2 j3 j4 =
{

1, if il = jl , l = 1, 2, 3, 4,

0, otherwise.

Zhao et al. said that these mixed states are entangled when x
are 3

4 , 4
5 , and 6

7 . Hρ(x) is the tensor corresponding to state ρ(x).

TABLE II. Running time and iteration number of rank-3 separa-
ble approximation for ρ( 1

4 , 3
8 ).

R = 3

No. Time(s) Iterations Relative error
1 0.5820 57 2.1242×10−06

2 0.5380 51 2.5548×10−06

3 0.6990 67 1.9185×10−06

4 0.6130 59 1.9701×10−06

5 0.7820 77 2.5447×10−06

TABLE III. The matrix trace TrM (Ĥρ(x) ) of approximate tensors
Ĥρ(x).

x 3
4

4
5

6
7

TrM (Ĥρ(x) ) 1.6289 1.6781 1.7344

Because Hρ( 3
4 ), Hρ( 4

5 ), and Hρ( 6
7 ) are symmetric Hermitian

tensors, we take Rmax = (5
4

)2 = 25. When R = Rmax = 25,
we calculate that δρ( 3

4 ) = 0.6190, δρ( 4
5 ) = 0.6298, and δρ( 6

7 ) =
0.6405. Hence, the mixed states ρ( 3

4 ), ρ( 4
5 ), and ρ( 6

7 ) are
entangled.

If we take x equal to 3
4 , 4

5 , or 6
7 , numerical results indicate

that the matrix traces of approximate tensors Ĥρ(x) of Hρ(x)

are not equal to 1. The results are shown in Table III.
Example 5.4. (Comparison with E-Truncated K-Moment

semi-definite relaxation (ETKM-SDR) method) ETKM-SDR
method is a method that converts the separability discrimina-
tion problem to a moment optimization problem, and solves
it using the semi-definite relaxation method. We compare
the stability and computing speed of the BFGS method and
ETKM-SDR method. Consider the 2-partite isotropic states
ρiso(F ) [17],

ρiso(F ) = 1 − F

3
(I − |�+〉〈�+|) + F |�+〉〈�+|,

where |�+〉 = 1√
2
(|00〉 + |11〉) and I1111 = I1212 = I2121 =

I2222 = 1. M. Horodecki and P. Horodecki indicated that
ρiso(F ) is separable for F ∈ [0, 1

2 ]. Take F = 1
2 . We cal-

culate the rank-R separable approximation of Hρiso ( 1
2 ),

for all R = 1, 2, . . . , 7. We get all relative error values
as 0.8165, 0.57735, 0.33333, 1.9959e − 04, 1.8132e −
04, 1.6908e − 04, 1.2228e − 04, respectively. It is clear that
Hρiso ( 1

2 ) is separable and its Hermitian rank is 4. When R =
4, 5, 6, we obtain numerical decompositions of ρiso( 1

2 ) in
Appendix C 3.

We do ten numerical experiments by the BFGS method and
the ETKM-SDR method for the quantum mixed state ρiso( 1

2 ),
respectively. We obtain running time and the relative error in
Table IV. From Table IV, we see that the BFGS algorithm has

TABLE IV. Comparison of BFGS method and ETKM-SDR
method for ρiso( 1

2 ).

BFGS method ETKM-SDR method

No. Time(s) Relative error R Time(s) Relative error R
1 6.3650 2.2137×−04 7 125.4763 0.0011 7
2 5.1110 1.8103×−04 6 133.9843 0.0594 6
3 8.5330 1.5636×−04 5 123.7532 4.4168×−05 5
4 5.1030 1.7343×−04 7 117.6680 0.0014 7
5 10.9620 1.6389×−04 5 138.9516 6.6597×−04 5
6 2.7550 1.2883×−04 6 131.7422 0.0013 6
7 6.2630 1.7412×−04 6 123.6200 0.0048 6
8 2.6810 1.4525×−04 7 135.5775 0.0117 7
9 13.5510 2.0537×−04 4 120.3903 2.8345×−05 4
10 2.7570 1.5629×−04 6 129.8795 3.4562×−04 6
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FIG. 2. The δ2(ρ ) for Werner states of three qubits which is
compared to the two-qubits case.

better performance than the ETKM-SDR algorithm in terms
of running time, relative error, and stability.

Example 5.5 [22]. In this example, we consider the Werner
states of three qubits which have the following form:

ρW 3(p) = p|GHZ〉〈GHZ| + 1 − p

8
I8, (10)

where |GHZ〉 = 1√
2
(|000〉 + |111〉) and I8 is

(I8)i1i2i3 j1 j2 j3 =
{

1, if il = jl , l = 1, 2, 3,

0, otherwise.

