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Resonance of geometric quantities and hidden symmetry in the asymmetric Rabi model

Qinjing Yu 1 and Zhiguo Lü 1,2,*

1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy,
Shanghai Jiao Tong University, Shanghai 200240, China

2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Received 30 July 2023; accepted 26 October 2023; published 15 November 2023)

We present the interesting resonance of two kinds of geometric quantities, namely, the Aharonov-Anandan
phase and the time-energy uncertainty, and reveal the relation between resonance and the hidden symmetry in
the asymmetric Rabi model by numerical and analytical methods. By combining the counter-rotating hybridized
rotating-wave method with time-dependent perturbation theory, we solve systematically the time evolution
operator and then obtain the geometric phase of the Rabi model. In comparison with the numerically exact
solutions, we find that the analytical results accurately describe the geometric quantities in a wide parameter
space. We unveil the effect of the bias on the resonance of geometric quantities: (1) the positions of all harmonic
resonances stemming from the shift of the Rabi frequency at the presence of the bias, and (2) the occurrence
of even order harmonic resonance due to the bias. When the driving frequency is equal to the subharmonics of
the bias, the odd higher-order harmonic resonances disappear. Finally, the hidden symmetry has a resemblance
to that of the quantum Rabi model with bias, which indicates the quasienergy spectra are similar to the energy
spectra of the latter.
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I. INTRODUCTION

Since the geometric phase of Berry’s seminal work was
introduced in the cyclic evolution of a system under adiabatic
condition [1], its effects have been discovered and experimen-
tally measured in various fields of physics [2–11] as well as
chemistry [12]. The geometric property of Berry’s phase visu-
ally lies in that it merely depends on the solid angle subtended
by the closed path that the parameters traverse. Aharonov and
Anandan (AA) extended Berry’s phase to nonadiabatic cases
[13,14], removing the adiabatic restriction and only assuming
that the initial and final states of the quantum system differ by
a total phase factor. Besides theoretical significance, the AA
phase has important applications to nonadiabatic geometric
gates in quantum computation, with internal resiliency to cer-
tain noises and control errors [15–17]. Furthermore, Samuel
and Bhandari developed the geometric phase in a general
setting without the assumption of cyclic evolution [18]. All
these phases are determined by the curve C that the quantum
state traverses in the projective Hilbert space P and are thus
defined as geometric quantities [19].

Time-energy uncertainty, as one of the most fundamen-
tal quantities in quantum mechanics, is also proved to be a
geometric quantity [19,20]. Although the proposal of the un-
certainty principle for time and energy even dates back to the
origin of quantum mechanics in the 1920s, it is understood as
setting a fundamental limit on the rate of quantum dynamics in
its modern formulation [21–24] and is thus widely employed
in studies on the speed of gate operations in quantum com-
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putation [25–28], the precision of measurement in quantum
metrology [29–32], and so on. With the rapid development of
technologies in manipulating quantum systems, it has received
increasing attention as the basis for optimal control theory
[33–36].

The semiclassical Rabi model [37,38], which describes
a two-level system coupled with a classical monochromatic
periodic field, is a typical quantum model exhibiting the prop-
erties of geometric quantities. Its studies have a rich history
for both experimental and theoretical investigations [39–47],
and nowadays this model is widely applied in quantum infor-
mation technology [48–50]. It is found that there are a wide
variety of interesting dynamical features in this model, such as
well-known Rabi oscillations, Bloch-Siegert shifts, coherent
destruction of tunneling (CDT) [51], driving-induced tun-
neling oscillations (DITO) [52], and plateau dynamics [53].
In this work we consider the asymmetric semiclassical Rabi
model, where a bias term is taken into account. The bias
breaks the symmetry of the semiclassical Rabi model [54],
which contributes to the complexity and phenomena different
from those of the symmetric Rabi model. This allows for the
representation of energy biases between the two states of a
flux qubit [55].

While previous studies have primarily concentrated on
the dynamics of the asymmetric semiclassical Rabi model
[56,57], including phenomena such as CDT and DITO, rela-
tively little attention has been paid to the geometric quantities
of this model. The geometric quantities, which are robust
against certain types of noise and errors, have the potential
to be powerful tools for quantum computation and quantum
information processing. Therefore, our work not only investi-
gates the properties of geometric quantities of the asymmetric
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semiclassical Rabi model but also provides insights into the
behavior in a wide range of parameter space.

In this work we investigate the harmonic resonance of the
AA phase and the time-energy uncertainty of the asymmetric
semiclassical Rabi model, which is beyond the work on the
unbiased case [58]. First, we generalize the harmonic reso-
nance features of both geometric quantities in parameter space
and further explore the feature of the harmonic resonance.
To derive the analytical expression for the AA phase, we
employ counter-rotating hybridized rotating-wave (CHRW)
method, which takes account of the influences of counter-
rotating terms and bias together and is more reliable than
the rotating-wave approximation (RWA). Further, considering
the second harmonic terms of the Hamiltonian in the rotat-
ing frame, we combine perturbation theory with the CHRW
method to calculate the AA phase and reveal its subtle reso-
nant picture. Interestingly, at certain points in the parameter
space, the odd harmonic resonance disappears in the numer-
ical results. Using Floquet theory [39,59], we explain this
interesting phenomenon and reveal the relation between the
hidden symmetry of the asymmetric semiclassical Rabi model
and odd harmonic resonance. While the hidden symmetry of
the asymmetric quantum Rabi model has been extensively
studied, our results provide the first instructive evidence for
the similar phenomenon in the semiclassical counterpart.

The structure of this work is as follows. In Sec. II, after a
brief review of both geometric quantities, we perform numer-
ical calculations to demonstrate the resonance phenomenon
and show the features of harmonic resonance. In Sec. III
we employ the CHRW method to analytically calculate the
AA phase and the positions of the higher-order harmonic
resonances. In Sec. IV we apply perturbation theory based
on the CHRW method to take into account the effects of
higher-order harmonic terms in calculating the AA phase in
the higher-order harmonic resonance regime. In Sec. V we
shed light on the absence of harmonic resonance in the results
of numerical calculation as hidden symmetry appears. This
is further discussed through comparison between the asym-
metric semiclassical Rabi model and the asymmetric quantum
Rabi model. Finally, we give the conclusion of this paper in
Sec. VI.

II. RESONANCE OF AHARONOV-ANANDAN PHASE
AND TIME-ENERGY UNCERTAINTY

The Hamiltonian of the asymmetric semiclassical Rabi
model reads

H (t ) = −�

2
σx − ε + A cos(ωt )

2
σz, (1)

where σx and σz are the Pauli matrices, � is the tunneling
strength, and ε is the static bias. A, ω, and T = 2π/ω are
the amplitude, frequency, and period of the driving field, re-
spectively. We set h̄ = 1 throughout this paper and also use
ε(t ) = ε + A cos(ωt ) to denote the bias-modulated driving
field [44,56,60]. This Hamiltonian can represent the systems
moving in an effective double-well potential modulated by an
ac field, under the condition that only the ground state in either
well can be occupied [56,61]. A system initially localized
in one well will oscillate between the eigenstates in the left

and right well due to quantum mechanical tunneling, which is
exemplified by the two equivalent configurations of NH3, as
well as the two current states of a flux qubit [55,60].

By implementing a rotation about the y axis on
this Hamiltonian, we obtain a transformed representa-
tion exp(iπσy/4)H (t ) exp(−iπσy/4) = −�

2 σz + ε+A cos(ωt )
2 σx.

This particular form of the Hamiltonian is prevalently em-
ployed in the fields of quantum optics and nuclear magnetic
resonance, where � signifies the energy difference between
the two levels, and the driving term causes transitions between
these levels [62,63].

