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Generalized dynamical theories in phase space and the hydrogen atom
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We show that the phase-space formulation of general probabilistic theories can be extended to include a gen-
eralized time evolution and that it can describe a nonquantum hydrogenlike system which is stable, has discrete
energy levels, and includes the Zeeman effect. This allows us to study dynamical effects such as excitations of the
hydrogenlike system by a resonant laser and Rutherford scattering. Our construction demonstrates that classical
theory and quantum theory can be seen as specific choices of general probabilistic theory in phase space and that
other probabilistic theories also lead to measurable predictions.
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I. INTRODUCTION

General probabilistic theories (GPTs) are a widely ac-
cepted mathematical framework that includes classical and
quantum theories as special cases: this is the case in op-
erational settings [1–5] and recently it was discovered that
the same is true for harmonic oscillators [6]. GPTs allow us
to compare the computational power of classical and quan-
tum theories [7–9] and to identify key nonclassical structures
that enable a quantum advantage [10–16], but also to de-
velop experimental tests of the structure of quantum theory
[17–19]. The framework of GPTs also includes exotic the-
ories that were previously used for analysis of violations of
Bell inequalities [20], for analysis of steering [21], as well
as to formulate device-independent cryptographic protocols
[22,23]. One can also add additional postulates in order to
derive finite-dimensional quantum theory [24–28].

However, one faces two main difficulties when one aims
to describe physical systems like the hydrogen atom within a
GPT. First, one needs to construct a model in the formalism of
GPTs for which one can reasonably argue that it constitutes a
model of the hydrogen atom. The problem of model building
is addressed by a phase-space formulation generalizing the
Wigner-Weyl formalism in quantum theory [6,29,30]. Second,
in order to obtain predictions beyond simple static predictions,
one needs to formulate the time evolution of the system. In
quantum theory, a general Markovian time evolution is given
by the Lindblad equation. In fact, besides Markovianity the
Lindblad equation is a consequence of the assertion that the
system is described by a quantum state, for all times. While
Markovianity can be directly formulated in GPTs [31–34],
the positivity conditions are more difficult to implement. This
difficulty has at least two sources. First, the set of states may
not be fully specified, for example, when no exhaustive set
of observables has been described. Second, even if the set
of states is known, positivity alone may not be a sufficient
condition for similar reasons that in quantum theory one needs
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to consider complete positivity [35]. We avoid this difficulties
by imposing a general form of the dynamical equations and
subordinating positivity to the time evolution. The time evo-
lution is based on the Moyal bracket, but has a significantly
more general form. Despite its generality, we show that any
GPT under this time evolution exhibits a generalized version
of Ehrenfest’s theorem.

Returning to the hydrogen atom, we first provide a spectral
decomposition of the energy observable, study the ground
state, determine the conserved quantities, and discuss the de-
generacy of the spectrum. Then we consider two dynamical
situations, first the interaction of the electron with an external
electric field, and second the scattering of a charged particle
in a Rutherford-type scenario. In the first situation, there are
deviations to the quantum predictions, albeit quite small. For
the scattering, we use a Green’s-function approach. We find
that, in the far field, the scattering cannot be different from
the classical and quantum case, thus yielding the Rutherford
scattering in any generalized dynamical theory in phase space.

II. OPERATIONAL THEORIES IN PHASE SPACE

We build on the results of Ref. [6]. In this framework, the
state of a physical system is described by a real-valued phase-
space function ρ(�q, �p). This function generalizes ensembles
in statistical mechanics by allowing that ρ can attain negative
values for some regions in phase space. It follows that ρ does
no longer have an interpretation as a probability density over
phase space. But, in analogy to Wigner functions in quantum
theory, the marginals ρ are required to have an interpretation
as a probability density. That is,

ρq(�q) =
∫
R3

ρ(�q, �p)d3p (1)

is a proper probability density for position obeying ρq(�q) � 0
for all �q and

∫
ρq(�q)d3q = 1 and similarly for the momentum

marginal ρp( �p). Note that we always consider a phase space
of dimension 3 + 3, with generalizations to other dimensions
being straightforward.
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In addition to the marginal distributions, the state of a
system determines the expectation value of any observable.
An observable itself is described by the phase-space function
known from classical mechanics, for example, H (�q, �p) = |�p|2

2μ

for the energy of a free nonrelativistic particle or L3(�q, �p) =
q1 p2 − q2 p1 for the z component of the angular momentum
vector. In order to be more concrete about the “expectation
value of an observable,” we describe the outcome of a mea-
surement of an observable A as a random variable Ã. The
expectation value of Ã is then computed via

〈Ã〉 =
∫
R6

A(�q, �p)ρ(�q, �p)d3qd3p = 〈A, ρ〉 , (2)

where we introduced the short-hand notation 〈A, ρ〉.
We mention that although the phase-space observables re-

main the same as in classical theory, their interpretation does
change: In classical theory, A(�q, �p) can be understood as the
value of A if the system is at the phase-space point ( �q, �p). This
interpretation does not hold in the generalized framework,
since ρ is not a probability density over the phase space.
Rather A(�q, �p) should be seen as an abstract representation
of an observable as a function over the phase space. As a con-
sequence, the second moment of the random variable Ã, that
is, the mean square, cannot be computed as an integral over
A2(�q, �p). In other words in general we have 〈A2, ρ〉 �= 〈(Ã)2〉.

We can deduce already a first implication of the phase-
space formalism: It is a known fact stated in textbooks on
quantum theory [36–38] that the electron in the hydrogen
atom does not collapse into the nucleus, because that would
violate uncertainty relations. Hence the ground-state energy
of the quantum hydrogen atom must be finite. Here we de-
rive the other implication, showing that uncertainty relations
between position and momentum are necessary to prevent
the hydrogen atom from collapsing in operational theories on
phase space. For this, we compare the minimal value of the
energy at any phase-space point Emin = inf �q, �p H (�q, �p) with
the lowest energy reachable among all states of a given theory,
E0 = infρ 〈H, ρ〉. We say that a theory exhibits preparation
uncertainty, if the set of states is restricted in such a way
that ρ(�q, �p) = δ(3)(�q0 − �q)δ(3)( �p0 − �p) is not a valid state for
some phase-space point (�q0, �p0). This kind of uncertainty is
clearly a necessary precondition for E0 > Emin, thus proving
our claim.