This is a generalization of the Werner states to three qubits,
known as the generalized Werner states. These mixed states
are very classical. Next, we will study whether these states
are entangled.

Through Algorithm 4.1, they are found that when 0 �
p � 1

5 , the mixed states ρW 3(p) are completely separable,
and when 1

5 < p � 1, the mixed states ρW 3(p) are entangled.
The result is shown in Fig. 2. Figure 2 can be compared
to the δ2(ρ) for Werner states of two qubits with parameter
p ∈ [0, 1], where the Werner states of two qubits are defined
as

ρW 2(p) = p|φ+〉〈φ+| + 1 − p

4
I4,

with the state |φ+〉 = 1√
2
(|00〉 + |11〉).

Example 5.6 [23]. We consider the Werner states gener-
ated by the Bell states

ρW (F ) = F |ψ−〉〈ψ−| + 1 − F

3
(|ψ+〉〈ψ+|

+ |φ+〉〈φ+| + |φ−〉〈φ−|),
where |ψ−〉 = 1√

2
(|01〉 − |10〉), |ψ+〉 = 1√

2
(|01〉 + |10〉),

|φ−〉 = 1√
2
(|00〉 − |11〉), and |φ+〉 = 1√

2
(|00〉 + |11〉). We

apply Algorithm 4.1 to this Werner states ρW (F ). The
parameter F that describes the degree of mixing is called
fidelity.

When F = 1
2 , ρW ( 1

2 ) corresponds to a fourth-order two-
dimensional Hermitian tensor HρW ( 1

2 ). By Algorithm 4.1, we
calculate the rank-R separable approximation of HρW ( 1

2 ) for
all R = 1, 2, . . . , 7. We obtain all relative error values as
0.817, 0.577, 0.333, 1.251e − 04, 1.269e − 04, 1.106e −
04, 9.902e − 05, respectively. Hence, the Werner state ρW ( 1

2 )
is separable and its Hermitian rank is 4.

When F are 2
3 and 4

5 , ρW ( 2
3 ) and ρW ( 4

5 ) correspond to Her-

mitian tensors HρW ( 2
3 ) and HρW ( 4

5 ). We take Rmax = (3
2

)2 = 9.
When R = Rmax = 9, we calculate the relative errors δρW ( 2

3 ) =
0.2402 and δρW ( 4

5 ) = 0.3712 by Algorithm 4.1. Hence, ρW ( 2
3 )

and ρW ( 4
5 ) are entangled.

VI. CONCLUSION

In this paper, we study the separability criterion and de-
composition problem of quantum mixed states. First, we
convert the separability determination problem of quantum
mixed states to the positive Hermitian decomposition problem
of Hermitian tensors. Then we consider a rank-R separable
approximation model of Hermitian tensors and introduce a
BFGS algorithm for rank-R separable approximation. It is
known that the corresponding Hermitian tensor is separable if
a mixed state is separable. Moreover, we prove that a positive
Hermitian decomposition of the Hermitian tensor obtained by
the algorithm corresponds to a decomposition of the mixed
state. Hence, we design a BFGS algorithm for separability
determination and decomposition of quantum mixed states.
Numerical examples show the effectiveness and correctness
of the BFGS algorithm. Meanwhile, we compare the BFGS
algorithm with the semi-definite relaxation algorithm. Nu-
merical examples show that the BFGS algorithm has better
stability and faster computing speed than the semi-definite
relaxation algorithm. Reference [24] is the program code
for Algorithm 4.1, used to calculate from Example 5.1 to
Example 5.6. However, the BFGS algorithm is a numerical
algorithm, and the termination condition is given according to
the calculation requirements, which cannot be infinitely small.
Hence, no matter how small the termination condition is, we
can always construct an entangled state such that its distance
from a separable state is less than this termination condition.
However, it does not mean that the algorithm is ineffective.
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APPENDIX A: PROOF OF THEOREM 3.1

Proof. Since

FH(Ĥ, Ĥ∗) = ||H − Ĥ||2F = 〈H − Ĥ,H − Ĥ〉
= 〈H,H〉 − 〈H, Ĥ〉 − 〈Ĥ,H〉 + 〈Ĥ, Ĥ〉.

