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Quantum coherence and the principle of microscopic reversibility
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The principle of microscopic reversibility is a fundamental element in the formulation of fluctuation relations
and Onsager reciprocal relations. As such, a clear description of whether and how this principle is adapted
to the quantum-mechanical scenario might be essential for a better understanding of nonequilibrium quantum
processes. Here, we propose a quantum generalization of this principle which highlights the role played by
coherence in the symmetry relations involving the probability of observing a quantum transition and that
of the corresponding time-reversed process. We study the implications of our findings in the framework of
a qubit system interacting with a thermal reservoir and implement an optical experiment that simulates the
dynamics. Our theoretical and experimental results show that the influence of coherence is more decisive at low
temperatures and that the maximum departure from the classical case does not take place for maximally coherent
states. Classical predictions are recovered in the appropriate limits.
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I. INTRODUCTION

Fluctuation theorems (FTs) are known to describe many
general aspects of nonequilibrium thermal processes and to
bridge the gap between the reversible properties of the fun-
damental laws of physics and the irreversible nature of the
macroscopic world [1–4]. Nevertheless, despite their impor-
tance in fundamental physics and wide range of applicability
in the study of many-particle systems, FTs are formulated
based on only two elements: the assumption of the Gibbs
canonical ensemble to represent thermal equilibrium systems
and the principle of microscopic reversibility [5,6]. The first
concept is extensively discussed in many statistical mechanics
textbooks, whereas the second, which is less widespread, pre-
dicts a symmetry relation between the probability of observ-
ing a given trajectory of a system through phase space and that
of observing the time-reversed trajectory [7,8]. The microre-
versibility principle also plays a central role in the derivation
of the celebrated Onsager reciprocal relations [9,10].

With the rapidly growing field of quantum thermodynam-
ics, there has been an increasing effort to better understand FT
when quantum effects become relevant [11–17]. In this regard,
one natural strategy is to initially investigate whether and how
the principle of microscopic reversibility is modified by this
classical-to-quantum transition. Unlike the classical domain,
in the quantum regime we cannot know the simultaneous
position and momentum of a particle with certainty, which
obscures the very notion of trajectory, and the formation of
nonclassical correlations between the system and environment
upon interaction is also possible [18,19]. However, one can
alternatively define stochastic trajectories of a quantum state
in the Hilbert space to represent the dynamics of an open
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quantum system whose interactions with the environment are
conceptualized as generalized measurements [20]. Still, de-
pending on the commutation relation between the operators
of the Hamiltonian of the system and those of the observables
measured in an experiment, quantum coherence in the energy
eigenbasis has to be considered, which prevents the system
from having a well-defined energy [21–24]. In a recent study
of the interaction between coherent and thermal states of light
in a beam splitter, Bellini et al. verified the influence of quan-
tum effects on the microreversibility condition, mainly in the
low-temperature limit [25].

Despite its central importance to the study of FTs in the
presence of quantum effects, so far, very few works have
addressed the microreversibility condition from a quantum-
mechanical point of view [25–28]. In this work, we propose
a quantum generalization of the principle of microscopic re-
versibility. We consider the backward process of the system
to result from the inverse unitary protocol applied to both
the system and reservoir, which connects the time-reversed
states of the final and initial states of the forward process.
To test our model, we examine the dynamics of a two-level
system coupled to a thermal reservoir at finite temperature,
paying special attention to the mechanism in which the co-
herence influences the symmetry relation between forward
and backward quantum trajectories. We also use an optical
setup to simulate the open quantum system dynamics. Our
setup allows the preparation of the system in an arbitrary
qubit state and the realization of projective measurements onto
states with coherence. The experimental data agree with our
theoretical predictions, which confirm that the influence of
coherence is more prominent at low temperatures, but in a
nontrivial way. Our results recover the classical predictions
in the appropriate limit.

Our paper is structured as follows. We begin in Sec. II
by briefly reviewing the principle of microscopic reversibility
as applied to the simple case of a classical gas. In Sec. III,
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FIG. 1. Gas particles inside a container representing a general
thermodynamic system. Transfer of heat between the gas and the
reservoir is allowed through the boundary walls, and a work source
acts by manipulating the position λ of the movable piston.

we present our quantum-mechanical approach to the principle
and employ it to study the thermalization process of a qubit
system interacting with a finite-temperature environment. In
Sec. IV, we use our results to evidence the effect of coherence
in the departure of our proposed quantum microreversibility
relation from the classical picture. Section V describes our
experimental setup, in which we simulate the qubit thermal-
ization example and investigate the role played by coherence
in the quantum microscopic-reversibility condition. We con-
clude in Sec. VI with a summary of our theoretical and
experimental findings.