Finally, we are interested in the probability distribution
of the random variable Ã. For this one invokes a “spectral
decomposition” of A(�q, �p) in the form of the phase-space
spectral measure gA(I; �q, �p). The spectral measure yields then
the probability distribution of Ã via

Pr[Ã ∈ I] = 〈gA(I ), ρ〉 . (3)

Here, I is any measurable subset of the range of Ã. The
phase-space spectral measure must satisfy two properties:
Pr[Ã ∈ I] must be a probability distribution and the spectral
measure must also reproduce the expectation value of Ã, that
is, 〈Ã〉 = ∫

R a 〈gA(a), ρ〉 da (see Ref. [6]). It is sufficient to
require that

∫
R gA(a)da = 1 and

∫
R agA(a; �q, �p)da = A(�q, �p)

while the positivity condition 〈gA(I ), ρ〉 � 0 must hold for all
states.

Comparing the definition of the spectral measure with the
initial definition of the marginals of ρ, we identify the spectral
measure of the position observable �Q(�q, �p) = �q to be

g �Q(I; �q, �p) =
∫

I
δ(3)(�q0 − �q)d3q0 (4)

and analogically for momentum. For other observables there
is no unique way to define the phase-space spectral measure.
Already the phase-space spectral measure for the energy of
the harmonic oscillator differs between classical and quantum
theory and other theories for the harmonic oscillator that are
neither classical nor quantum have been proposed [6].

III. TIME EVOLUTION

We consider now the time evolution of a system in the
sense that the random variable Ã associated to an observable
A evolves over time. For the moment we assume that this time
dependence can be solely attributed to a change of the state of
the system:

Pr[ Ã(t ) ∈ I ] = 〈gA(I ), ρ(t )〉 . (5)

The time evolution of the state is Markovian if, for any t > 0
and any t0, ρ(t + t0) is fully determined by ρ(t0) and t , that is,

ρ(t + t0) = R(t )ρ(t0) (6)

for some linear map R(t ) mapping states to states. Under
mild assumptions such a Markovian time evolution yields the
equation of motion ρ̇(t0) = Gρ(t0), where G = Ṙ(0) is the
generator of time shifts and R(t ) = etG . Here, we assume
that R and G are linear maps in order to achieve that convex
combinations are preserved by the time evolution, that is,
ρ(t + t0) = pρ1(t + t0) + (1 − p)ρ2(t + t0) for 0 � p � 1.

The situation that we described so far corresponds to the
Schrödinger picture in quantum theory, since only the state
evolves in time. We switch now to the Heisenberg picture and
assume that, equivalently, all of the time dependence of Ã(t )
can be accounted for by the spectral measure while the state
remains constant:

Pr[ Ã(t ) ∈ I ] = 〈gA(I; t ), ρ〉 . (7)

Equating the time derivatives of the right-hand sides of
Eqs. (7) and (5) gives us 〈ġA(I; t ), ρ〉 = 〈gA(I ), ρ̇(t )〉 =
〈gA(I ),Gρ〉 = 〈G†gA(I ), ρ〉, and hence the adjoint map G† is
the generator for the time shifts of observables.

In summary, we arrived at the dynamical equations

ρ̇ = Gρ and ġA(I ) = G†gA(I ), (8)

where G and G† are linear maps with the latter being the
adjoint map of the former with respect to 〈·, ·〉. It should be
noted that in this formulation, ρ(t ) is required to be a state
of the theory, for all times t > 0, and similarly, gA(I; t ) is a
spectral measure of the theory for all t > 0.

In quantum and classical theory, the generator G is directly
computed from the Hamiltonian H (q, p) of the system. Since
such a connection is crucial for a phase-space formulation we
use a construction of G from H that generalizes from both
the classical and quantum case. We recall that the time evolu-
tion in classical mechanics is given by the Liouville equation
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ρ̇ = {H, ρ}. Here,

{ f , g} =
3∑

i=1

(
∂ f

∂qi

∂g

∂ pi
− ∂ f

∂ pi

∂g

∂qi

)
= f Dωg (9)

denotes the Poisson bracket and we define the operator Dω

which acts both to the left and to the right. In contrast, using
the Wigner function formalism for quantum theory [39,40],
the time evolution of a Wigner function is given as ρ̇ =
{{H, ρ}}QT, where

{{ f , g}}QT = 2

h̄
f sin

(
h̄

2
Dω

)
g (10)

is the Moyal bracket [41,42]. As a generalization of both
the Poisson bracket and the Moyal bracket, we define the
generalized Moyal bracket as

{{ f , g}} = { f , g} +
∞∑

n=1

anh̄2n f D2n+1
ω g, (11)

where an are some dimensionless constants. We recover the
Poisson bracket for an = 0 while an = (−1)n

22n(2n+1)! yields back
the Moyal bracket. Moreover we will assume that, just like
in quantum theory, h̄ is a small constant and so the terms
proportional to h̄2n are microscopic corrections to the classical
time evolution obtained in the limit h̄ → 0. The coefficients
cannot be changed arbitrarily without changing other aspects
of the theory. For example, if one applies arbitrary classical
time evolutions to Wigner functions from quantum theory, one
readily obtains negative probabilities, rendering the theory
inconsistent. Nevertheless, the coefficients an are experi-
mentally accessible in anharmonic systems. Consider the
Hamiltonian H (t ) = p2

2m + mω2

2 q2 + λ(t ) m2ω3

2h̄ q4 where λ(t ) is

a function of time. Then λ(t ) m2ω3

2h̄ q4 will contribute terms pro-
portional to a1 to the time evolution. Thus one can determine
a1 by introducing the anharmonic term and measuring p2 at a
later time (see Appendix A for the explicit calculation).

We summarize key properties of the generalized Moyal
bracket.

(i) {{·, ·}} is linear in both arguments.
(ii) {{·, ·}} is antisymmetric, {{ f , g}} = −{{g, f }}.
(iii) For g a polynomial on phase space of at most sec-

ond order and f an arbitrary phase-space function, {{ f , g}} =
{ f , g}.

(iv) L f : g 	→ {{ f , g}} is skew adjoint, L†
f = −L f .

(v) {{·, ·}} satisfies the Jacobi identity if and only if it coin-
cides with the Moyal bracket (up to the value of h̄).

The proof of properties (i)–(iv) can be found in
Appendix B; property (v) was proved in Ref. [43]. We men-
tion that antisymmetry and skew adjointness follow from
the fact that only odd powers of Dω occur in the general-
ized bracket; including even powers would either contradict
Markovianity of the time evolution, or the generator of time
translations would be different from LH (see Appendix B).
Other properties that are familiar from the Poisson bracket are
not fulfilled by the Moyal bracket and the generalized bracket.
In particular, L f obeys neither Leibniz’s rule L f (gh) �=
hL f g + gL f h nor the chain rule L f g(h) �= g′(h)L f h. Also
there exist functions f and g such that { f , g} = 0 but {{ f , g}} �=
0, or such that {{ f , g}} = 0 but { f , g} �= 0 (see Appendix B).