In the following we first present a succinct overview of
the concepts and geometric properties of the AA phase and
the time-energy uncertainty in Secs. II A and II B. Then we
display the � dependence of both geometric quantities using
numerical methods in Sec. II C and further discuss the features
of resonance in Sec. II D.

A. Aharonov-Anandan phase

Since the AA phase is a generalization of Berry phase,
it is pertinent to briefly review the fundamental concepts
and geometric properties of Berry’s phase. Consider a time-
dependent Hamiltonian H (R(t )), where R = (R1, R2, ..., Rn)
and R(T ) = R(0), with the initial state being the mth eigen-
state |m(0)〉 of H (R(0)). If the system is subjected to adiabatic
processes, i.e., |〈 j|∂H/∂t |k〉| � (Ej − Ek )2, ( j �= k), where
Ej is the jth eigenenergy of H (R(t )), the state of the sys-
tem will remain in the mth eigenstate |m(t )〉 while also
obtaining a phase factor exp[i(αm(t ) + γm(t )], where αm(t ) =
− ∫ t

0 Em(t ′)dt ′ is called the dynamical phase, and γm(t ) =
i
∫ t

0 〈m(t ′)|ṁ(t ′)〉dt ′ is called the adiabatic phase. Berry’s
phase is defined as the adiabatic phase acquired over a cycle,
i.e.,γm(T ), which has been proved to be real and measurable.

The geometric property of Berry’s phase corresponds to its
relation to the solid angle subtended by the closed path in the
parameter space spanned by R [1]. Consequently, it is referred
to as the geometric phase.

Based on Berry’s phase, AA removed the adiabatic restric-
tion, while assuming that the initial and final states of the
quantum system differ by a total phase factor eiθ [13]. Since
the Hamiltonian in Eq. (1) is periodic, the cyclic state |ψ (t )〉
satisfies

|ψ (T )〉 = eiθ |ψ (0)〉, (2)

where θ and |ψ (0)〉 are defined as the total phase and the
cyclic initial state, respectively. Then the AA phase is defined
by subtracting the dynamical phase α from θ [13]:

γ = θ − α, (3)

where the dynamical phase is calculated by

α = −
∫ T

0
〈ψ |H |ψ〉dτ. (4)

The geometric property of AA phase is embodied in the
projective Hilbert space P (see Appendix A), in which the
curve C traversed by the system decides the value of AA
phase. Quantities with such property are referred to as geo-
metric quantities by AA.
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FIG. 1. AA phases γ±, time-energy uncertainty s, and quasienergy q (see Appendix B 1) as a function of �/ω for different values of ε/ω

with a fixed driving strength A/ω = 1. (a) ε/ω = 0. (b) ε/ω = 0.5. (c) ε/ω = 1. (d) ε/ω = 1.5. γ+ and γ− are AA phases corresponding to
different cyclic initial states, and we set here γ− ≡ 2π − γ+ according to the complementary relation. γ± and s are all divided by π , and q is
divided by ω in the figures. We have selected the interval [0, 2π ] as the principal value range for the AA phase.

B. Time-energy uncertainty

Another geometric quantity under discussion is the time-
energy uncertainty, defined as the time integral of the standard
of energy:

s = 2
∫

�E (t )

h̄
dt, (5)

where

�E (t ) = [〈ψ |H2|ψ〉 − 〈ψ |H |ψ〉2]1/2. (6)

The coefficients in Eq. (5) enable s to be equivalent to the
distance of curve C along which the state evolves in projective
Hilbert space P , measured by the Fubini-Study metric [19].
Owing to the periodicity of the Hamiltonian in Eq. (1), the
curve C will overlap beyond a single period. As such, it is
adequate to compute the time-energy uncertainty within one
period.

Suppose that |ψ〉 and |ψ + dψ〉 are separated by an in-
finitesimal distance. Then the following expression for an
infinitesimal length of path ds traversed by the state vector
can be derived:

ds2 = 4(1 − |〈ψ |ψ + dψ〉2|). (7)

The projective Hilbert space for a two-level system can be
identified as the Bloch sphere. In the present case, the Fubini-
Study metric is the usual metric on the Bloch sphere with unit

radius. Therefore ds can also be obtained as

ds = dφ, (8)

where φ is the angle between |ψ〉 and |ψ + dψ〉. The equiva-
lence of Eqs. (7) and (8) can also be easily verified by means
of numerical calculation.

C. Numerical results

We present the � dependence of the AA phase, the time-
energy uncertainty, and the quasienergy (see Appendix B 1)
for different biases using numerical methods in Fig. 1. With
the Hamiltonian in Eq. (1), we first numerically solve the
Schrödinger equation to obtain the evolution operator U (t ):

i∂tU (t ) = H (t )U (t ). (9)

Then both the total phase θ and the cyclic initial state |ψ (0)〉
can be obtained from the eigenvalues and eigenvectors of
U (t = T ). Finally, through numerical integration we can
calculate the AA phase using Eqs. (3) and (4), and the
time-energy uncertainty using Eqs. (5) and (6). On the
other hand, the quasienergy is obtained by diagonalizing the
Floquet Hamiltonian numerically, which we will discuss in
detail in Sec. V.

For the semiclassical Rabi model, we obtain AA phases
γ± which correspond to different cyclic initial states and sat-
isfy γ+ + γ− = 2lπ, l ∈ Z (see Appendix B). Nevertheless,
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FIG. 2. (a–d) Time evolution of Pup for different tunneling strength �/ω and initial states, with A/ω = 1 and ε/ω = 0.8 fixed: (a) �/ω =
2.7993 and the initial state is |ψres(0)〉; (b) �/ω = 2.7 and the initial state is |ψ (0)〉|�/ω=2.7; (c) �/ω = 2.7993 and the initial state is
|ψ (0)〉|�/ω=2.7; (d) �/ω = 2.7 and the initial state is |ψres(0)〉. (e–h) Trajectories on the Bloch sphere with the parameters and the initial
states corresponding to (a–d), respectively. The red arrows and dots on the Bloch spheres represent the initial states, while the black dots label
the final states. The arrows on the trajectories represent the directions of quantum state evolution. In (f) and (g), we zoom in on the divergence
and the convergence of the initial and the final states, respectively.

the values of their time-energy uncertainty are equal, which
means their trajectories in the projective Hilbert space are
identical. Note that we have selected the interval [0, 2π ] as the
principal value range for the AA phase and set γ+ + γ− = 2π .

We show the characters of the resonance from the three
quantities: AA phases γ±, time-energy uncertainty s, and
quasienergy q. The resonance feature of the time-energy un-
certainty is quite pronounced. At the harmonic resonance,
the uncertainty reaches its local maxima, which are close to
2π, 4π , and 6π for the main, second, and third resonance,
respectively. Meanwhile, in the vicinity of the harmonic res-
onance corresponding to the uncertainty, both branches of
the AA phase γ± pass through γ = π , and the number of
intersections increases with the order of resonance. At the
same time, the branches of quasienergy exhibit avoided cross-
ing. Through numerical calculations we have found that the
harmonic resonance of the three quantities tends to coincide.

In the top and middle panels of Fig. 1(a) we display the
geometric quantities for the Rabi model without bias, i.e.,
ε = 0. In this case only the main and third harmonic res-
onance occur at �/ω ≈ 1 and �/ω ≈ 3, respectively. Near
these resonances, γ+ (or γ−) passes through π once and more
than once, respectively. In the bottom panel of Fig. 1(a), the
quasienergy spectrum near the main and third harmonic res-
onance regime exhibits anticrossing, but that near �/ω = 2
exhibits crossing, which indicates the corresponding relation
between geometric quantities and quasienergy spectra.