II. PRINCIPLE OF MICROSCOPIC REVERSIBILITY

To begin, let us consider the rather simple but important
scenario in which the system is a classical gas in a con-
tainer in contact with a thermal reservoir in which some
time-dependent parameter λ(t ) is controlled. In this case, the
system can exchange heat Q with the reservoir, and the manip-
ulation of the control parameter may result in work W being
supplied to the system. To better illustrate this picture, let us
assume a gas confined in a container with diathermic walls
through which heat can be exchanged with the surroundings,
and the work parameter λ can be considered the position of
a movable piston, as depicted in Fig. 1. We define z(t ) as the
time-dependent state of the system, which in our example is
represented by a vector that determines all the instantaneous
positions and momenta of the gas particles. Therefore, given
the initial state zi and a protocol λ(t ), the dynamics of the
system is completely specified by a trajectory z(t ) in the phase
space, leading to a final state z f .

On the other hand, we can also define a reverse trajectory
z̄(t ), which can be visualized as a movie of the forward trajec-
tory z(t ) played backward. In this case, the process starts with
the system in state z̄ f and ends in state z̄i. Here, an arbitrary
state z̄ is produced by keeping the positions of all particles of
state z unchanged but reversing the sign of all the momenta. If
we assume that in the forward trajectory the system starts in
state zi at time zero and attains z f at time τ , the reverse proto-
col of the work parameter satisfies λ̄(τ − t ) = λ(t ). We also
consider that the heat reservoir is in thermal equilibrium dur-
ing the entire process z(t ), so that it has the same influence on

the system, independent of whether it is in a forward or back-
ward dynamics. With these definitions, the principle of micro-
scopic reversibility states that the ratio of the probability of the
forward trajectory from zi to z f to the probability of the corre-
sponding backward trajectory from z̄ f to z̄i is given by [3,5,7]

PF (z f |zi )

PB(z̄i|z̄ f )
= e−βQ, (1)

where Q is the heat absorbed by the system from the
surroundings during the forward path and β = 1/(kBT ),
with kB being the Boltzmann constant and T being the
temperature of the reservoir. This relation reveals that the
probability of a particular trajectory that generates dissipation
(Q < 0) occurring is exponentially greater than that of the
corresponding reverse trajectory. If the control parameter is
fixed and the gas is in thermal equilibrium with the reservoir,
we have Q = 0. In this case Eq. (1) tells us that the probability
of observing any given forward trajectory is equal to that of
observing the corresponding backward trajectory.

III. QUANTUM MICROSCOPIC REVERSIBILITY

Based on the ideas presented in the previous section, we
now investigate how the principle of microscopic reversibility
can be extended to the realm of individual quantum trajec-
tories with the control parameter kept constant, i.e., without
the realization of work. At this level, some strictly quantum-
mechanical conditions have to be considered. First, as already
mentioned, the notion of quantum trajectory is not well de-
fined [29], but alternative approaches have been proposed, for
example, the two-point measurement (TPM) protocol [11],
which is the framework to be used here. Second, quantum
measurements cause dynamical changes in the system that
are never observed in classical objects [30,31]. Third, de-
pending on the commutation relation between the measured
observables and the Hamiltonian of the system, the quantum
dynamics could start or end in a state with coherence in the
energy eigenbasis. In light of this freedom, the study of the
influence of the initial and final coherence of the system on
the microscopic-reversibility relation is our main focus here.

Let us now present the quantum-mechanical framework
we use to study the microscopic reversibility. We consider a
qubit system in contact with a large thermal reservoir com-
posed of infinitely many thermal qubits at a given temperature.
In this case, the system-reservoir dynamics can be consid-
ered Markovian, and we assume that the system’s evolution
is described by the generalized amplitude-damping channel
(GADC) [32]. Physically, this model is a good approach for
the study of qubit thermalization [33,34] and the Markovian to
non-Markovian transition when increasing the reservoir size
[35]. The GADC has also been used to model a spin-1/2
system coupled to an interacting spin chain at finite temper-
ature [36,37], thermal noise in superconducting-circuit-based
quantum computing and in linear optical systems [17,38],
and the effect of system-reservoir quantum correlations on
thermodynamic quantities [39]. In what follows we depict
our perspective on what is a forward trajectory of a qubit
submitted to the GADC and the corresponding backward path.
After this, we proceed to derive a quantum generalization of
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the microscopic reversibility and examine the role played by
coherence.

A. Forward process

Let us describe the forward process in order to calculate
the probability of observing it. We define the initial and final
states of the two-level system as arbitrary pure qubit states:

|ψk〉 = cos

(
θk

2

)
|g〉 + eiφk sin

(
θk

2

)
|e〉. (2)

The polar angle θk and azimuthal angle φk are used to locate
the state |ψk〉 on the Bloch sphere, where the index k = i, f
indicates the initial and final states. The kets |g〉 and |e〉 repre-
sent the ground and excited states, which have energies Eg and
Ee, respectively. The density operators for the initial and final
states are then given by ρ̂i = |ψi〉〈ψi| and ρ̂ f = |ψ f 〉〈ψ f |. As
already mentioned, we consider a heat reservoir made by a
large number of equivalent thermal qubits. These qubits are
described by the state

ρ̂th = wg|Eg〉〈Eg| + we|Ee〉〈Ee|, (3)

where w j = e−βEj /Z , with the index j = g, e, such that wg +
we = 1 and Z = ∑

j e−βEj is the partition function. Note that
the reservoir energy eigenstates, |Eg〉 and |Ee〉, also have Eg

and Ee as their respective energies. This is necessary for the
system and reservoir to interact through an energy-preserving
unitary dynamics. We assume that the system and environ-
ment are initially uncorrelated, such that the composite system
starts out in the state ρ̂i ⊗ ρ̂th.