We use the generator LH : f 	→ {{H, f }} in order to refine
the dynamical equations in Eq. (8), that is,

ρ̇ = LHρ and ġA(I ) = −LH gA(I ). (12)

For time-independent Hamiltonians, these equations have the
solutions

ρ̇(t ) = etLH ρ and ġA(I; t ) = e−tLH gA(I ), (13)

respectively. Note that property (iii) may hold at time t0 but
not at later times. For example, in order to obtain the time
evolution of position qi in the Heisenberg picture we have
to solve the equation Q̇i(t ) = −LH Qi(t ) with the initial con-
dition Qi(0; �q, �p) = qi and in general LH Qi(0) = {H, Qi(0)}
does not imply that the same holds at later times.

IV. PROPERTIES OF THE TIME EVOLUTION

For a Markovian time evolution, the generator G must
be constant in time. This is consistent with our dynamical
equations, since the generalized bracket is antisymmetric and
thus Ḣ = −LH H = 0. In particular, the energy is conserved
on average, that is, d

dt 〈H̃〉 = 〈Ḣ , ρ〉 = 0. However, this does
not yet imply that the probability distribution of H̃ is con-
stant, since Ḣ = 0 does not establish ġH (I ) = 0. This property
is further distinct from the question whether an eigenstate,
that is, a state with sharp energy distribution, is constant in
time. We mention that in classical and quantum theory, the
distribution of H̃ is constant in time. For classical theory
this follows at once from gH (E ) = δ(E − H ) and ġH (I ) =
−{H, gH (I )} = 0 and in quantum theory from [Ĥ ,�(I )] = 0
where I 	→ �(I ) is the projection-valued spectral measure of
the Hamilton operator Ĥ . Similarly, any eigenstate in quantum
theory is stationary, while this is not generally the case in
classical mechanics or operational theories.

While it is possible to construct a spectral measure such
that LH gH (I ) �= 0, one can prove that for a discrete energy
spectrum and for states such that Pr[H̃ = En] �= 0 only for
at most two n we have d

dt Pr[H̃ ∈ I] = 0 (see Appendix B,
Proposition 12). This has two immediate consequences: First,
the probability distribution of H̃ is constant in time if the
system is in an eigenstate. Second, observing the effects of
the time evolution of gH (I ) requires the existence of a state
with contributions to more than two energy levels. Since these
contributions must not be merely due to convex combinations,
such states are in a generalized superposition state [44].

A hallmark of quantum theory is Ehrenfest’s theorem,
which shows that the mean values of position and momentum
follow classical equations of motion. We can establish an
analogous result in our general framework. For this we assume
a Hamiltonian of the form

H (�q, �p) = T ( �p) + V (�q). (14)

Then the observables of position �Q(�q, �p) = �q, momentum
�P(�q, �p) = �p, velocity �v(�q, �p) = �∇pT ( �p), and force �F (�q, �p) =
−�∇qV (�q), where �∇q and �∇p are the gradients in position and
momentum, respectively, obey classical equations of motion
on average:

d

dt
〈Q̃i〉 = 〈ṽi〉 and

d

dt
〈P̃j〉 = 〈F̃j〉 . (15)
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In order to see this, we first observe that −LH �q = �v and
−LH �p = �F , due to property (iii) of the generalized bracket.
Hence,

�̇Q(t ) = −LH e−tLH �q = e−tLH (−LH �q)

= e−tLH �v = �v(t ),
(16)

and using analogous steps, one finds �̇P(t ) = e−tLH �F = �F (t ).
Taking the mean value of these relations yields Eq. (15).

Despite this result, the evolving observables �Q(t ; �q, �p)
and �P(t ; �q, �p) cannot be generally understood as phase-
space trajectories [45,46]. In particular, Liouville’s theorem
d
dt ρ(t ; �Q(t ; �q, �p), �P(t ; �q, �p)) = 0 does not apply already for
the Moyal bracket. Similarly, for an observable A, in general
we have A(t ; �q, �p) �= A( �Q(t ; �q, �p); �P(t ; �q, �p)).

An important practical tool in quantum theory is the inter-
action picture. This is applicable for Hamiltonians of the form
H (t ) = H0 + H1(t ), where H0 is the free Hamiltonian and
H1(t ) is an interaction term which may depend explicitly on
time. In the interaction picture, observables evolve according
to the free Hamiltonian H0 while the time evolution of the state
also involves the interaction H1(t ). Accordingly, the state and
any observable A in the interaction picture are defined as

ρint (t ) = e−tLH0 ρ(t ) and Aint (t ) = e−tLH0 A, (17)

respectively, where ρ(t ) and A are understood in the
Schrödinger picture with respect to the full Hamiltonian H (t ),
that is, ρ̇(t ) = {{H (t ), ρ(t )}}. Consequently, in the interaction
picture we have 〈Ã(t )〉 = 〈Aint (t ), ρint (t )〉 and the dynamical
equation

ρ̇int (t ) = −LH0 e−tLH0 ρ(t ) + e−tLH0LH (t )ρ(t )

= (−LH0 + e−tLH0LH (t )e
tLH0 )ρint (t )

= e−tLH0LH1(t )e
tLH0 ρint (t ). (18)

Interestingly, if the generalized bracket satisfies the
Jacobi identity, then Eq. (18) simplifies to ρ̇int (t ) =
{{H1,int (t ), ρint (t )}} and thus the time evolution of
ρint is generated by H1(t ) in the interaction picture,
H1,int (t ) = e−tLH0 Hint (t ). Although this can be a significantly
more convenient expression, we argue that it does not
constitute a sufficient argument to conclude that the
generalized bracket has to satisfy the Jacobi identity.

V. THE HYDROGEN ATOM

We now turn to a concrete physical system, the nonrela-
tivistic hydrogen atom with the Hamiltonian

H = | �p|2
2μ

− κ

| �q| . (19)

Here, μ is the reduced mass of the electron and κ = e2

4πε0
with

e the elementary charge. In this notation, the Bohr radius is
given by a0 = h̄2

κμ
.

Let us first consider the conserved quantities. In classical
and quantum theory, besides energy, also the angular mo-
mentum �L = �q × �p and the Runge-Lentz vector �A = �p × �L −
μκ �q | �q|−1 are constants in time. This turns out to be also

FIG. 1. The functions T H
n (x) used for the spectral measure of the

energy of the hydrogen atom in Eq. (21). The functions are plotted
for n = 1, 2, . . . , 7 and x is in units of κ

2a0
.

the case for the generalized bracket, as can be verified in a
straightforward calculation.