Let F0 = 〈H,H〉, F1=〈H, Ĥ〉, F2=〈Ĥ,H〉 and F3=〈Ĥ, Ĥ〉.
Thus

FH(Uk,U ∗
k ) = F0 − F1 − F2 + F3.
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Note that F0 is a real constant and ( ∂F0
∂U ∗

k
) jktk = 0, jk ∈ [nk],

tk ∈ [R]. Hence,

∂F

∂U ∗
k

= − ∂F1

∂U ∗
k

− ∂F2

∂U ∗
k

+ ∂F3

∂U ∗
k

.

Next we have(
∂F1

∂U ∗
k

)
jktk

= ∂ (H∗ · Ĥ)

∂[(U ∗
k ) jktk ]

=
∑

I,J∈E , jk is fixed

H∗
IJ · (

u(1)
tk

)
i1

· · · (u(m)
tk

)
im

× (
u(1)∗

tk

)
j1

· · · (u(k−1)∗
tk

)
jk−1

(
u(k+1)∗

tk

)
jk+1

· · · (u(m)∗
tk

)
jm
.

Then

∂F1

∂U ∗
k

= H∗
(k+m) (U ∗

m � · · · � U ∗
k+1

� U ∗
k−1 � · · · � U ∗

1 � Um � · · · � U1).

Similarly, we can get

∂F2

∂U ∗
k

= H(k) (Um � · · · � U1

� U ∗
m � · · · � U ∗

k+1 � U ∗
k−1 � · · · � U ∗

1 ).

Finally, we deduce the partial derivatives of F3.
(

∂F3

∂U ∗
k

)
jktk

= ∂
(∑

I,J (Ĥ∗)IJ · (Ĥ)IJ
)

∂[(U ∗
k ) jktk ]

=
∑

I,J∈E , jk is fixed

Ĥ∗
IJ · (

u(1)
tk

)
i1

· · · (u(m)
tk

)
im

× (
u(1)∗

tk

)
j1

· · · (u(k−1)∗
tk

)
jk−1

(
u(k+1)∗

tk

)
jk+1

· · · (u(m)∗
tk

)
jm

+
∑

I,J∈E , ik is fixed

ĤIJ · (
u(1)∗

tk

)
i1

· · · (u(k−1)∗
tk

)
ik−1

(
u(k+1)∗

tk

)
ik+1

· · · (u(m)∗
tk

)
im

(
u(1)

tk

)
j1

· · · (u(m)
tk

)
jm
.

Then

∂F3

∂U ∗
k

= Ĥ∗
(k+m) (U ∗

m � · · · � U ∗
k+1

� U ∗
k−1 � · · · � U ∗

1 � Um � · · · � U1)

+ Ĥ(k)(Um � · · · � U1

� U ∗
m � · · · � U ∗

k+1 � U ∗
k−1 � · · · � U ∗

1 ).

Thus, it can be obtained from the above

∂FH(Ĥ, Ĥ∗)

∂ U ∗
k

= −(H(k+m) − Ĥ(k+m) )
∗ (U ∗

m � · · ·

� U ∗
k+1 � U ∗

k−1 � · · · � U ∗
1 � Um�

· · · � U1) − (H(k) − Ĥ(k) ) (Um � · · · � U1

� U ∗
m � · · · � U ∗

k+1 � U ∗
k−1 � · · · � U ∗

1 ).

In addition,

(H(k+m) − Ĥ(k+m) )
∗ (U ∗

m � · · · � U ∗
k+1

� U ∗
k−1 � · · · � U ∗

1 � Um � · · · � U1)

= (H(k) − Ĥ(k) ) (Um � · · · � U1 � U ∗
m

� · · · � U ∗
k+1 � U ∗

k−1 � · · · � U ∗
1 ).

It follows that

∂FH(Ĥ, Ĥ∗)

∂U ∗
k

= −2(H(k+m) − Ĥ(k+m) )
∗ (U ∗

m � · · · � U ∗
k+1

� U ∗
k−1 � · · · � U ∗

1 � Um � · · · � U1).

This completes the proof. �

APPENDIX B: PROOF OF THEOREM 4.1

Proof. It is easy to know that pi � 0, i ∈ [R]. In addition,

H =
R∑

i=1

piv
(1)
i ◦ · · · ◦ v(m)

i ◦ v(1)∗
i ◦ · · · ◦ v(m)∗

i ,

where ‖v(k)
i ‖ = 1, pi � 0, v(k)

i ∈ Cnk , k ∈ [m], i ∈ [R]. In the
remainder of the paper, we only prove that

∑R
i=1 pi = 1. On

one hand,

TrM (H) =
R∑

i=1

piTrM
(
v(1)

i ◦ · · · ◦ v(m)
i ◦ v(1)∗

i ◦ · · · ◦ v(m)∗
i

)

=
R∑

i=1

pi

n1,··· ,nm∑
i1,··· ,im=1

(
v(1)

i

)
i1

· · · (v(m)
i

)
im

(
v(1)

i

)∗
i1

· · · (v(m)
i

)∗
im

=
R∑

i=1

pi

n1∑
i1=1

(
v(1)

i

)
i1

(
v(1)

i

)∗
i1

· · ·
nm∑

im=1

(
v(m)

i

)
im

(
v(m)

i

)∗
im

=
R∑

i=1

pi

( m∏
k=1

∥∥v(k)
i

∥∥2
)

=
R∑

i=1

pi.