We now pose the following question: What is the probabil-
ity of the system starting out in state |ψi〉 to evolve under the
action of the GADC and then be measured at the end of the
process in state |ψ f 〉? The theory of open quantum systems
tells us that this transition probability is given by

PF (ψ f |ψi ) = Tr[Û (ρ̂i ⊗ ρ̂th )Û †(|ψ f 〉〈ψ f | ⊗ ÎR)], (4)

where Tr denotes the trace operation; Û is the unitary oper-
ation that acts on both the system and reservoir, which gives
rise to the GADC acting on the system; and ÎR is the identity
operator in the Hilbert space of the reservoir. Note that our se-
lection of the initial and final states of the system is akin to that
of the TPM scenario [11], where projective measurements are
made both before and after the system’s evolution. The unitary
operation that supports the GADC is given by [33,34,39]

Û =

⎛
⎜⎜⎜⎝

1 0 0 0
0

√
1 − p

√
p 0

0 −√
p

√
1 − p 0

0 0 0 1

⎞
⎟⎟⎟⎠. (5)

The damping parameter p ∈ [0, 1] represents the dissipation
rate. Here, we consider a Markovian dynamics in the sense
that the reservoir is made up of a large number of thermal
qubits, each of which interacts only once with the system
[35]. In this case, we can assume p = e−t/τ , where t is the
time and τ is a constant that characterizes the speed of the
thermalization process [40].

With the above definitions, we are now able to calculate the
right-hand side of Eq. (4), which provides

PF (ψ f |ψi ) = 1
2 {cos θ f [(1 − p) cos θi + (1 − 2we)p]

+ 1 +
√

1 − p sin θi sin θ f cos(φi − φ f )}. (6)

We can also express this transition probability in terms of the
quantum evolution time t with the substitution p = e−t/τ .

B. Backward process

Now we move on to describe the reverse process and then
proceed to calculate the corresponding backward transition
probability. At this point, it is worth mentioning that there
is not a unique definition for a reverse quantum process in
the literature [25,41–44]. Here, we adopt the reverse process
as a quantum dynamics whose initial state of the system is
the time-reversed state obtained from |ψ f 〉, which evolves in
contact with the thermal reservoir under the action of the re-
verse unitary operation ÛR = Û −1 = Û †. After this evolution,
a measurement is performed to determine the probability of
obtaining the time-reversed state of |ψi〉. In this scenario, the
transition probability for the reverse process is written as

PB(ψ̄i|ψ̄ f ) = Tr
[
ÛR

(
ρ̂R

f ⊗ ρ̂th
)
Û †

R (|ψ̄i〉〈ψ̄i| ⊗ ÎR)
]
, (7)

where |ψ̄〉 = 	̂|ψ〉 is the time-reversed state of |ψ〉 and 	̂ is
the time-reversal operator [29]. Accordingly, we have

|ψ̄k〉 = cos

(
θk

2

)
|g〉 + e−iφk sin

(
θk

2

)
|e〉, (8)

from which we define the time-reversed density operators
ρ̂R

k = |ψ̄k〉〈ψ̄k|. In Eq. (8) we implicitly assumed that the
energy eigenstates |g〉 and |e〉 are invariant under time reversal.
Yet we call attention to the fact that the initial system-reservoir
configuration of the backward process is the uncorrelated state
ρ̂R

f ⊗ ρ̂th. This is the time-reversed state of |ψ f 〉〈ψ f | ⊗ ρ̂th,
which is the final state of the forward process after the pro-
jective measurement. Note that the thermal state is invariant
under time reversal.

With these definitions, we find that the transition probabil-
ity for the reverse process is given by

PB(ψ̄i|ψ̄ f ) = 1
2 {cos θi[(1 − p) cos θ f + (1 − 2we)p]

+ 1 +
√

1 − p sin θi sin θ f cos(φi − φ f )}. (9)

Again, the substitution p = e−t/τ allows us to express the
transition probability as a function of the time t elapsed from
the beginning of the process.

C. Symmetry relation between the forward and backward
transition probabilities

We can now use the information obtained from Eqs. (6)
and (9) to derive the symmetry relation between the forward
and backward transition probabilities. This is given by the
following expression:

PF (ψ f |ψi )

PB(ψ̄i|ψ̄ f )
= cos θ f [(1 − p) cos θi + (1 − 2we)p] + γ

cos θi[(1 − p) cos θ f + (1 − 2we)p] + γ
,

(10)
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where γ = 1 + √
1 − p sin θi sin θ f cos(φi − φ f ). We can

write we = e−β�E/(1 + e−β�E ), with �E = Ee − Eg, as the
reservoir excited-state population. As such, Eq. (10) is our
quantum generalization of the microscopic-reversibility con-
dition for a qubit thermalization dynamics.