Quantum theory can explain the stability of the hydrogen
atom as well as its spectrum which is in contrast to classical
theory. But these two properties are by far not special for
quantum theory per se. In the following we construct a phase-
space spectral measure gH (I ) for the energy observable that
is different from quantum theory, but has similar features. We
first fix the energy spectrum to the one known from nonrela-
tivistic quantum theory,

En = − κ

2a0

1

n2
(20)

where n = 1, 2, . . . is the principal quantum number. For any
set of negative energies I we then define the phase-space
spectral measure as

gH (I; �q, �p) =
∑

n:En∈I

T H
n [H (�q, �p)] (21)

where T H
n are the functions depicted in Fig. 1 (see Appendix C

for details). This measure is uniquely specified by the follow-
ing conditions.

(i) gH (I; �q, �p) is a piecewise linear function of H (�q, �p).
(ii) gH (En; �q, �p) �= 0 only if H (�q, �p) ∈ [En−1, En+1].
The second condition means that only the region of phase

space “close” to H (�q, �p) = En contributes to the probability
of observing the particle in the nth energy level. This is a
straightforward natural choice.

It follows from the definition of T H
2 that gH (E2; �q, �p) <

0 everywhere in phase space where H (�q, �p) < E1. From
this we can conclude that the hydrogen atom must be sta-
ble in the sense that no state can be supported solely
where H (�q, �p) � E1 − ε with ε > 0 (see also Fig. 2). In-
deed, if supp(ρ) would be the support of such a state,
then the continuity of gH (E2; �q, �p) implies that M =
sup { H (�q, �p) : (�q, �p) ∈ supp(ρ) } < 0 and hence

〈gH (E2), ρ〉 =
∫

supp(ρ)
gH (E2; �q, �p)ρ(�q, �p)d3qd3p

� M
∫

supp(ρ)
ρ(�q, �p)d3qd3p = M < 0, (22)

052212-4



GENERALIZED DYNAMICAL THEORIES IN PHASE SPACE … PHYSICAL REVIEW A 108, 052212 (2023)

(a) Spectral function gH(E1 p�,q�, ).

(b) Spectral function gH(E2 p�,q�, ).

FIG. 2. Spectral functions for the first and second energy level.
The Hamilton operator H ( �q, �p) is decomposed into spectral func-
tions gH (Ek ; �q, �p), such that 〈gH (Ek )〉 is the probability to observe
the energy Ek . The upper (lower) panel shows the spectral function
for E1 (E2) as a function of | �q| and | �p| in units of the Bohr radius a0

and h̄/a0, respectively. The normalization enforces that for small | �q|
and | �p| both functions have to sum to unity. Here the spectral function
for E2 is strongly negative, eventually preventing the collapse of the
atom.

which is a contradiction with our requirement that all proba-
bilities must be positive.

The measure gH (I; �q, �p) is not stationary, LH gH (I ) �= 0,
because of discontinuities in the derivatives of gH (I ). But
we have {H, gH (I )} = 0, so the measure is stationary if we
approximate the time evolution by the Poisson bracket, up to
order h̄2. In a similar way one can construct the observable of
angular momentum. For the ith component of �L we let

gLi (I; �q, �p) =
∑

m:mh̄∈I

T Li
m [Li(�q, �p)] (23)

where T Li
m are the functions depicted in Fig. 3 and defined in

Appendix C.

FIG. 3. The functions T Li
m used in the definition of the phase-

space spectral measure of the angular momentum. The functions are
plotted for m = −3, . . . , 3 and x is in units of h̄.

For possible states of the hydrogen atom we consider the
Gaussian distribution

ρG(�q, �p) = 1

(2π )3σ 3
q σ 3

p

e
− |�q|2

2σ2
q

− |�p|2
2σ2

p . (24)

Not all choices of σp and σq give a valid state, since
〈gH (E2), ρG〉 can be negative, in particular if σq is too small.
One can compute the value of 〈gH (E2), ρG〉 numerically for
different pairs of σq and σp to find a region where ρG gives
positive probabilities (see Fig. 4). Note that we verify the
positivity condition only at time t = 0. In principle we should
verify whether 〈gH (En), ρ(t )〉 is non-negative for all later
times. For the Poisson bracket, this is not the case because
the Leibniz rule renders the spectral measure constant in time.
It follows that 〈gH (En), ρ〉 < 0 at t > 0 must be at least of

FIG. 4. Value of 〈gH (E2), ρG〉 for the family of states ρG given
by Eq. (24). For a valid state this value has to be non-negative. The
positivity of 〈gH (E2), ρG〉 is significantly influenced by σq, therefore
sufficient position uncertainty is necessary. σq is in units of a0 and
σp is in units of h̄/a0. The numerical uncertainty of the calculation
is equal to the width of the white line separating the positive and
negative region.
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order h̄2. The same consideration also holds for the positivity
of the marginals ρq and ρp.

For σp → 0 and σq = σgnd ≈ 1.595 770 488 04 a0 the state
ρG becomes

ρgnd(�q, �p) = 1

(2π )
3
2 σ 3

gnd

e
− |�q|2

2σ2
gnd δ(3)( �p). (25)

This state is is a good approximation of a ground state,
having 〈gH (E2), ρgnd〉 = 0 and 〈H̃〉 ≈ (1 − 10−6)E1 and sub-
sequently we use it as if it was a proper ground state. We
mention that ρgnd is clearly incompatible with quantum theory
because the preparation uncertainty relation of position and
momentum is violated.

For the ground state one obtains the most probable distance
from the center at t = 0 as

√
2σZ ≈ 2.26a0. But the state is

not stationary since already {H, ρgnd} �= 0 and, for example,
the most probable distance changes with time. However, the
energy distribution Pr[H̃ ∈ I] is constant in time since the
state is an eigenstate (see Appendix B, Proposition 12). The
consistency of the model can be extended beyond the ground
state, by considering any non-negative state ρ(�q, �p) � 0 with
〈gH (E2), ρ〉 � 0 and for the time evolution given by the Pois-
son bracket, that is, all ai = 0. Since {H, gH (En)} = 0, for
any such state Pr[H̃ ∈ I] is constant in time and remains
positive for all other non-negative spectral measures, since the
classical time evolution preserves positivity of phase-space
functions. This is the case for rotations exp(L�L·�v ), due to
{�L, gH (En)} = �0, but is generally not true for other trans-
formations, such as for time evolution given by harmonic
potential.