On the other hand,

TrM (H) =
s∑

i=1

λiTrM (Xi ◦ X ∗
i )

=
s∑

i=1

λi

n1,...,nm∑
i1,...,im=1

(Xi)i1... im (Xi)
∗
i1... im

=
s∑

i=1

λi‖Xi‖2
F

=
s∑

i=1

λi = 1.

Hence, we have TrM (H) = ∑R
i=1 pi = 1. This completes

the proof. �
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APPENDIX C: NUMERICAL DECOMPOSITIONS
OF EXAMPLES

1. Numerical decomposition of Example 5.1

In Example 5.1, we obtain a decomposition of the mixed
state ρ( 1

2 ),

ρ

(
1

2

)
=

2∑
i=1

pi

∣∣φ(1)
i φ

(2)
i

〉〈
φ

(1)
i φ

(2)
i

∣∣,
where p = [0.5, 0.5]�,

∣∣φ(1)
1

〉 = (−0.0728 + 0.7034i)|0〉+ (0.0728 − 0.7034i)|1〉,∣∣φ(1)
2

〉 = (0.1889 + 0.6814i)|0〉 + (0.1889 + 0.6814i)|1〉,∣∣φ(2)
1

〉 = (−0.4440 − 0.5503i)|0〉+ (0.4440 + 0.5503i)|1〉,∣∣φ(2)
2

〉 = (0.5729 + 0.4145i)|0〉 + (0.5729 + 0.4145i)|1〉.
2. Numerical decomposition of Example 5.2

In Example 5.2, we get a decomposition of the mixed state
ρ( 1

4 , 3
8 ), i.e.,

ρ

(
1

4
,

3

8

)
=

3∑
i=1

pi

∣∣φ(1)
i φ

(2)
i φ

(3)
i

〉〈
φ

(1)
i φ

(2)
i φ

(3)
i

∣∣,
where p = [p1, p2, p3]� = [ 1

3 , 1
3 , 1

3 ]�,

|φ(1)
1 〉 = (0.5042 + 0.4958i)|0〉 + (0.5042 + 0.4958i)|1〉,∣∣φ(1)
2

〉 = (−0.2161 + 0.6733i)|0〉+ (0.6911 − 0.1495i)|1〉
,
∣∣φ(1)

3

〉 = (0.6739 + 0.2141i)|0〉+ (−0.5224 + 0.4766i)|1〉,∣∣φ(2)
1

〉= (−0.4236 − 0.5662i)|0〉+ (−0.4236 − 0.5662i)|1〉,∣∣φ(2)
2

〉 = (0.0666 + 0.7040i)|0〉 + (0.5763 − 0.4097i)|1〉,∣∣φ(2)
3

〉 = (−0.6347 − 0.3118i)|0〉+ (0.5873 − 0.3937i)|1〉,∣∣φ(3)
1

〉= (−0.6709 − 0.2232i)|0〉+ (−0.6709 − 0.2232i)|1〉,∣∣φ(3)
2

〉 = (0.5649 + 0.4253i)|0〉 + (0.0859 − 0.7019i)|1〉,

3. Numerical decompositions of Example 5.4

In Example 5.4, we consider the mixed state ρiso(F ), F =
1
2 . When R = 4, we get a numerical decomposition of the
mixed state ρiso( 1

2 ),

ρiso

(
1

2

)
=

4∑
i=1

pi

∣∣φ(1)
i φ

(2)
i

〉〈
φ

(1)
i φ

(2)
i

∣∣,
where p = [0.25, 0.25, 0.25, 0.25]�,

‘
∣∣φ(1)