When ε/ω > 0, the second harmonic resonance con-
tributed by the bias term at �/ω ≈ 2 occurs, besides the main
and third harmonic resonances, as observed in Fig. 1(b). With
the increase of ε/ω, all the resonance shifts toward smaller
values of �/ω, and the main harmonic resonance eventu-
ally vanishes as ε/ω � 1, as shown in Figs. 1(c) and 1(d).
When ε/ω = 1, the third harmonic resonance also disappears,

because both geometric quantities are relevant to the hidden
symmetry of the asymmetric semiclassical Rabi model, which
we will come back to discuss in Sec. V.

D. Features of resonance

To explore the condition of resonance and visualize its
features, in Fig. 2 we demonstrate the population dynamics
of the Rabi model and trajectories on the Bloch sphere for dif-
ferent tunneling strengths �/ω and initial states. For A/ω =
1 and ε/ω = 0.8, the third harmonic resonance happens at
�/ω = 2.7993, and we use |ψ (0)〉 ≡ |ψres(0)〉 to denote one
of its cyclic initial states, while at the near-resonance posi-
tion �/ω = 2.7, one of its cyclic initial states is denoted as
|ψ (0)〉|�/ω=2.7. Figures 2(a)–2(d) show the population of the
spin-up state [1 0]T in the σz basis as a function of t for
different cases, calculated by

Pup(t ) = σz(t ) + 1

2
= 〈ψ (0)|U (t )† σz + 1

2
U (t )|ψ (0)〉, (10)

which represents the dynamics of the two-level systems.
Figures 2(e)–2(h) show the corresponding trajectories of
|ψ (t )〉 = U (t )|ψ (0)〉 on the Bloch sphere, with red dots la-
beling the initial states and black dots labeling the final states.

In Figs. 2(a) and 2(e), �/ω = 2.7993, which is the reso-
nance position, and the initial state is |ψres(0)〉. The features of
resonance are manifestly shown by the rapid oscillation of Pup

and the trajectory on the Bloch sphere whose length is very
close to 6π . As seen in Fig. 2(e), the initial and final states
converge, because the initial state is the cyclic initial state for
�/ω = 2.7993. In Figs. 2(b) and 2(f), �/ω = 2.7, which is
corresponding to the nonresonance position, and the initial
state is |ψ (0)〉|�/ω=2.7. In this case resonance is not observed,
as Pup varies slowly and the trajectory greatly contracts.
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In Figs. 2(c) and 2(g), we show the population dy-
namics and the trajectory on the Bloch sphere for �/ω =
2.7993 initially prepared from the initial cyclic state with
|ψ (0)〉|�/ω=2.7, respectively. We find that the dynamics and
trajectory on the Bloch sphere in this case are similar to
those results in Figs. 2(b) and 2(f), indicating that resonance
disappears. In Figs. 2(d) and 2(h), if the initial state is initially
prepared as |ψres(0)〉 and a nonresonant parameter �/ω = 2.7
is set, it is found that like-resonance phenomena recur, which
seems similar to those in Figs. 2(a) and 2(e). Note that the
initial and final states diverge in Figs. 2(g) and 2(h), because
in both cases the initial states and the parameters �/ω do not
match.

From Fig. 2 we conclude that harmonic resonance mainly
comes from the initial state |ψ (0)〉. As long as one cyclic
initial state corresponding to its resonance position is selected,
like-resonance phenomena can happen even if the parameter
�/ω does not match that of the resonance. Meanwhile, |ψ (0)〉
is highly sensitive to �/ω in the vicinity of harmonic reso-
nance, as is observed from Figs. 2(e) and 2(g).

III. COUNTER-ROTATING HYBRIDIZED
ROTATING-WAVE METHOD

In this section we apply the CHRW method to analyti-
cally calculate the AA phase of the asymmetric semiclassical
Rabi model. We first introduce the CHRW methodology in
Sec. III A and then present the analytical expression for the
AA phase in Sec. III B. Finally, we calculate the positions of
the higher-order harmonic resonances by the CHRW method
in Sec. III C.

A. Methodology

We perform the unitary transformation with a genera-
tor S(t ) = −i A

2ω
sin(ωt )(ξσz + ζσx ) to the Hamiltonian in

Eq. (1). The two parameters ξ and ζ are determined later. In
the rotating frame we obtain the evolution operator

i
dU ′(t )

dt
= H ′(t )U ′(t ), (11)

in which U ′(t ) = eS(t )U (t ) and H ′(t ) = eS(t )H (t )e−S(t ) −
ieS(t )∂t e−S(t ). Then the wave function is obtained |ψ ′(t )〉 =
eS(t )|ψ〉, and the transformed Hamiltonian is written

H ′ = − �

2

[
σx − 1 − cos �

x2
ξ (ξσx − ζσz ) + sin �

x
ξσy

]

− ε(t )

2

[
σz + 1 − cos �

x2
ζ (ξσx − ζσz ) − sin �

x
ζσy

]
+ A

2
(ξσz + ζσx ) cos(ωt ),

(12)

where � = z sin(ωt ), z = A
ω

x, and x =
√

ξ 2 + ζ 2. After using
the identity

exp(iy sin α) =
∞∑

−∞
Jn(y)einα, (13)

where Jn(y) are the nth-order Bessel functions of the first kind,
and we divide the Hamiltonian into four parts according to the
order of the harmonics,

H ′ = H ′
0 + H ′

1(t ) + H ′
2(t ) + V (t ), (14)

where

H ′
0 = −�̃

2
σx − ε̃

2
σz, (15)

H ′
1 = − (�ξ − εζ )

x
J1(z) sin(ωt )σy − A

2
[1 − ξ − ζ 2 jc]

× cos(ωt )σz + A

2
ζ [1 − ξ jc] cos(ωt )σx, (16)

H ′
2 = A

2

ζ

x
J1(z) sin(2ωt )σy

− (�ξ − εζ )

x2
J2(z) cos(2ωt )(ξσx − ζσz ), (17)

V = A

2

ζ

x2
J2(z) cos(3ωt )(ξσx − ζσz ) − [�ξ − ε(t )ζ ]

x2

×
∞∑

n=2

{xJ2n−1(z) sin[(2n − 1)ωt]σy

+ J2n(z) cos(2nωt )(ξσx − ζσz )}. (18)

The parameters �̃, ε̃ and jc are defined as

ε̃ = ε + ζ

x2
[1 − J0(z)](�ξ − εζ ), (19)

�̃ = � − ξ

x2
[1 − J0(z)](�ξ − εζ ), (20)

jc = 1 − J0(z) − J2(z)

x2
, (21)

respectively. Note that the zero-ω Hamiltonian H ′
0 consists

of the renormalized tunneling term and renormalized bias
one, the single-ω Hamiltonian H ′

1 corresponds to single-
harmonic processes, and the double-ω Hamiltonian H ′

2
specifies second-order harmonic processes. Finally, V (t ) in-
cludes all higher-order harmonic terms nω, n � 3. Until now,
no approximations are made, and the effects of the counter-
rotating terms and bias are all taken into account. Next, we
keep all the zeroth and first harmonics of the transformed
Hamiltonian (nω, n = 0, 1), i.e., H ′ ≈ H ′

0 + H ′
1, and neglect

the higher-order harmonic terms that involve all multi-ω or
multiphoton assisted transitions (nω, n = 2, 3, 4, ...). The va-
lidity of the omission of H ′

2 + V depends on the effects of
the higher-frequency driving terms whose contribution to the
dynamics is not prominent except for the ultrastrong driving-
strength case [57].