VI. EXTERNAL MAGNETIC FIELD

We briefly treat the influence of an external magnetic field
to our model of a hydrogen atom in our model of a hydrogen
atom. For simplicity we assume that the electron is spinless
and so the external magnetic field only interacts with the
angular momentum. Hence, for a homogeneous magnetic field
in the z direction, the new Hamiltonian is

HB(�q, �p) = H (�q, �p) + μB

h̄
BL3(�q, �p), (26)

where μB denotes the Bohr magneton. We construct the
phase-space spectral measure for HB(�q, �p) using a product of
functions. In quantum theory we would get a similar result
using the Moyal product [42,47,48], but for our purposes, the
ordinary pointwise product is sufficient. We get

gHB (I ) =
∑

n,m:En,m∈I

T H
n (H )T L3

m (L3) (27)

with En,m = En + μBBm and m the magnetic quantum num-
ber. Thus we get a splitting of the energy levels due to the
external magnetic field.

At first sight it may seem that there is no restriction of
the magnetic number m, quite in contrast to quantum the-
ory where |m| < n holds. However, certain combinations of
quantum numbers cannot occur according to Eq. (27), simply
because T H

n (H ) and T L3
m (L3) have disjoint support in phase

space. Using this we find that Pr[ H̃B = En,m ] > 0 only if
|m| � 2(n + 1) (see Appendix C for a proof).

VII. NONSTATIONARY EXTERNAL ELECTRIC FIELD

We now investigate the case when the atom is perturbed
by a nonstationary external electric field, in particular, by an
external electromagnetic wave. We take into account only the
electric field corresponding to the electromagnetic wave and
we assume that the wavelength of the electromagnetic wave
is significantly larger than the size of the atom. Thus the new
Hamiltonian is

HE (�q, �p, t ) = H (�q, �p) + He(�q, �p, t ) (28)

where

He(�q, �p, t ) = −2eE sin(ωt )q3, (29)

assuming that the electric field is oriented in the z direction.
We proceed in the interaction picture as discussed above.

Expanding the exponentials in Eq. (18) we get

d

dt
ρint = LHeρint + t (LHeLH − LHLHe )ρint + · · · , (30)

where we omitted terms which are second order in tLH and
higher. One finds LHeLH − LHLHe = LG with

G = −2eE

μ
sin(ωt )p3 (31)

(see Appendix D). Thus we get the approximation

d

dt
ρint ≈ L(He+tG)ρint. (32)

Since the effective Hamiltonian Heff = He + tG is only a
linear function of position and momentum, the generalized
bracket reduces to the Poisson bracket. Then ρ(t ; �q, �p) =
ρ(0; �q + �s(t ); �p + �u(t )) is a solution of Eq. (32) for

�s(t ) =
∫ t

0
{Heff (τ ), �q}dτ

= 2eE

μω2
[sin(ωt ) − ωt cos(ωt )]�e3,

�u(t ) =
∫ t

0
{Heff (τ ), �p}dτ = 2eE

ω
[cos(ωt ) − 1]�e3. (33)

It is now straightforward to compute Pr[H̃ (t ) = En] nu-
merically. Hereby the phase-space spectral measure in the
interaction picture depends on time, however this introduces
only corrections of the order h̄2, which we neglect. The results
of our computations are plotted in Fig. 5 for ω = (E2 − E1)/h̄
and ρgnd as initial state. Importantly, we see that there is a
nonzero probability of exciting the atom to the second energy
level.

For comparison, we also compute the transition probability
PrQT[H̃ (t ) = En] in quantum theory. We use the same approx-
imation and assume as initial state ρ the ground state of the
hydrogen atom with the wave function ψ100. The Schrödinger
equation with Hamiltonian Ĥeff yields

ψ100(t ; �x) = eiφ(t )e− i
h̄ �x·�u(t )ψ100(0; �x + �s(t )), (34)
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FIG. 5. Time evolution of the probabilities Pr[H̃ (t ) = E1] and
Pr[H̃ (t ) = E2] for the initial state ρgnd of our model of the hydrogen
atom and of the probabilities PrQT[H̃ (t ) = E1] and PrQT[H̃ (t ) = E2]
for initial state ψ100 of the quantum hydrogen atom, both in the same
approximation. Notice that Pr[H̃ (t ) = E1] ≈ PrQT[H̃ (t ) = E1] up to
the numerical precision of our calculations. Here ω = (E2 − E1)/h̄
and eE = μa0ω

2 and t is in units of h̄
|E1| .

where φ(t ) is an irrelevant phase. The results are plotted in
Fig. 5. We see that also in quantum theory there is a nonzero
probability of exciting the atom in our approximation and
Pr[H̃ (t ) = E1] ≈ PrQT[H̃ (t ) = E1] up to the numerical preci-
sion of our calculations. We finally mention that the excitation
of the first energy level is of different origin than Rabi oscil-
lations in quantum optics. This is because we consider here
the limit of short times while in quantum optics one usually
applies the rotating-wave approximation which disregards fast
oscillations.

VIII. SCATTERING THEORY

In both classical and quantum theory the scattering of
charged particles on a Coulomb potential leads to the same
differential cross section given by the Rutherford formula [49]

dσ

d�
= κ2μ2

4p4
0

1

sin4(ϑ/2)
(35)

where p0 is the momentum of the incoming particles and
ϑ is the scattering angle. In this section we show that this
result holds in all operational theories of the hydrogen atom
where the time evolution is described by the generalized
Moyal bracket (11). Moreover this result is independent of
the phase-space spectral measure of the energy observable,
since we only use the Hamiltonian as the generator of time
evolution.

The Wigner function representation was used before to
investigate the scattering [50–52] and our approach is in par-
ticular based on Ref. [51]. We assume that in the asymptotic
past, t → −∞, the scattering particles have a uniform spacial
density ν and a fixed momentum �p0. Dropping the normaliza-
tion condition of the state, we write

ρin(�q, �p) = lim
t→−∞ ρ(t ; �q, �p) = νδ(3)( �p − �p0). (36)

Note that this is the same initial condition as one uses in
quantum scattering theory. The particle density at later times

is given by

D(t ; �q) =
∫
R3

ρ(t ; �q, �p)d3p, (37)

and for computing the cross section we aim to obtain this
density in the far field for the asymptotic future, that is, for
t → +∞ and | �q| → ∞.