We first illustrate this finding with the important example
in which quantum coherence in the energy eigenbasis is absent
for both the initial and final states, i.e., the forward transition
|g〉 → |e〉. For this process, we have that the system absorbs
heat from the reservoir, and the parameters are given by
θi = 0, θ f = π , and φi = φ f . With this, we can find that
Eq. (10) reduces to

PF (ψ f |ψi )

PB(ψ̄ f |ψ̄i )
= e−β�E , (11)

which holds independent of the value of p. Since no work is
done by the reservoir on the system, we have that the total
change in the internal energy of the system is due uniquely to
the transfer of heat to or from the reservoir, namely, Q = �E .
This allows us to write

PF (ψ f |ψi )

PB(ψ̄ f |ψ̄i )
= e−βQ. (12)

This result tells us that when there is no coherence in the initial
and final states of the quantum process, the classical symmetry
relation between the forward and backward transition proba-
bilities is recovered [see Eq. (1)].

IV. MICROSCOPIC REVERSIBILITY
IN THE PRESENCE OF COHERENCE

As we have seen above, when the initial and final states of
a quantum process have no coherence, our quantum general-
ization of the microscopic-reversibility principle recovers the
classical limit independent of p. Thus, we are left with four
key parameters that determine how it deviates from the classi-
cal limit: the coordinates θi, φi, θ f , and φ f , which characterize
the initial and final states of the system. However, if we are
interested in investigating the influence of coherence on the
microreversibility behavior, we have to express the right-hand
side of Eq. (10) in terms of the coherence of the initial and
final states, Ci and Cf . To do so, we quantify coherence with
the l1 norm of coherence [45,46]. For a quantum state ρ̂ =∑

i, j ρi j |i〉〈 j|, the l1 norm of coherence is given by the sum of
the absolute values of all the off-diagonal entries, say, C(ρ̂ ) =∑

i �= j |ρi j |, which for the case of the pure qubit state given
in Eq. (2) yields Ck (ρ) = sin θk , with k = i, f . Therefore,
the quantum microreversibility relation of Eq. (10) can be
given in terms of the initial and final coherence of the system

just by substituting cos θk by
√

1 − C2
k when 0 � θk � π/2

and by −
√

1 − C2
k when π/2 < θk � π . In this case, we also

have γ = 1 + √
1 − pCiCf cos(φi − φ f ). Moreover, the heat

exchanged can be written in terms of the initial and final
polar angles in the form Q = Tr[Ĥ (ρ̂ f − ρ̂i )] = �E (cos θi −
cos θ f )/2, which with the above relations can also be ex-
pressed as a function of the initial and final coherences.

FIG. 2. Behavior of the deviation factor  as a function of
the initial and final coherences, Ci and Cf , for the case in which
the system releases heat to the reservoir in the forward process.
(a) High-temperature scenario, where we show that  deviates
little from unity, indicating an approximately classical behavior.
(b)–(d) show that the effect of coherence on the microreversibility
principle becomes more prominent with lower temperatures. We as-
sumed φi = φ f and p = 1/2. The diagonal red cut in (c) is discussed
in Sec. V.

In order to better display our results, we define the
following deviation factor:

 =
[

PF (ψ f |ψi )

PB(ψ̄ f |ψ̄i )

]
eβQ. (13)

When  = 1, the classical microscopic-reversibility relation
of Eq. (1) holds. If  > 1, we find that the backward process
becomes less likely to happen when compared to the classical
case. In turn,  < 1 means that quantum effects make the
backward process more likely.

In Fig. 2 we show the behavior of  as a function of the
coherences Ci and Cf for the case in which the system releases
heat into the reservoir during the forward process, Q < 0. We
assume π/2 � θi � π , 0 � θ f � π/2, φi = φ f , and p = 1/2.
It is clear that the influence of coherence becomes more
and more relevant as temperature decreases. When coherence
is absent, Ci = Cf = 0, the classical behavior emerges for
all temperatures, which agrees with the result of Eq. (12).
The values of Ci and Cf for which the minimum deviation
factor min occurs changes with temperature. For instance,
for β�E = 1 we obtain min ≈ 0.66 when Ci ≈ 0.74 and
Cf ≈ 0.61. In turn, for β�E = 2 we find min ≈ 0.39 when
Ci ≈ 0.73 and Cf ≈ 0.53. We also remark that the classi-
cal behavior is suddenly recovered when we approach the
maximum coherence point, Ci = Cf = 1 (also obtained with
θi = θ f = π/2) for all temperatures. The reason is that the
maximum coherence point corresponds to the only point in
the diagrams in which no net heat is exchanged between the
system and the reservoir, Q = 0. We also observe that in this
case the initial and final states of the process are the same.
Hence, we do not expect any preferred direction involving the
forward and backward trajectories.