The Hamiltonian H ′
0 is diagonalized by a unitary matrix

D = uσz − vσx with u =
√

1
2 − ε̃

2�̃
and v =

√
1
2 + ε̃

2�̃
to the

form

H̃0 = �̃

2
τz, (22)

where �̃ =
√

�̃2 + ε̃2 is the renormalized energy splitting,τz

is the z-component pseudospin operator in the energy
eigenbasis.
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The Hamiltonian H ′
1 is then changed to

H̃1 = D†H ′
1D

= (�ξ − εζ )

x
J1(z) sin(ωt )τy

+ A

2
[1 − ξ − ζ 2 jc] cos(ωt )

(
ε̃

�̃
τz + �̃

�̃
τx

)
+ A

2
ζ [1 − ξ jc] cos(ωt )

(
ε̃

�̃
τx − �̃

�̃
τz

)
, (23)

where τx and τy are, respectively, the x component and the y
component spin operators in the energy eigenbasis. In order to
make the driving interaction term D†H ′

1D hold the RWA-like
form, we choose the two proper parameters ξ and ζ to satisfy
the following two self-consistent equations:

0 = A

2

[
�̃

�̃

(
1− ξ − ζ 2 jc

)+ ε̃

�̃
ζ (1− ξ jc)

]
− �ξ − εζ

x
J1(z),

(24)

0 = ε̃(1 − ξ − ζ 2 jc) − �̃ζ (1 − ξ jc). (25)

Therefore we obtain

H̃ = D†(H ′
0 + H ′

1)D

= �̃

2
τz + Ã

2
[τ+ exp(−iωt ) + τ− exp(iωt )], (26)

where τ± = (τx ± iτy)/2, and Ã is the renormalized amplitude
of the driving field resulting from the combination of the
counter-rotating coupling and static bias,

Ã = �ξ − εζ

x
2J1(z). (27)

B. Aharonov-Anandan phase

The solutions to the Schrödinger equation corresponding to
H̃ are denoted as |ψ̃〉 and satisfy |ψ̃〉 = D†|ψ ′〉 = D†eS|ψ〉.
Meanwhile, the evolution operator Ũ (t ) corresponding to H̃
is solved analytically,

Ũ (t ) =
⎡⎣e−i ωt

2
[

cos
(

�̃t
2

) − iδ̃
�̃

sin
(

�̃t
2

)] −e−i ωt
2

iÃ
�̃

sin
(

�̃t
2

)
−ei ωt

2
iÃ
�̃

sin
(

�̃t
2

)
ei ωt

2
[

cos
(

�̃t
2

) + iδ̃
�̃

sin
(

�̃t
2

)]
⎤⎦, (28)

where �̃ =
√

δ̃2 + Ã2 and δ̃ = �̃ − ω are, respectively, the modulated Rabi frequency and the renormalized detuning parameter
given by the CHRW method.

By the analytical expression of the transformed evolution operator Ũ (t ), we calculate the cyclic states |ψ±(t )〉 by

|ψ±(t )〉 = e−S(t )D|ψ̃±(t )〉 = e−S(t )DŨ (t )|ψ̃±(0)〉 (29)

and total phases θ± by their eigenvalues eiθ± . The dynamical phases are obtained:

α± = −
∫ T

0
〈ψ±|H |ψ±〉dτ

= −
∫ T

0
〈ψ̃±(0)|Ũ †D†eSHe−SDŨ |ψ̃±(0)〉dτ.

(30)

By Ũ (T ) in Eq. (28),

Ũ (T ) = − cos

(
�̃T

2

)
I + i

Ã

�̃
sin

(
�̃T

2

)
τx + i

δ̃

�̃
sin

(
�̃T

2

)
τz, (31)

we get its eigenvectors and phases of eigenvalues

|ψ̃±(0)〉 =
√

2�̃

�̃ ∓ δ̃

⎛⎝ 1
2 ∓ δ̃

2�̃

∓ Ã
2�̃

⎞⎠, (32)

θ± = ± �̃ − ω

2
T, (33)

respectively. The dynamic phases read

α± = ± T

4�̃

{
ε

[
ε̃

�̃
δ̃(1 + J0(z)) + 2ξζ

x2

�̃

�̃
δ̃(1 − J0(z)) − 2ζ

x
ÃJ1(z) + ξ 2 − ζ 2

x2

ε̃

�̃
δ̃(1 − J0(z))

]

+ AÃ

[
ξ 2

x2

�̃

�̃
+ ξζ

x2

ε̃

�̃

(
2J1(z)

z
− 1

)
+ 2ζ 2

x2

�̃

�̃

J1(z)

z

]
+ 2�

[
ζ 2

x2

�̃

�̃
δ̃ + ξ 2

x2

�̃

�̃
J0(z)δ̃ + ξζ

x2

ε̃

�̃
δ̃(1 − J0(z)) + ξ

x
ÃJ1(z)

]}
.

(34)
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Finally we obtain the analytical expression of AA phases:

γ± = θ± − α±

= ± T

4�̃

{
2�̃

(
�̃ − ω

) − ε

[
ε̃

�̃
δ̃(1 + J0(z)) + 2ξζ

x2

�̃

�̃
δ̃(1 − J0(z)) − 2ζ

x
ÃJ1(z) + ξ 2 − ζ 2

x2

ε̃

�̃
δ̃(1 − J0(z))

]
− AÃ

[
ξ 2

x2

�̃

�̃
+ ξζ

x2

ε̃

�̃

(
2J1(z)

z
− 1

)
+ 2ζ 2

x2

�̃

�̃

J1(z)

z

]
− 2�

[
ζ 2

x2

�̃

�̃
δ̃ + ξ 2

x2

�̃

�̃
J0(z)δ̃ + ξζ

x2

ε̃

�̃
δ̃(1 − J0(z)) + ξ

x
ÃJ1(z)

]}
. (35)

For the symmetric case, i.e., ε = 0, the result of the parameter
ζ = 0 is self-consistently solved by Eqs. (24) and (25). This
simplifies Eq. (35) to the previous result derived in [58], albeit
with slight differences in the coefficients due to the present
definition of Ã:

γ± = ±
[
�̃ − ω

2
− Ã

2�̃

(
�̃δ̃

Ã
+ A

2
+ Ã

2

)]
T . (36)

C. Positions of the harmonic resonance

By the Rabi frequency of the CHRW method, we calculate
the positions of the higher-order harmonic resonance [58].
The second harmonic resonance occurs when the modulated
effective Rabi frequency equals the frequency of external driv-
ing field, i.e.,

�̃ = ω. (37)

Likewise, the condition for the third harmonic resonance is

�̃ = 2ω. (38)

An analytical expression for the Rabi frequency up to the
second order in the driving strength A is derived in Ref. [57]:

�̃2nd = (ω − �0)2 + A2�2

2�0(ω + �0)
, (39)

where �0 = √
�2 + ε2. We use the condition �̃2nd = ω to

estimate the position of the second harmonic resonance. It is
obvious to see that in Fig. 3 the positions of the harmonic res-
onance of numerically exact results agree well with those of
the CHRW method. Both the positions of the second harmonic
resonance and third harmonic resonance show the tendency
of decrease of the tunneling strength as the bias increases,
indicating a compensating effect between � and ε. The re-
sult obtained by using �̃ = ω, which is shown by the blue
line in Fig. 3(a), is in agreement with the numerically exact
solution when ε < �, despite a tiny deviation that originates
from neglecting higher-order terms of A in deriving Eq. (39).
However, the relation �̃2nd = 2ω could not correctly predict
the third harmonic resonance, because �̃2nd does not take into
account the competition effect of bias and counter-rotating
terms in the higher-order resonance parameter regime, such
as � ∼ 3ω.