Using a Green’s-function approach [51], the formal solu-
tion of the dynamical equations in Eq. (12) is given by

ρ(t ; �q, �p) = ρin(t ; �q, �p) +
∫
R3

∫ t

−∞
K

(
�q − �p

μ
(t − τ ), �p, �p′

)
× ρ

(
τ ; �q − �p

μ
(t − τ ), �p′

)
dτd3p′ (38)

where

K (�q, �p, �p′) = {{
V (�q), δ(3)

p ( �p − �p′)
}}

(39)

(see Appendix E for the full derivation). The solution can be
found in a perturbative manner via V (�q) 	→ λV (�q) and the
expansion

ρ(t ; �q, �p) =
∞∑

n=0

∞∑
k=0

h̄2nλkρn,k (t ; �q, �p) (40)

by comparing coefficients in h̄ and λ in Eq. (39).
Using these techniques, we show in Appendix E that

Dn,k (t ; �q) =
∫
R3

ρn,k (t ; �q, �p)d3p = fn,k (t ; ϑ )

| �q|2n+k
, (41)

for some functions fk,n(t ; ϑ ). The only terms that can con-
tribute to the far-field differential cross section are now for
n = 0 and k = 0, 1, 2 and n = 1 and k = 0. The terms with
n = 0 are the classical terms which are obtained by replacing
the generalized bracket in Eq. (39) by the Poisson bracket and
hence they give us the same prediction for the differential
cross section as classical theory. We never get terms of the
order h̄2λ0 on the right-hand side of Eq. (38) because the terms
of order λ0 are the terms that do not include the potential
but only the initial state ρin. Thus the differential cross sec-
tion must be given by Rutherford’s formula in all operational
theories where the time evolution is given by the generalized
Moyal bracket.

IX. CONCLUSIONS

We constructed a toy model for hydrogen, which does
not fall into the formalism of quantum theory or classical
theory and as such clearly does not satisfy the constraints from
modern experimental data. But, as we showed here, this model
is internally consistent and conceptually it is not obvious why
the toy model is incorrect, other than that it is not a quan-
tum model. Moreover the toy model is in accordance with
experimental predictions and theoretical paradigms of early
quantum theory: The collapse of the atom is prevented due to
the uncertainty principle, the model features a discrete energy
spectrum in accordance with experimental observations, the
angular momentum is quantized as predicted by Bohr, pertur-
bations by nonstationary electric field lead to excitations, and
Rutherford’s formula for scattering cross-section holds. More-
over there is a meaningful classical limit: h̄ → 0 recovers the
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classical dynamics given by the Poisson bracket and localized
particles distant enough from the center of the potential are
possible within our toy model.

After having established a formal background for dy-
namical theories on phase space, a conceptually rather
straightforward construction gives already our toy model. The
model does not even remotely resemble quantum theory, but
still makes precise, measurable predictions. Besides that this
shows how little is known about the space of theories in
which quantum theory resides as a special case, we also found
evidence that quantum theory is a strikingly simple theory
with curious mathematical coincidences. For example, since
the Moyal bracket satisfies the Jacobi identity, the interaction
picture is especially simple to handle. We found that although
conservation of energy always holds on average, the distri-
bution of the energy can change over time. In quantum theory
and classical theory the energy distribution is constant roughly
because in both theories H and H2 “commute.”

Generally, while it clearly is possible to identify exper-
iments that invalidate our toy model in favor of quantum
theory, it is an upcoming theoretical challenge to find op-
erational postulates that are obeyed by quantum theory but
violated in the toy model. While such postulates are known
for finite-dimensional systems, it is not straightforward to
generalize them to continuous-variable systems.
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APPENDIX A: EXPERIMENTAL ACCESSIBILITY
OF THE COEFFICIENTS OF THE

GENERALIZED BRACKET

The generalized bracket {{·, ·}} is defined in term of di-
mensionless coefficients an [see Eq. (11)]. In quantum theory
these coefficients take specific values, for example, a1 = − 1

24 .
One may take the perspective that each of these coefficients
is a constant of nature and therefore must be verified in an
experiment. However, the coefficients are not accessible by
measuring the spectrum of an observable, because this spec-
trum can be chosen freely, as we have seen for the hydrogen
atom. But the coefficients do become experimentally acces-
sible in a time-dependent potential. In order to obtain a1, a
possible way is to determine the variance of the momentum
for the time-dependent Hamiltonian:

H (t ) = p2

2m
+ mω2

2
q2 + λ(t )

m2ω3

2h̄
q4. (A1)

Importantly, this Hamiltonian does not “commute” with itself
at different times, that is, {{H (t ), H (t ′)}} �= 0. Hence the for-
mal solution of the dynamical equation for an observable A

is not simply given by A(t + t0) = exp(−LHt )A(t0) but rather
by the time-ordered exponential, which can be approximated
as

A(t + t0) ≈
(

id − t

n
LH (tn−1 )

)(
id − t

n
LH (tn−2 )

)
· · ·(

id − t

n
LH (t0 )

)
A(t0), (A2)

with tk = k
n t + t0 and n ∈ N. For A(t0) = p2, the first depen-

dence on a1 occurs at the fifth step, with(
id − t

n
LH (t4 )

)
· · ·

(
id − t

n
LH (t0 )

)
p2

= K + 1728

n4
m2ω6 a1λ(t1)λ(t4)q2t4, (A3)

assuming that λ(t0) = 0 and where K is a term independent
of a1, that is, corresponding to the case a1 = 0. Hence it is
possible to determine a1 by measuring p2.

For a quantitative evaluation, we assume that λ(t ) has a
wedgelike shape �(τ ) = max(0, 1 − |1 − 2τ |); more specif-
ically, we choose λ(t ) = 1

3�( 4ω
π

t ). We assume that the initial
state is the ground state of the quantum harmonic oscillator,
ρ0 = 1

π h̄ exp[−H (0)/ h̄ω
2 ], and due to its Gaussian shape, it

is numerically more stable to solve the time evolution for
the state than for p2. We use a numerical solver for the cor-
responding partial differential equation and obtain the time
evolved state at t = π

4ω
as displayed in Fig. 6, both for the

classical (a1 = 0) and quantum (a1 = − 1
24 ) case. Since the

mean value of the momentum vanishes, 〈p̃〉 = 0, for symme-
try reasons and since we have p̃2 = p̃2, the variance of the
momentum is simply given by (�p̃)2 = 〈p̃2〉. Evaluating the
corresponding phase-space integral on our numerical evolu-
tion, we find

(�p̃)2

h̄ωm
≈ 0.6795 + 0.0823 a1 (A4)

for the variance at t = π
4ω

.