It is worth mentioning that the classical limit,  = 1,
is always attained in the high-temperature limit, β�E 
 1,
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FIG. 3. Deviation factor  as a function of Ci and Cf when the
system absorbs heat from the reservoir in the forward process, con-
sidering φi = φ f and p = 1/2. (a) High-temperature regime showing
that  is only slightly bigger than 1. (b)–(d) demonstrate that, in
the presence of coherences, the deviation from the classical microre-
versibility behavior becomes more relevant for lower temperatures.
The diagonal red cut in (c) is discussed in Sec. V.

regardless of the values of Ci and Cf . Let us discuss the
physical meaning of this result. Classically, in this regime,
the forward and corresponding backward processes occur with
almost the same probability, as can be seen from Eq. (12).
On the other hand, in the quantum case studied here, the
GADC acts by moving any initial state towards the center
of the Bloch sphere, which represents the maximally mixed
state. Projective measurements made on this state provides
any pure qubit state with the same probability. Therefore,
similar to the classical case, forward and backward trajectories
connecting any pure states have practically the same proba-
bility to occur. This justifies  = 1 in the high-temperature
domain.

In Fig. 3, we show the behavior of  as a function of Ci

and Cf when the system absorbs heat from the reservoir in
the forward process, Q > 0. Here, it was assumed that 0 �
θi � π/2, π/2 � θ f � π , φi = φ f , and p = 1/2. In this case,
we also observe that the classical microreversibility condition
always emerges at high temperatures. The classical limit is
also found to hold in the absence of coherence, Ci = Cf = 0,
for all temperatures, as predicted by Eq. (12). We call attention
to the fact that the Ci and Cf values for which the deviation
factor reaches a maximum max are temperature dependent.
For example, for β�E = 1 we find max ≈ 1.51 when Ci ≈
0.61 and Cf ≈ 0.74, whereas for β�E = 2 we get max ≈
2.56 when Ci ≈ 0.53 and Cf ≈ 0.73. The maximum coher-
ence point, Ci = Cf = 1 (θi = θ f = π/2), also manifests the
classical behavior,  = 1, because in this case no net heat is
exchanged with the reservoir, Q = 0. This result is valid for
all reservoir temperatures. Here, we call attention to the fact
that the ratio PF (ψ f |ψi )/PB(ψ̄i|ψ̄ f ) in Eq. (10) is symmetric
under the exchange between θi and θ f , with the result raised
to the power of −1. This means that the panels in Figs. 2 and
3, which correspond to the same value of β�E , are related
by an inversion of the axis, followed by the transformation
 → 1/.

V. EXPERIMENT

The experimental setup to study microreversibility in the
presence of coherences is depicted in Fig. 4. Here, the inter-
action between a qubit and a thermal reservoir is simulated
using the GADC, which is implemented in a two-layer optical
interferometer. Optical simulations of open quantum systems
have been important for the observation of effects, such as
the sudden death of entanglement [47], sudden transition
from quantum to classical decoherence [48], immunity of
correlations against certain decoherent processes [49], and
redistribution of entanglement between entangled systems and
their local reservoirs [50,51], among others [52–58]. All these
analog simulations could be useful for bringing the theory
closer to the physical systems and for providing valuable
insights on how to observe the predicted effects in real-world
scenarios. Our setup can be divided into three main parts: (i)
the preparation of quantum states, (ii) the evolution of both the
system and the reservoir through a unitary operation, and (iii)
the execution of projective measurements. Detailed explana-
tions of these three parts can be found in the Appendix.

To experimentally assess quantum microreversibility, it is
necessary to determine the probabilities of the forward and
backward quantum processes. To obtain the probability of the
backward process, the state of the photons is prepared now in
the final state of the forward evolution |ψ f 〉 using a half-wave
plate (HWPα). Then, it interacts with the thermal reservoir
by undergoing the evolution influenced by the inverse uni-
tary operation Û −1, which is implemented with the two-layer
interferometer. The backward process ends with a projective
measurement onto the initial state of the forward process
|ψi〉. This is accomplished by using the wave plates in the
measurement stage. After the probabilities of both processes
are computed with Eqs. (4) and (7), our quantum version
of the microscopic-reversibility condition in the presence of
coherences can be experimentally investigated.

We start by studying the quantum condition for three dif-
ferent configurations of initial and final states as a function
of β�E . The results are shown in Fig. 5. The data points,
representing the experiment, exhibit remarkable agreement
with the lines, which are theoretical predictions. The error
bars, calculated using a Monte Carlo simulation, indicate the
uncertainty range within the experimental data. In the first
case, corresponding to the gray dashed line and gray points,
we show the results for the system starting in state |g〉, evolv-
ing under the action of the GADC, and then being projected
onto state |e〉 in the forward process. The reverse probability
entails the system starting in state |e〉 and, after evolution,
being measured in state |g〉. Remarkably, this case exempli-
fies a transition between two states with a classical analog,
therefore satisfying the classical microreversibility condition
(dashed line). Moreover, for infinite temperature (β = 0), the
ratio PF /PB is equal to 1, indicating that there is no preferred
direction between the forward and backward processes. This
is also observed in the following two approaches.