IV. PERTURBATION THEORY

Although the CHRW method can predict the positions
of the higher-order harmonic resonance of the AA phase
and depict its asymptotic tendency as a function of �/ω,
it is necessary to combine it with perturbation theory in

order to reveal the harmonic resonance features. Consider
the time-dependent Hamiltonian H̃ ′ split into a unperturbed
Hamiltonian H̃ and a perturbation with a dimensionless pa-
rameter λ representing the order of perturbation,

H̃ ′ = H̃ + λH̃pt , (40)

0 0.1 0.2 0.3 0.4 0.5
2.86

2.89

2.92
NUM
CHRW

(b)

0 0.1 0.2 0.3 0.4 0.5
1.76

1.8

1.84
(a)

FIG. 3. (a) Position of the second harmonic resonance. (b) Po-
sition of the third harmonic resonance. 0 < ε/ω < 0.5, A/ω = 1 for
both figures. The red lines are calculated by the numerically exact
method, the dashed dotted lines are obtained by Eqs. (37) and (38)
with the CHRW method, and the blue line in (a) is given by �̃2nd = ω

as an approximation.
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and its corresponding time evolution operator

Ũ ′ = Ũ + λŨpt + · · · , (41)

where i dŨ
dt = H̃Ũ . Since Ũ ′(t ) satisfies the time-dependent

Schrödinger equation i dŨ ′
dt = H̃ ′Ũ ′, we can solve Ũpt to the

first order:

i
dŨpt

dt
= H̃Ũpt + H̃ptŨ . (42)

Then we analytically solve

Ũpt (t ) = −iŨ
∫ t

0
Ũ −1H̃ptŨdτ. (43)

In this work we choose the parameter, A/ω < 2, and therefore
the influences of second harmonic terms in H ′

2(t ) are dominant
compared with the other higher-harmonic terms in V (t ). In the
following, by considering the second harmonic terms in H ′

2,

we calculate the evolution operator under perturbation and
then derive modified cyclic initial states and more accurate
analytical results for the AA phase. In the energy eigenbasis
representation of diagonalization, H ′

2 becomes

H̃2 = D†H ′
2D = H̃2y + H̃2x + H̃2z, (44)

where

H̃2y = −Aζ

2x
J1(z) sin(2ωt )τy, (45)

H̃2x = εζ − �ξ

x2
J2(z)q cos(2ωt )τx, (46)

H̃2z = εζ − �ξ

x2
J2(z)p cos(2ωt )τz, (47)

and p = (v2 − u2)ζ − 2ξuv and q = (v2 − u2)ξ + 2uvζ .
Here we take into consideration the effects of the terms with
τx, τy, and τz separately. First, we explore the effects of H̃2y,
calculating the integral:

∫ T

0
Ũ −1H̃2yŨdτ = 2AζJ1(z) sin

(
�̃
2 T

)
x�̃2(9ω4 − 10ω2�̃2 + �̃4)

[(
3δ̃�̃ω3 + 2δ̃2�̃ω2 − δ̃�̃3ω

)
cos

(
�̃

2
T

)
τx

+ (�̃4ω − 2�̃2δ̃ω2 − 3�̃2ω3) sin

(
�̃

2
T

)
τy + Ã(�̃3ω − 3�̃ω3 − 2�̃δ̃ω2) cos

(
�̃

2
T

)
τz

]
. (48)

Substituting Eq. (28) into Eq. (43), we obtain its first-order correction to Ũ ′:

Ũ2y(T ) = i
2AζωJ1(z) sin( �̃

2 T )(3ω + 2δ̃ω − �̃2)

x�̃(9ω4 − 10ω2�̃2 + �̃4)
(δ̃τx − Ãτz ). (49)

The whole time evolution operator Ũ ′
y (T ) = Ũ (T ) + Ũ2y(T ) yields

Ũ ′
y (T ) = − cos

(
�̃T

2

)
I + i

�̃
sin

(
�̃T

2

)
[(Ã + kyδ̃)τx + (δ̃ − kyÃ)τz], (50)

where

ky = 2AζωJ1(z)(3ω + 2δ̃ω − �̃2)

x(9ω4 − 10ω2�̃2 + �̃4)
. (51)

We immediately obtain one of its eigenvectors and its corresponding eigenvalue:

|ψ̃ ′
+y(0)〉 = 1

Ly

[
Ã + kyδ̃

kyÃ − δ̃ −
√

1 + ky
2�̃

]
, (52)

λ+ = − cos

(
�̃T

2

)
− i

√
1 + ky

2 sin

(
�̃T

2

)
, (53)

where the normalization factor

Ly = [
2
(
1 + k2

y

)
�̃2 − 2(δ̃ + kyÃ)

√
1 + k2

y �̃
]1/2

. (54)

Because the eigenvalue |λ+| � 1, we can regard

θ ′
+ = arg(λ+) = arctan

[√
1 + k2

y tan

(
�̃T

2

)]
− ωT

2
(55)

as the modified total phase under perturbation, which includes the effects of counter-rotating terms. Also, the perturbed Rabi
frequency in the vicinity of harmonic resonance can be derived accordingly (see Appendix C). In fact, θ ′

+ is very close to θ+ given
by the CHRW method, as the eigenvalues of Ũ ′

y (T ) are very close to those of Ũ (T ). Thus we can use the latter to approximate
θ ′
+, and the less |ky| is, the better the approximation is.
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Owing to the great contribution of Ũ2y(T ) to Ũ ′
y (T ), both the dynamical phase and the AA phase change sharply near higher-

order harmonic resonance. Using Eqs. (3) and (30), we obtain the AA phase corresponding to Eq. (52):

γ+ = θ+ +
∫ T

0
〈ψ̃ ′

+y(0)|Ũ †D†eSHe−SDŨ |ψ̃ ′
+y(0)〉dτ. (56)

Here we use Ũ instead of Ũ ′ in the integrand, which causes neglectable difference in the calculation. In light of the complemen-
tary relation γ+ + γ− = 2lπ, l ∈ Z, we obtain both AA phases approximately as follows:

γ± ≈ ± �̃ − ω

2
T ∓ π

2Ly
2

{
(δ̃ +

√
ky

2 + 1�̃ − kyÃ)

{
A2δ̃

2ω3
[ε(ν2 − μ2) − 2�μν] − δ̃

128ω
(3z4 − 64z2 + 512)

× (u2ε − 2uv� − v2ε) − 2AÃ

ω2
[(uε − v�)ν − (u� + vε)μ] + AÃ

ω

[
2

z
J1(z) + 1

]
[ky(u2 − v2) + 2uv]

}

+ 4ky

x2
J2(z)(uν − vμ)

[
kyÃ(�̃ + δ̃) − (

1 +
√

ky
2 + 1

)
�̃δ̃ −

√
ky

2 + 1�̃2 − δ̃2
]}

, (57)

where μ = ξu − ζv, ν = ξv + ζu. The details of derivation
are given in Appendix C.

Likewise, when we take account of the influences of H̃2x

and H̃2z, we repeat the processes of derivation above and
obtain

Ũ2x(T ) = ikx sin
(

�̃
2 T

)
�̃

(δ̃τx − Ãτz ), (58)

Ũ2z(T ) = ikz sin
(

�̃
2 T

)
�̃

(δ̃τx − Ãτz ), (59)

where

kx = 2(�ξ − εζ )J2(z)

x2

× [(v2 − u2)ξ + 2uvζ ](3ω3 + 5ω2δ̃ + ω�̃2 − δ̃�̃2)

(9ω4 − 10ω2�̃2 + �̃4)
,

(60)

kz = −2(�ξ − εζ )J2(z)

x2

Ã[2ξuv + ζ (u2 − v2)]

�̃2 − 4ω2
. (61)

It is noticeable that both Ũ2x(T ) and Ũ2z(T ) possess a simi-
lar mathematical structure to Ũ2y(T ) except for their distinct
coefficients. If combining them together, we obtain the first-
order correction to the time evolution operator Ũ . Therefore, it
turns out that the same forms of cyclic initial state and dynam-
ical phase as those in Eqs. (52) and (57) remain unchanged.
Substituting ky in Eqs. (54) and (57) with k = ky + kx + kz

results in the perturbed result. Moreover, the results are more
accurate for the AA phase in comparison with the unperturbed
and numerical results, which are shown in Fig. 4. Meanwhile,
we can see clearly from Eqs. (51), (60), and (61) that H̃2y

and H̃2x contribute to the higher-order harmonic resonance for
�̃ ≈ ω and �̃ ≈ 3ω, while H̃2z contributes to the higher-order
harmonic resonance for �̃ ≈ 2ω.