APPENDIX B: PROPERTIES OF THE GENERALIZED
MOYAL BRACKET

In this section we prove several properties of the general-
ized Moyal bracket, defined as

{{ f , g}} =
∞∑

n=0

anh̄2n f D2n+1
ω g, (B1)

where a0 = 1 and

Dω =
N∑

i=1

←−
∂

∂qi

−→
∂

∂ pi
−

←−
∂

∂ pi

−→
∂

∂qi
. (B2)

Proposition 1. The generalized Moyal bracket is linear,
i.e., we have

{{α1 f1 + α2 f2, g}} = α1{{ f1, g}} + α2{{ f2, g}}, (B3)

{{ f , β1g1 + β2g2}} = β1{{ f , g1}} + β2{{ f , g2}}. (B4)
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FIG. 6. Time evolved state for a time-dependent anharmonic potential in Eq. (A1). The left panel is for the classical time evolution using
the Poisson bracket, and the right panel is for the quantum time evolution using the Moyal bracket. In either case, the initial state is the Wigner
function of the ground state of the quantum harmonic oscillator and the time dependence λ(t ) of the anharmonic term is chosen in a wedgelike
form. The left axis is p in units of

√
mωh̄ and the right axis is q in units of

√
h̄/mω. The height is in units of 1/h̄.

Proof. The proof follows by induction. Assume that

( f1 + α f2)Dn
ωg = f1Dn

ωg + α f2Dn
ωg, (B5)

then

( f1 + α f2)Dn+1
ω g

=
N∑

i=1

(
∂ ( f1 + α f2)

∂qi
Dn

ω

∂g

∂ pi
− ∂ ( f1 + α f2)

∂ pi
Dn

ω

∂g

∂qi

)
(B6)

=
N∑

i=1

(
∂ f1

∂qi
Dn

ω

∂g

∂ pi
− ∂ f1

∂ pi
Dn

ω

∂g

∂qi

)

+α

N∑
i=1

(
∂ f2

∂qi
Dn

ω

∂g

∂ pi
− ∂ f2

∂ pi
Dn

ω

∂g

∂qi

)
(B7)

= f1Dn+1
ω g + α2 f2Dn+1

ω g. (B8)

Linearity of the generalized Moyal bracket follows from
its definition. Proof of linearity in the second argument is
analogical. �

In order to show that {{·, ·}} is antisymmetric we will need
the following result.

Proposition 2. Let k ∈ {0, 1, 2, . . .}, then

f D2k
ω g = gD2k

ω f , (B9)

f D2k+1
ω g = −gD2k+1

ω f . (B10)

Proof. The proof follows by induction: we will prove
that if f D2k

ω g = gD2k
ω f then f D2k+1

ω g = −gD2k+1
ω f and that if

f D2k−1
ω g = −gD2k−1

ω f , then f D2k
ω g = gD2k

ω f . The result then
follows from f Dωg = −gDω f by alternating between the in-
duction steps.

So assume that f D2k
ω g = gD2k

ω f , then we have

f D2k+1
ω g =

N∑
i=1

(
∂ f

∂qi
D2k

ω

∂g

∂ pi
− ∂ f

∂ pi
D2k

ω

∂g

∂qi

)
(B11)

=
N∑

i=1

(
∂g

∂ pi
D2k

ω

∂ f

∂qi
− ∂g

∂qi
D2k

ω

∂ f

∂ pi

)
(B12)

= −gD2k+1
ω f . (B13)

Assuming that f D2k−1
ω g = −gD2k−1

ω f , we get

f D2k
ω g =

N∑
i=1

(
∂ f

∂qi
D2k−1

ω

∂g

∂ pi
− ∂ f

∂ pi
D2k−1

ω

∂g

∂qi

)
(B14)

=
N∑

i=1

(
− ∂g

∂ pi
D2k−1

ω

∂ f

∂qi
+ ∂g

∂qi
D2k−1

ω

∂ f

∂ pi

)
(B15)

= gD2k
ω f . (B16)

�
Corollary 1. {{ f , g}} = −{{g, f }}.
Proof. The result follows since {{·, ·}} contains only odd

powers of Dω. �
Proposition 3. Let P2 be a polynomial of at most second

order, then {{ f , P2}} = { f , P2}.
Proof. P2 is a polynomial of at most second order if it is of

the form

P2(�q, �p) =
N∑

i, j=1

(Ji jqiq j + Ki j pi p j + Li jqi p j )

+
N∑

i=1

(aiqi + bi pi ) + c. (B17)

Clearly any third derivative of P2 is zero, hence we have

f D2k+1
ω P2 = 0 (B18)

for k � 1. It thus follows that {{ f , P2}} = { f , P2}. �
Proposition 4. Let f , g, and h be functions on the phase

space such that their product and products of their derivatives
vanish at infinity. Then∫

R2N

f
(
gDk

ωh
)
dNqdNp =

∫
R2N

(
f Dk

ωg
)
hdNqdNp. (B19)

Proof. The result follows by induction. We have∫
R2N

f
(
gDk+1

ω h
)
dNqdNp

=
N∑

i=1

[∫
R2N

f

(
∂g

∂qi
Dk

ω

∂h

∂ pi

)
dNqdNp

−
∫
R2N

f

(
∂g

∂ pi
Dk

ω

∂h

∂qi

)
dNqdNp

]
(B20)
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= −
N∑

i=1

[∫
R2N

∂ f

∂ pi

(
∂g

∂qi
Dk

ωh

)
dNqdNp

−
∫
R2N

∂ f

∂qi

(
∂g

∂ pi
Dk

ωh

)
dNqdNp

]
(B21)

= −
N∑

i=1

[∫
R2N

(
∂ f

∂ pi
Dk

ω

∂g

∂qi

)
hdNqdNp

−
∫
R2N

(
∂ f

∂qi
Dk

ω

∂g

∂ pi

)
hdNqdNp

]
(B22)

=
∫
R2N

(
f Dk+1

ω g
)
hdNqdNp (B23)

where in the first step we have used integration by parts, and
the terms containing second derivatives of g cancel each other.
In the second step we have used the induction assumption.

One may conclude the proof by checking that (B19) holds
for k = 1, or one may define f D0

ωg = f g, then it is trivial to
check that (B19) holds for k = 0. �

Corollary 2. Let f , g, and h be functions on the phase
space such that their product and products of their derivatives
vanish at infinity. Then∫

R2N

f (Lhg)dNqdNp = −
∫
R2N

(Lh f )gdNqdNp. (B24)

Proof. The result follows by expressing the generalized
Moyal bracket in powers of the operator Dω and using the
antisymmetry of the bracket. �

We will use the following result in order to argue that only
odd powers of Dω can be included in the definition of {{·, ·}}.

Proposition 5. (qp)nD2n
ω (qp)n = (−1)n(2n)!(n!)2.