The second case (the red points and dotted line) illustrates
the probability of transitioning the system from a maximally
coherent state to the excited state, specifically, 1/

√
2(|g〉 +

|e〉) ←→ |e〉, and vice versa. Here, we observe a significant
deviation from the classical case, which shows the existence
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FIG. 4. Aerial view of the two-layer interferometer. The first layer, representing the lower layer, contains the initial light propagation. The
second layer is populated after BD2, whose output path modes codify the degrees of freedom of the systems and reservoir (see main text).
Projective measurements are performed with BD5, BD6, and wave plates. The temperature of the reservoir is controlled by the angle φ, while
the damping parameter is manipulated with the angle θ . More details can be found in the Appendix.

of quantum features in the microreversibility condition. Nev-
ertheless, the maximum deviation from the classical case
happens at low temperatures, as expected. The blue points
and solid line, representing the third case, describe a situ-
ation with coherence in the initial and final states, namely,
1/

√
2(|g〉 + |e〉) and 1/2(|g〉 + √

3|e〉), respectively. Again,
there is a large deviation from the classical scenario. Remark-
ably, in the latter two cases, this clear divergence from the
classical microreversibility condition can be ascribed to the
presence of coherence in both the initial and final states. It
should be noted that in the first case the values of Ci and
Cf are both equal to zero. The second case corresponds to
Ci = 1 and Cf = 0, whereas in the third case Ci and Cf are
1 and approximately 0.87, respectively. It is surprising that
the second case deviates more than the third one, considering
that the latter possesses higher coherences. This shows that
the deviation from the classical behavior does not necessarily
increase as Ci and Cf increase. This can also be observed in
Fig. 3, where the second and third cases fall within the bottom
right corner and in the upper part of the right edge, respec-
tively, of each panel. For instance, in Fig. 3(d) we can observe

FIG. 5. Theoretical and experimental data for the deviation factor
 as a function of β�E for three different forward and backward
transition cases. The gray dashed line and dots represent the classical
analog given by (Ci,Cf ) = (0, 0). The red dotted line and points
correspond to the transition from a maximally coherent state to a
classical state, (Ci,Cf ) = (1, 0). In blue, we have a representation of
a transition from a maximally coherent state to a less coherent state,
(Ci,Cf ) = (1, 0.87).

that the second case is located in the white region, while the
third case resides in the blue region, which corresponds to
a lower deviation. Furthermore, the separation between the
curves for cases (ii) and (iii) becomes progressively bigger
as temperature decreases.

We also study the quantum microreversibility by vary-
ing the initial and final states while keeping the temperature
constant. Throughout these experimental measurements, the
system was prepared and measured using states described
by Eq. (2). For each experimental run, we carefully adjusted
the parameters θi and θ f to ensure that the initial and final
coherences coincide, Ci = Cf = C. To encompass the entire
range of coherence values, we systematically varied θi from
π/2 to π and θ f from zero to π/2, thereby investigating
the diagonal cut indicated in Fig. 2(c). The experimental re-
sults for these measurements are presented in Fig. 6. It is
important to highlight that the result of the deviation factor
 for the heat-absorption case (shown in red in Fig. 6) can
be obtained directly from the corresponding result of the
heat-release case (blue curve) with the mentioned symmetry
properties of Eq. (10). This illustrates that the heat-absorption
case essentially mirrors the heat-release case. We can ob-
serve that these measurements also deviate from the classical

FIG. 6. Deviation factor  as a function of the coherence C
when the system releases heat (red) and absorbs heat (blue). Ex-
perimental results are the black dots, and the theoretical solid lines
come from the diagonal cuts in Figs. 2(c) and 3(c), which cor-
respond to β�E = 2. The classical limit is represented by the
dashed line.
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microreversibility condition ( = 1). More precisely, our ex-
perimental results are below the classical value by over 17
standard deviations when the system is releasing heat and
more than 7 standard deviations when it absorbs heat. These
results also indicate that the behavior of microreversibility
in the presence of coherences is highly divergent from the
classical counterpart. Moreover, according to our theory these
deviations become even larger as temperature decreases.

VI. CONCLUSIONS AND OUTLOOK

In summary, we proposed a quantum-mechanical approach
to the principle of microscopic reversibility with the aim to
investigate how quantum effects impact the symmetry rela-
tion between the probabilities of observing a given process
and that of the corresponding time-reversed transformation.
Based on this approach, we studied the microreversibility
properties of the dynamics of a qubit system in contact with a
heat reservoir at finite temperature, from which we identified
the influence of the initial and final coherence. The system
dynamics was modeled with the GADC, and the backward
transformation was considered to result from the inverse of the
unitary operation that acts on both the system and reservoir in
generating the forward process. In particular, we saw that, in
all cases in which the forward process is such that the system
releases heat to the reservoir, Q < 0, the general effect of the
presence of initial and final coherences in the energy eigen-
basis of the system, Ci and Cf , is to increase the probability
of observing the backward process in comparison with the
classical case. This fact was proved by the observation of 0 <

 < 1 for the deviation factor. On the other hand, when the
forward process is such that the system absorbs heat from the
reservoir, Q > 0, we verified that the presence of coherence
contributes to a decrease in the probability of observing the
backward process when compared to the classical case. This
situation has  > 1.