To evaluate the effectiveness of perturbation theory based
on the CHRW method, we depict the AA phase γ+ and the
modulated effective Rabi frequency �̃ as a function of �/ω

in Fig. 4, obtained by the numerical method, the CHRW
method, and perturbation theory based on the CHRW method.
In Figs. 4(a) and 4(b), we remove the limitation of AA phase

to [0, 2π ] to better exhibit the harmonic resonance peaks of
AA phase. It is obvious to see that the results obtained by
the CHRW method exhibit an asymptotic tendency for both
the AA phase and the modulated effective Rabi frequency.
In contrast, the combination of perturbation theory and the
CHRW method (denoted as CHRW+PT) accurately depicts
the harmonic resonance peaks of γ+ and sudden changes of
�̃ in the second- and the third-harmonic resonance regimes,
defined as the full width at half maximum (FWHM) of AA
phase [58]. In Figs. 4(a) and 4(b) we observe not only the
third harmonic resonance driven by the external field, but
also the second harmonic resonance arising from the com-
bination of bias and driving field. It is known that the odd
higher-order harmonic resonance happens in the symmetric
Rabi model. However, the asymmetry in the asymmetric Rabi
model induces even higher-order harmonic resonance, which
is a significant character in the asymmetric Rabi model, com-
pared with the results of the symmetric Rabi model [58]. In
Fig. 4(a) where ε/ω = 0.5, the second harmonic resonance
occurs at �/ω ≈ 1.75, and the third harmonic resonance oc-
curs at �/ω ≈ 2.865. As the bias increases to ε/ω = 1.5 in
Fig. 4(b), the positions of the second and the third harmonic
resonances shift to �/ω ≈ 1.25 and �/ω ≈ 2.515, respec-
tively, which reflects the compensating effect between � and ε

as demonstrated in Sec. III C. Moreover, as shown in Figs. 4(c)
and 4(d), the second and the third harmonic resonances hap-
pen when �̃/ω ≈ 1 and �̃/ω ≈ 2, respectively, in agreement
with the prediction of the CHRW method.

V. HIDDEN SYMMETRY

Now we come back to discuss the hidden symmetry of
the asymmetric semiclassical Rabi model that appears as
ε = mω, m ∈ Z. After careful calculation, we confirm that as
ε = mω, m ∈ Z, the harmonic resonance of geometric quan-
tities is absent for the numerical results at the third harmonic
resonance �res. Furthermore, we find that in this case, the
geometric quantities are actually determined by the arbitrary
choices of cyclic initial states. In this section we first illus-
trate this discovery using Floquet theory (about which we
give a short overview in Appendix B 1). We also explain this
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FIG. 4. (a), (b) AA phase γ+/π as a function of �/ω for different values of ε/ω with A/ω = 1 fixed: (a) ε/ω = 0.5; (b) ε/ω = 1.5. (c), (d)
Modulated effective Rabi frequency �̃/ω as a function of �/ω for different values of ε/ω with A/ω = 1 fixed: (c) ε/ω = 0.5; (d) ε/ω = 1.5.
The results of perturbation theory based on the CHRW method, denoted as CHRW+PT, agree well with the numerically exact results, while
those obtained by CHRW show asymptotic tendency. In (c) and (d) we include magnified views to highlight the sudden changes at the harmonic
resonance at �̃/ω ≈ 2.

phenomenon in terms of hidden symmetry by comparing the
asymmetric semiclassical Rabi model with the asymmetric
quantum Rabi model.

First of all, one can numerically verify the fact that when
ε = ω and � = �res, the quasienergies satisfy

q− − q+ = mω, m ∈ Z, (62)

which is equivalent to

θ+ − θ− = 2mπ, m ∈ Z. (63)

According to Floquet theory, both quasienergies are physi-
cally identical, which means the quasienergies are degenerate,
and any superposition of the cyclic initial states |�〉 =
c1|ψ−(0)〉 + c2|ψ+(0)〉 is also a cyclic initial state with the
equivalent quasienergy [59], i.e.,

U (T )|�〉 = e−iq+T |�〉. (64)

Because |ψ−(0)〉 and |ψ+(0)〉 are linear independent, |�〉 can
be any state vector in the Hilbert space, and therefore the
invariant space of U (T ) is the whole space. Thus we can
naturally infer that U (T ) = e−iq+T I . Furthermore, combining
Eq. (63) with the complementary relation θ+ + θ− = 2lπ, l ∈
Z, we can set θ+ = θ− = 0, without loss of generality, and in
this case, U (T ) = I .

Since the cyclic initial state can be, in principle, any vector
in the Hilbert space, and geometric quantities which depend
on it cannot be uniquely defined, we include AA phase and
time-energy uncertainty as our focuses in this work. In this
sense, the absent resonance obtained numerically is only one
of the infinity solutions. It can be verified that the degeneracy
of quasienergies as � = �res happens not only when ε = ω,
but when ε = mω, m ∈ Z as well.

This intriguing phenomenon stems from the hidden sym-
metry of the asymmetric Rabi model, which has been reported
by a number of researchers for the asymmetric quantum Rabi
model [54,64–66]. The Hamiltonian for the asymmetric quan-
tum Rabi model can be written as

Hq = ωa†a − g

4
σz(a† + a) − �

2
σx − ε

2
σz, (65)

where ω is the frequency of a quantized resonator field with
annihilation and creation operators a and a†, and g is the
coupling strength between the qubit and the field. For this
Hamiltonian, the hidden symmetry appears as long as ε =
mω, m ∈ Z, and the conserved quantity which commutes with
the Hamiltonian and corresponding symmetric unitary opera-
tor can be found in the case [64–66].
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It is necessary to mention that the coefficients and signs
chosen in Eq. (65) correspond to those in Eq. (1), and the
properties of the asymmetric quantum Rabi model are not re-
liant on those particular choices. The quantum field in Eq. (65)
can be reduced to the classical field in Eq. (1) with g|〈a〉| = A
fixed and g → 0, |〈a〉| → ∞, where |〈a〉| is expectation value
of the annihilation operator a [67].