1

〉 = (0.0487 + 0.4264i)|0〉 + (0.8569 + 0.2855i)|1〉,∣∣φ(1)
2

〉 = (0.3357 − 0.3861i)|0〉 + (0.5284 + 0.6775i)|1〉,∣∣φ(1)
3

〉 = (0.7965 − 0.2641i)|0〉+ (−0.5435 − 0.0215i)|1〉,

∣∣φ(1)
4

〉 = (0.8300 + 0.4012i)|0〉 + (0.3018 + 0.2431i)|1〉,∣∣φ(2)
1

〉 = (0.4154 − 0.0392i)|0〉 + (0.4756 + 0.7744i)|1〉,∣∣φ(2)
2

〉 = (−0.4667 + 0.1748i)|0〉+ (0.4572 + 0.7366i)|1〉,∣∣φ(2)
3

〉 = (−0.8468 + 0.0287i)|0〉+ (0.4920 − 0.2000i)|1〉,∣∣φ(2)
4

〉 = (0.8772 + 0.3003i)|0〉 + (0.3719 + 0.0454i)|1〉.
When R = 5, we obtain a numerical decomposition of the

mixed state ρiso( 1
2 ),

ρiso

(
1

2

)
=

5∑
i=1

pi

∣∣φ(1)
i φ

(2)
i

〉〈
φ

(1)
i φ

(2)
i

∣∣,
where p = [0.2341, 0.1913, 0.1261, 0.2001, 0.2484]�,

∣∣φ(1)
1

〉= (−0.3447 − 0.6169i)|0〉+ (−0.6910 + 0.1523i)|1〉∣∣φ(1)
2

〉 = (0.4555 + 0.2936i)|0〉 + (0.4211 + 0.7274i)|1〉,∣∣φ(1)
3

〉 = (−0.5163 − 0.6940i)|0〉+ (0.2530 − 0.4334i)|1〉,∣∣φ(1)
4

〉 = (−0.9552 − 0.2044i)|0〉+ (0.2129 + 0.0235i)|1〉,∣∣φ(1)
5

〉 = (−0.2195 − 0.3457i)|0〉+ (0.6273 + 0.6624i)|1〉,∣∣φ(2)
1

〉= (−0.7050 − 0.0394i)|0〉+ (−0.1768 − 0.6857i)|1〉,∣∣φ(2)
2

〉= (−0.3454 − 0.4211i)|0〉+ (−0.7570 − 0.3610i)|1〉,∣∣φ(2)
3

〉= (−0.8284 − 0.2190i)|0〉+ (−0.3036 + 0.4167i)|1〉,∣∣φ(2)
4

〉 = (−0.9453 + 0.2424i)|0〉+ (0.2147 − 0.0405i)|1〉,∣∣φ(2)
5

〉 = (−0.0286 + 0.4170i)|0〉+ (0.2502 − 0.8733i)|1〉.
When R = 6, we obtain a numerical decomposition of the

mixed state ρiso( 1
2 ),

ρiso

(
1

2

)
=

6∑
i=1

pi

∣∣φ(1)
i φ

(2)
i

〉〈
φ

(1)
i φ

(2)
i

∣∣,
where p = [0.0272,0.2472,0.2471,0.2294,0.2373, 0.0119]�,

∣∣φ(1)
1

〉= (−0.5647 + 0.2368i)|0〉+ (−0.2667 − 0.7443i)|1〉,∣∣φ(1)
2

〉 = (−0.0991 + 0.9275i)|0〉+ (0.3361 − 0.1302i)|1〉,∣∣φ(1)
3

〉= (−0.3606 − 0.4593i)|0〉+ (−0.6972 − 0.4159i)|1〉,∣∣φ(1)
4

〉 = (0.5201 − 0.6481i)|0〉 + (0.4670 + 0.3023i)|1〉,∣∣φ(1)
5

〉 = (−0.3565 + 0.0752i)|0〉+ (0.9119 − 0.1889i)|1〉,∣∣φ(1)
6

〉 = (−0.0869 + 0.2033i)|0〉+ (0.9716 + 0.0849i)|1〉,∣∣φ(2)
1

〉= (−0.0774 − 0.6082i)|0〉+ (−0.7744+ 0.1564i)|1〉,∣∣φ(2)
2

〉= (−0.7068 + 0.6067i)|0〉+ (−0.0687 − 0.3572i)|1〉,∣∣φ(2)
3

〉= (−0.4143 − 0.4051i)|0〉+ (−0.3601 − 0.7311i)|1〉,∣∣φ(2)
4

〉 = (0.0781 + 0.8307i)|0〉 + (0.5507 + 0.0227i)|1〉,∣∣φ(2)
5

〉 = (0.0387 − 0.3651i)|0〉+ (−0.0571 + 0.9284i)|1〉,∣∣φ(2)
6

〉 = (− 0.1981 − 0.1241i)|0〉+ (0.7232 − 0.6499i)|1〉.
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