Our results also showed that the classical result of the mi-
croreversibility condition, Eq. (1), is always recovered in three
cases: (i) when the initial and final states of the system in the
quantum process have no coherence (Ci = Cf = 0), (ii) in the
high-temperature limit, and (iii) when the system starts and
ends the process in a maximally coherent state (Ci = Cf = 1).
In our study, this last case corresponds to a situation in which
the system does not exchange net heat with the reservoir,
i.e., Q = 0, which means that there is no preferred direction
with respect to the forward and backward processes. Another
important finding of this work is that the effect of coherence
becomes more significant in the departure of the quantum
microreversibility condition from its classical counterpart as
temperature decreases. In Ref. [25], the authors reported a
similar result by examining the behavior of coherent and ther-
mal states of light mixed in a beam splitter. Here, we observed
that the points (Ci,Cf ) at which the deviation factor is an
extremum varies with temperature. Yet in the limit of β�E →
∞, calculations have demonstrated that  → 0 in the Q <

0 case of the forward process and  → ∞ in the Q > 0
case. These results tell us that heat-absorption processes in
this regime are infinitely more likely to occur in the quantum
scenario than in the corresponding classical situation. In fact,
in the classical case the system is never allowed to absorb

heat, so reverse excitation processes are completely forbidden.
Conversely, in the quantum case we found that the GADC
reduces to the amplitude-damping channel, in which the reser-
voir is considered to be at T = 0 [32]. This channel acts by
moving any initial state toward state |g〉. Nevertheless, before
this state is attained, there is always a nonzero probability of
observing excitations events after the realization of the second
projective measurement on the system.

We realized an experimental simulation of our findings
with an all-optical setup. It consisted of a two-layer inter-
ferometer in which the path degrees of freedom encode the
energy states of the system and reservoir, and the polariza-
tion degree of freedom acted as an ancillary qubit. For the
preparation and evolution of the composite system-reservoir
state, we utilized a set of wave plates. The experimental results
showed excellent agreement with our theoretical description,
and in the β�E = 2 case, data showed that the quantum
microreversibility condition deviates from the classical coun-
terpart by 7σ (when the system absorbs heat) and 17σ (when
the system releases heat). Nevertheless, our theoretical results
predict that this deviation can be increased by choosing lower
temperatures or other cuts of the maps shown in Figs. 2(c) and
3(c). For example, in the Q > 0 case one could use a cut that
passes through the maximum deviation point, which happens
for Ci ≈ 0.61 and Cf ≈ 0.74, when β�E = 2. Finally, with
the microscopic-reversibility assumption being an essential
ingredient in the derivation of fluctuation theorems, we be-
lieve that the present results can provide important insight into
the understanding of the role of coherence in nonequilibrium
quantum processes.
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APPENDIX: EXPERIMENTAL CONFIGURATION
FOR THE STUDY OF MICROREVERSIBILITY

IN THE PRESENCE OF COHERENCES

In this Appendix, we present a comprehensive explanation
of the experimental setup employed to investigate microre-
versibility in the presence of coherences, as illustrated in
Fig. 4 of the main text. This setup is categorized into three
distinct parts. The initial part (Sec. Al) is dedicated to the
preparation of quantum states, while the second part (Sec. A2)
entails the evolution of both the system and the environment
through a unitary operation. The final part (Sec. A3) is re-
sponsible for the execution of projective measurements. The
following text provides a detailed explanation of each part.

1. State preparation

Starting with the state preparation, we use a half-wave
plate denoted as HWPα to prepare the initial state of photons
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in the state |ψi〉 = (a|H〉 + b|V 〉)|r〉, where a and b are real
coefficients and we assume φi = φ f = 0. Here, |H〉 and |V 〉
are the horizontal and vertical polarizations, respectively, |r〉
is the initial path degree of freedom, and |a|2 + |b|2 = 1. The
photons are sent to a set of beam displacers (BDs), which
deviate the photons spatially depending on the polarization.
The direction of this deflection is related to the orientation
of the optical axis of each BD. For instance, BD1 transmits
the |V 〉 photons, maintaining path |r〉, but deviates the |H〉
photons horizontally (parallel to the optical table). Thus, the
output state of BD1 is |ψ1〉 = a|H〉|l〉 + b|V 〉|r〉, where |l〉 is
the path of the deviated photons. This path degree of freedom
encodes the system by interpreting |l〉 (|r〉) as the ground
state |g〉 (excited state |e〉). After, the photons pass through
a half-wave plate (HWPφ) which rotates the polarization by
an angle φ and BD2, which deviates the photons vertically
(perpendicular to the optical table). This beam displacer pop-
ulates the upper layer of the interferometer [17]. We utilized
|u〉 and |d〉 to refer to the upward and downward paths, which
codify the reservoir energy states |Ee〉 and |Eg〉, respectively. It
is worth noting that, after ignoring the polarization, the state
of the photons after BD2 is the initial product state required in
the forward process [see Eq. (4) of the main text]. Therefore,
after BD2 the initial system-environment state is