According to Floquet theory, the Floquet Hamiltonian for
the asymmetric semiclassical Rabi model is

HF = −�

2
σx − ε + A cos(ωt )

2
σz − i∂t . (66)

A comparison of Eqs. (66) and (65) in the matrix form
demonstrates the similarity between the asymmetric semiclas-
sical Rabi model and the asymmetric quantum Rabi model.
For the asymmetric semiclassical Rabi model, we introduce a
set of basis

|↑or↓, n〉 = |↑or↓〉e−inωt , (67)

where |↑〉 and |↓〉 are the eigenstates of σz. In the extended
Hilbert space H ⊗ T , those vectors become |↑or↓, n〉〉 (see
Appendix B 1 for the details). In this basis, the matrix of HF

reads

HF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . |↑,−n〉〉 |↓,−n〉〉 |↑,−(n + 1)〉〉 |↓,−(n + 1)〉〉 |↑,−(n + 2)〉〉 |↓,−(n + 2)〉〉
|↑,−n〉〉 nω − ε

2 −�
2 −A

4 0 0 0

|↓,−n〉〉 −�
2 nω + ε

2 0 A
4 0 0

|↑,−(n + 1)〉〉 −A
4 0 (n + 1)ω − ε

2 −�
2 −A

4 0

|↓,−(n + 1)〉〉 0 A
4 −�

2 (n + 1)ω + ε
2 0 A

4

|↑,−(n + 2)〉〉 0 0 −A
4 0 (n + 2)ω − ε

2 −�
2

|↓,−(n + 2)〉〉 0 0 0 A
4 −�

2 (n + 2)ω + ε
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(68)

For the asymmetric quantum Rabi model, we introduce another similar set of basis,

|↑or↓, n〉, (69)

where |↑〉 and |↓〉 are the same as the symbols in Eq. (67), and |n〉 is the fork state for the periodic driving field. In this basis, Hq

takes the form

Hq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . |↑, n〉 |↓, n〉 |↑, n + 1〉 |↓, n + 1〉 |↑, n + 2〉 |↓, n + 2〉
|↑, n〉 nω − ε

2 −�
2 − g

4

√
n + 1 0 0 0

|↓, n〉 −�
2 nω + ε

2 0 g
4

√
n + 1 0 0

|↑, n + 1〉 − g
4

√
n + 1 0 (n + 1)ω − ε

2 −�
2 − g

4

√
n + 2 0

|↓, n + 1〉 0 g
4

√
n + 1 −�

2 (n + 1)ω + ε
2 0 g

4

√
n + 2

|↑, n + 2〉 0 0 − g
4

√
n + 2 0 (n + 2)ω − ε

2 −�
2

|↓, n + 2〉 0 0 0 g
4

√
n + 2 −�

2 (n + 2)ω + ε
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (70)

The structural similarity between HF and Hq is apparent in
the matrix representation; note the exactly equal tridiagonal
elements for both Hamiltonians [note that n ∈ Z+ for both
matrices, and −n is used in Eq. (68)]. Meanwhile, the off-
tridiagonal elements of Hq depend on n and those of HF

depend on A, which is related to the average number of
photons in the semiclassical limit [67,68]. However, in HF ,
n runs from negative infinity to positive infinity, while in Hq,
n cannot be negative because it labels the number of photons
[39].

With the matrices of both Hamiltonians, we calculate the
convergence values of the eigenvalues to obtain accurate en-
ergy spectra by incrementally increasing their dimensions.
Figures 5(a) and 5(c) display the quasienergy of the asym-
metric semiclassical Rabi model against �/ω, with A/ω = 1
for ε/ω = 1 and ε/ω = 0.8, respectively, while Figs. 5(b)

and 5(d) show the eigenenergy of the asymmetric quantum
Rabi model with g/ω = 1, for ε/ω = 1 and ε/ω = 0.8. From
these figures we can see that for ε/ω = 1, the quasienergies
are degenerate at �res/ω ≈ 2.74, and degeneracies can also
be observed for the eigenenergy spectrum in the vicinity of
�/ω ≈ 2.5. However, no level crossing occurs when ε/ω �=
1. Though not shown here, we also verified the general exis-
tence of level crossings for ε/ω = m, m ∈ Z and anticrossings
for ε/ω �= m, and we found that these characters were not in-
fluenced by the value of A/ω or g/ω, which mainly shifted the
spectra along the �/ω axis. This fact provides strong evidence
for the hidden symmetry of both the asymmetric semiclassi-
cal Rabi model and the asymmetric quantum Rabi model as
structural properties of the Hamiltonian, which probably have
impacts in all coupling regimes of light-matter interaction or
driven two-level systems. Consequently, the hidden symmetry
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FIG. 5. Comparison of (quasi-)energy spectrum as a function of �/ω between the asymmetric semiclassical Rabi model and the
asymmetric quantum Rabi model under different parameters. (a), (c) Quasienergy spectrum of the asymmetric semiclassical Rabi model with
A/ω = 1, ε/ω = 1, 0.8. (b), (d) Eigenenergy spectrum of the asymmetric quantum Rabi model with g/ω = 1, ε/ω = 1, 0.8. For ε/ω = 1, the
quasienergies or eigenenergies are degenerate at certain points, while no degeneracy occurs for ε/ω = 0.8.

contributes to the nonuniqueness of the geometric quantities,
AA phase, and time-energy uncertainty.

VI. CONCLUSION

In this work we investigate the harmonic resonance of the
AA phase and time-energy uncertainty as geometric quan-
tities, and hidden symmetry in the asymmetric Rabi model
by the numerical method. At the same time, we apply per-
turbation theory based on the CHRW method to analytically
give an accurate time evolution operator and then calculate
an accurate geometric phase, which is in good agreement
with numerically exact results. The asymmetry in the Rabi
model has important effects on the geometric phase. In com-
parison with the existence of only odd harmonic resonances
in the absence of bias, various resonance phenomena take
place in the presence of bias, including the emergence of the
even higher-order harmonic resonances induced by the asym-
metry, and the disappearance of odd higher-order resonance
caused by the hidden symmetry present when ε = mω, m ∈
Z. Besides, with the increase of the bias, all the harmonic
resonance shifts toward smaller values of �/ω owing to the
compensating effect between ε and �, confirmed by both the

numerical method and the CHRW method using the condition
�̃ = mω, m ∈ Z.

We illustrate the features of harmonic resonance encapsu-
lated by the repeated intersection of the AA phase at γ = π ,
attainment of a local maximum in time-energy uncertainty,
and rapid oscillations in the population of the spin-up state,
Pup. The harmonic resonance was mainly steered by the initial
state |ψ (0)〉, which is highly sensitive to �/ω in the vicinity
of harmonic resonance. The results obtained by the CHRW
method, in which the influences of counter-rotating terms and
bias were all taken into account in the rotating frame, exhibit
asymptotic tendencies for both AA phase and modulated ef-
fective Rabi frequency. With the combination of perturbation
theory, we further effectively depict the harmonic resonance
peaks of γ+ and sudden changes of �̃ in the second and the
third harmonic resonance regimes.

Upon investigation of the absence of harmonic resonance
in the results of numerical calculation for ε = mω, m ∈
Z,� = �res, we shed light on the dependence of geometric
quantities on the choice of cyclic initial states due to the
degeneracy of quasienergy of the asymmetric semiclassical
Rabi model. Using Floquet theory, we found the structural
similarity between HF and Hq in the matrix representa-
tion and spectra, which reveals the hidden symmetry in the
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asymmetric semiclassical Rabi model as an analogy of that in
the asymmetric quantum Rabi model reported in Refs. [54,64–
66]. Our results suggest that the hidden symmetry reflects the
intrinsic property of the asymmetric Rabi model, regardless
of the amplitude of the driving field or the coupling strength
between the qubit and oscillating field, which plays a poten-
tial role in all coupling regimes of light-matter interaction or
driven two-level systems. Meanwhile, since the time-energy
uncertainty equals the length of path traversed by the state on
the Bloch sphere, it can be measured in superconducting qubit
systems via quantum process tomography.
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APPENDIX A: PROJECTIVE HILBERT SPACE

In quantum mechanics, states are described by vectors in
the Hilbert space H. However, any two vectors ψ, φ ∈ H,
satisfying

ψ = cφ, c ∈ C, (A1)

are physically equivalent (ψ ∼ φ). Therefore the projective
Hilbert space P , defined as

P := H/ ∼, (A2)

is the proper space for representing quantum states that can be
physically distinguished.

APPENDIX B: ANALYSIS OF HIDDEN SYMMETRY

1. Floquet theory

For a time-dependent Hamiltonian which satisfies H (t +
T ) = H (t ), the solution to the Schrödinger equation

i∂t |ψ (t )〉 = H (t )|ψ (t )〉 (B1)

takes the form

|ψα (t )〉 = |uα (t )〉e−iqαt , (B2)

where qα is called quasienergy, and |uα (t + T )〉 = |uα (t )〉.
This is often referred to as the Floquet theorem. Since |ψα (0)〉
merely acquires a phase factor after t = T , i.e., the total phase
θ = −qαT , it is called a cyclic initial state. Inserting Eq. (B2)
into Eq. (B1), the original problem can be transformed into an
eigenvalue problem with Floquet Hamiltonian HF :

HF |uα (t )〉 = [H (t ) − i∂t ]|uα (t )〉 = qα|uα (t )〉. (B3)

Note that the subscript α is to label the order of the
eigenvectors or eigenvalues, but there are actually infi-
nite set of solutions, because |uα (t ), n〉 = e−inωt |uα (t ), 0〉 ≡
e−inωt |uα (t )〉 is physically identical to Eq. (B2) only with
the shifted quasienergy qα,n ≡ qα − nω. Thus, it is sufficient
to consider the set of quasienergies within an interval of
width ω and corresponding total phases within an interval of
width 2π .

More importantly, HF can be written as a time-independent
infinite matrix through the expansion of the original Hilbert
space H to H ⊗ T [39], where T contains all T-periodic

functions. A particular set of orthonormal complete basis in
T is written as {|n〉} with the plane-wave function

〈t |n〉 = e−inωt . (B4)

Considering a T-periodic state vector |uα (t ), n〉 ∈ H, we
can expand it in a Fourier series, plane-wave terms are derived

|uα (t ), n〉 = e−inωt |uα (t )〉 =
∑

l

e−ilωt
∣∣u(n−l )

α

〉
, (B5)

where |u(k)
α 〉 are time-independent Fourier coefficients. Now

in H ⊗ T , the corresponding state vector is defined as

|uα, n〉〉 ≡
∑

l

∣∣u(n−l )
α

〉 ⊗ |l〉, (B6)

and finally the inner product is defined as

〈〈uα, n|uβ, m〉〉 ≡ 1

T

∫ T

0
dt〈uα (t ), n|uβ (t ), m〉. (B7)

2. Complementary relation of AA phases

To derive the complementary relation of AA phases,
we start from the Schrödinger equation in Eq. (9). For
this purpose, here we denote the Hamiltonian as H (t ) =
[h1, h2; h2,−h1], where h1 = −(A cos ωt + ε)/2, h2 =
−�/2, and U (t ) = [u1, u2; u3, u4]. Then we can list the
following ordinary differential equations (ODEs):

i∂t u1 = h1u1 + h2u3, (B8)

i∂t u2 = h1u2 + h2u4, (B9)

i∂t u3 = h2u1 − h1u3, (B10)

i∂t u4 = h2u2 − h1u4, (B11)

with boundary conditions:

u1(0) = u4(0) = 1,

u2(0) = u3(0) = 0.

Note that if we substitute the variables u1 and u2 in Eqs. (B10)
and (B11) with u∗

4 and −u∗
3, respectively, and take the conju-

gate of both equations, we will have the same equations as
Eqs. (B8) and (B9), with the boundary conditions still satis-
fied. Due to the uniqueness theorem for ODEs, the relations

u1 = u∗
4, u2 = −u∗

3 (B12)

must be kept in the solution for Eq. (9). Since the evolution
operator is unitary, we can get

U (t )U (t )† =
[

u1 u2

−u∗
2 u∗

1

][
u∗

1 −u2

u∗
2 u1

]
=

[|u1|2 + |u2|2 0
0 |u1|2 + |u2|2

]
= I, (B13)

which implies that

det[U (t )] = |u1|2 + |u2|2 = 1,∀t � 0. (B14)
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Because eiθ+ and eiθ− are the two eigenvalues of U (T ),
eiθ+eiθ− = eiθ++θ− = det[U (T )] = 1. Therefore we get the
relation between total phases:

θ+ + θ− = 2lπ, l ∈ Z. (B15)

Moreover, with Eqs. (B12) and (B14) it is easy to prove
through some calculations that the two eigenvectors for U (T ),
i.e., the cyclic initial states |ψ±(0)〉, are orthogonal to each
other, and thus

〈ψ−(0)|U †HU |ψ−(0)〉 = −〈ψ+(0)|U †HU |ψ+(0)〉, (B16)

which leads to

α− = −α+. (B17)

Finally, we obtain from Eqs. (3), (4), (B15), and (B17) that
γ+ + γ− = 2lπ, l ∈ Z.

APPENDIX C: PERTURBATION THEORY

Near the third harmonic resonance, �̃ ≈ 2ω. Thus the total
phase given in Eq. (55) can be simplified as

θ ′
+ ≈

√
1 + k2(�̃ − 2ω)T − ωT

2
. (C1)

By θ ′
+ = �̃′

2 T + 2n+1
2 ωT, n ∈ Z, we get the modified Rabi

frequency

�̃′ ≈
√

1 + k2(�̃ − 2ω) + 2ω. (C2)

To calculate the dynamical phases, our target is to solve the
integral in Eq. (30), since the total phases given by the CHRW
method are reserved due to their tiny variation. In the first step
we write the middle part of the integrand:

D†eSHe−SD = −τy

2

{
sin �

x
[ν(uε − v�) − μ(u� + vε)]

}
− τx

2

{
cos2

(
�

2

)
(v2� − 2uvε − u2�) + 1

x2
sin2

(
�

2

)

× [�(μ2 − ν2) − 2εμν]

}
− τz

2

{
cos2

(
�

2

)
(u2ε − 2uv� − v2ε) + 1

x2
sin2

(
�

2

)
[ε(μ2 − ν2) + 2�μν]

}
.

(C3)

Next, we calculate the state vector at time t , using the evolution operator Ũ without perturbation:

Ũ |ψ̃ ′
+(0)〉 = 1

L

(
e−iωt/2

[
(Ã + kδ̃) cos

(
�̃t
2

) + i(Ã
√

1 + k2 − k�̃) sin
(

�̃t
2

)]
eiωt/2

[
(kÃ − δ̃ − √

1 + k2�̃) cos
(

�̃t
2

) − i(�̃ + √
1 + k2δ̃) sin

(
�̃t
2

)]
)

, (C4)

where the initial state under perturbation |+̃′〉 takes the form of Eq. (52) with all components τx, τy, and τz taken into
consideration.

To calculate the integral in Eq. (30) analytically, we also use ω to approximate �̃, which leads to negligible effects. Last but
not least, in the process, Taylor expansion is adopted:

cos

(
�

2

)
≈ 1 − 1

2

(
�

2

)2

, sin

(
�

2

)
≈ �

2
. (C5)

Combining Eqs. (C3) and (C4) with the approximations above, we then calculate the dynamical phase given by perturbation
theory:

α′
+ ≈ −

∫ T

0
〈ψ̃ ′

+(0)|Ũ †D†eSHe−SDŨ |ψ̃ ′
+(0)〉dτ

≈ π

2L2

{
(δ̃ +

√
k2 + 1�̃ − kÃ)

{
A2δ̃

2ω3
[ε(ν2 − μ2) − 2�μν] − δ̃

128ω
(3z4 − 64z2 + 512)(u2ε − 2uv� − v2ε)

− 2AÃ

ω2
[(uε − v�)ν − (u� + vε)μ] + AÃ

ω

[
2

z
J1(z) + 1

]
[k(u2 − v2) + 2uv]

}

+ 4k

x2
J2(z)(uν − vμ)[kÃ(�̃ + δ̃) − (1 +

√
k2 + 1)�̃δ̃ −

√
k2 + 1�̃2 − δ̃2]

}
. (C6)
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