ρ̂SE = ρ̂S ⊗ ρ̂E

= |a|2 sin2 φ|ld〉〈ld| + ab∗ sin2 φ|ld〉〈rd|
+ a∗b sin2 φ|rd〉〈ld|
+ |b|2 sin2 φ|rd〉〈rd| + |a|2 cos2 φ|lu〉〈lu|
+ ab∗ cos2 φ|lu〉〈ru|
+ a∗b cos2 φ|ru〉〈lu| + |b|2 cos2 φ|ru〉〈ru|, (A1)

where ρi and ρth are mapped into the states

ρ̂S = |a|2|l〉〈l| + |b|2|r〉〈r| + ab(|r〉〈l| + |l〉〈r|), (A2)

ρ̂E = sin2(φ)|d〉〈d| + cos2(φ)|u〉〈u|, (A3)

respectively. The comparison between these operators and the
theoretical description in Eqs. (2) and (3) allows the following
correspondence:

cos
θi

2
= a, sin

θi

2
= b, (A4)

wg = sin2(φ), we = cos2(φ). (A5)

2. State evolution

In the second stage of the experiment we make the system
and reservoir interact via the unitary operation Û in Eq. (5).
This is implemented with BD3, BD4, and a set of HWPs. The
dissipation rate, determined by the damping parameter p ∈
[0, 1] [47,50,59,60], is controlled with the HWPθ by using
the parametrization p = cos2 θ/2. Optical path compensation
is achieved by inserting two HWP0 at zero. Note that all
parameters are experimentally controlled by rotating various
wave plates. The evolved state of the system and environment
ρ̂ ′

SE in Eq. (4) is obtained at the output of BD4 and is given as

ρ̂ ′
SE = (a sin φ|ld〉 + b sin φ cos θ |lu〉 + b sin φ sin θ |rd〉)

× (a∗ sin φ〈ld| + b∗ sin φ cos θ〈lu|

+ b∗ sin φ sin θ〈rd|)
+ (a cos φ sin θ |lu〉 + a cos φ cos θ |rd〉 + b cos φ|ru〉)

× (a∗ cos φ sin θ〈lu| + a∗ cos φ cos θ〈rd|
+ b∗ cos φ〈ru|). (A6)

Through a partial trace, the reduced density matrices of the
evolved system (ρ̂ ′

S) and environment (ρ̂ ′
E ) are

ρ̂ ′
S = TrE [ρ̂ ′

SE ]

= (a2 sin2 φ + b2 sin2 φ cos2 θ + a2 cos2 φ sin2 θ )|l〉〈l|
+ (b2 sin2 φ sin2 θ + a2 cos2 φ cos2 θ + b2 cos2 φ)|r〉〈r|
+ ab sin θ (|l〉〈r| + |r〉〈l|), (A7)

ρ̂ ′
E = TrS[ρ̂ ′

SE ]

= (a2 sin2 φ + b2 sin2 φ sin2 θ + a2 cos2 φ cos2 θ )|d〉〈d|
+ (b2 sin2 φ cos2 θ + a2 cos2 φ sin2 θ+b2 cos2 φ)|u〉〈u|
+ ab cos θ (|d〉〈u| + |u〉〈d|). (A8)

Here, the terms with ab in the density states of both the system
and the environment are associated with coherence, and their
control is governed by the HWPθ . When the parameter p is
equal to 1, the system completely loses its coherence to the
environment.

3. Projective measurements

Finally, projective measurements are carried out by the
final pair of BDs (BD5 and BD6), in conjunction with a couple
of HWPs. A quarter-wave plate is also inserted to compensate
for undesired phases that appear in the propagation of the pho-
tons inside the interferometer. By adjusting the angle of the
HWP, the experimental setup allows us to perform projections
onto any linear polarization of the system and onto each state
of the energy eigenbasis of the reservoir. The corresponding
forward PF (ψ f |ψi ) and backward probabilities PB(ψ̄ f |ψ̄i ) for
the three different cases can be written as

PF (V |H ) = Tr[ρ̂ ′
S|V 〉〈V |] = cos2 φ cos2 θ, (A9)

PB(H |V ) = Tr[ρ̂ ′
S|H〉〈H |] = cos2 θ sin2 φ, (A10)

PF (V |D) = Tr[ρ̂ ′
S|V 〉〈V |] = 1

2 [(1 + cos2 θ ) cos2 φ

+ sin2 θ sin2 φ], (A11)

PB(D|V ) = Tr[ρ̂ ′
S|D〉〈D|] = 1

2 . (A12)

Finally, for the third case, namely, |ψi〉 = 1/
√

2(|g〉 + |e〉)
and ψ f = 1/2(|g〉 + √

3|e〉), the forward and backward prob-
abilities can be written as

PF (ψ f |ψi ) = Tr[ρ̂ ′
S|ψ f 〉〈ψ f |]

= 1
16 {8 + cos[2(θ − φ)] + 2 cos (2φ)

+ cos[2(θ + φ)] + 4
√

3 sin(θ )}, (A13)

PB(ψ̄ f |ψ̄i ) =Tr[ρ̂ ′
S|ψ̄ f 〉〈ψ̄ f |]

= 1
4 [2 +

√
3 sin(θ )]. (A14)
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