Proof. All terms in the expansion of D2n
ω will contain 2n

derivatives and we get nonzero contribution only from terms
with the same number of position and momentum derivatives.
Counting the number of such terms is the same as counting the
number of orderings of n identical black and n identical white
balls, since we are essentially counting the number of ways
in which we obtain the correct derivative by adding either
derivatives with respect to position or momentum. Thus one
can see that there is exactly (2n)!

(n!)2 of these factors. Moreover
all of these terms contain the factor (−1)n coming from the
momentum derivative. We thus get

(qp)nD2n
ω (qp)n = (−1)n (2n)!

(n!)2

(
∂2n(qp)n

∂nq∂n p

)2

= (−1)n(2n)!(n!)2. (B25)

�
Corollary 3. Assume that {{·, ·}} includes even powers of

Dω, then there is a function f such that {{ f , f }} �= 0.
Proof. Let {{·, ·}} be defined as

{{ f , g}} =
∞∑

k=0

bk h̄k−1 f Dk
ωg (B26)

and let n ∈ N be the smallest number such that b2n �= 0. We
then have

{{(qp)n, (qp)n}} = b2nh̄2n−1(qp)nD2n
ω (qp)n, (B27)

because (qp)nD2�+1
ω (qp)n = 0 due to Proposition 2 and

(qp)nD2�
ω (qp)n = 0 for � > n because then the order of deriva-

tives in D2�
ω is strictly higher than n. The result follows by

Proposition 7. �
Corollary 4. Assume that {{·, ·}} includes even powers of

Dω, then either the resulting time evolution is not Markovian,
or the generator of time translations and energy observable
coincide only for t = 0.

Proof. Assume that {{·, ·}} includes even powers of Dω and
let H be a function such that {{H, H}} �= 0. But then in the
Heisenberg picture we have Ḣ �= 0 and so H = H (t ) depends
on time. Let G be the generator of the time evolution con-
structed from the Hamiltonian using the generalized Moyal
bracket. We now have two options: We either allow the gener-
ator to evolve itself in time and we have G = LH (t ), or we keep
the generator constant in time and we have G = LH = LH (0).
In the first case the time evolution is not Markovian anymore
since the generator depends on time; in the second case the
energy observable H (t ) corresponds to the generator G only
for t = 0. �

Example 1 (Example of functions such that {{ f , g}} = 0
but { f , g} �= 0). For the Pöschl-Teller potential we have the
Hamiltonian

H (q, p) = p2

2m
+ η2

2m

(
1 − 2

cosh2(qη/h̄)

)
(B28)

where η is some constant with units of momentum. The
ground state has energy 0 and the Wigner function [53]

ρ(q, p) = 1

h̄

sin(2qp/h̄)

sinh(2qη/h̄) sinh(π p/η)
. (B29)

So we must have {{H, ρ}} = 0 for the Moyal bracket used
in quantum theory, but it is straightforward to check that
{H, ρ} �= 0. We mention that the occurrence of h̄ in the Hamil-
tonian is essential and it cannot be easily replaced by another
constant with the same units.

Example 2 (Example of functions such that { f , g} = 0 but
{{ f , g}} �= 0). Observe that for any function f : R2 → R we
have { f , f 2} = 0; we will show that analogical result does not
hold for the generalized Moyal bracket. One can also show
that we have

(qn pn+1)D2n+1
ω (q2n p2n+2)

= (−1)n+1 (2n)!(2n + 1)!(2n + 2)!

(n − 1)!(n + 2)!
qn−1 pn+2. (B30)

Let then n � 1 be the lowest index such that an �= 0, where
an are the coefficients used in the definition of the generalized
Moyal bracket in Eq. (11). Consequently, we have {{ f , f 2}} �=
0 for f = qn pn+1.

Proposition 6. Let H : R2N → R be a Hamiltonian and let
gH (I ) be the corresponding spectral measure and assume that
the energy spectrum is discrete, i.e., that there are energies
En ∈ R, n ∈ N, such that gH (I; t ) = ∑

n:En∈I gH (En; t ). Let ρ

be a state such that Pr[H̃ = Ek] �= 0 for at most two k, that
is Pr[H̃ = Ek] �= 0 only for k ∈ {n1, n2}. Then d

dt Pr[H̃ = Ek]
= 0.

052212-10



GENERALIZED DYNAMICAL THEORIES IN PHASE SPACE … PHYSICAL REVIEW A 108, 052212 (2023)

Proof. From the assumptions it follows that at t = 0,

1 = 〈
gH

(
En1

)
, ρ

〉 + 〈
gH

(
En2

)
, ρ

〉
, (B31)

〈H̃〉 = En1

〈
gH

(
En1

)
, ρ

〉 + En2

〈
gH

(
En2

)
, ρ

〉
. (B32)

Taking the time derivative in the Heisenberg picture at t = 0
we get

0 = 〈
ġH

(
En1

)
, ρ

〉 + 〈
ġH

(
En2

)
, ρ

〉
, (B33)

0 = En1

〈
ġH

(
En1

)
, ρ

〉 + En2

〈
ġH

(
En2

)
, ρ

〉
(B34)

and since En1 �= En2 we get 〈ġH (En1 ), ρ〉 = 0 and
〈ġH (En2 ), ρ〉 = 0. �

APPENDIX C: PHASE-SPACE SPECTRAL MEASURES
OF ENERGY AND ANGULAR MOMENTUM OF THE

HYDROGEN ATOM

The spectrum of energies of bound states is discrete and we
set En = − κ

2a0

1
n2 . The phase-space spectral measure of energy,

gH (I ), is given as

gH (I; �q, �p) =
∑

n:En∈I

Tn[H (�q, �p)] (C1)

where T H
n are the piecewise linear functions. If we assume

that gH (En; �q, �p) �= 0 only if H (�q, �p) ∈ [En−1, En+1], then we
get Tn(x) �= 0 only if x ∈ [En−1, En+1]. For x ∈ [En, En+1] the
normalization and expectation value conditions on gH (I; �q, �p)
become

Tn(x) + Tn+1(x) = 1, (C2)

EnTn(x) + En+1Tn+1(x) = x. (C3)

This series of linear equations has a unique solution given by
the sawtooth functions

T H
1 (x) =

{
E2−x

E2−E1
x � E2

0 x � E2
, (C4)

T H
2 (x) =

⎧⎪⎨⎪⎩
x−E1

E2−E1
x � E2

E3−x
E3−E2

x ∈ [E2, E3]

0 x � E3

(C5)

and for n � 3 as

T H
n (x) =

⎧⎪⎪⎨⎪⎪⎩
x−En−1

En−En−1
x ∈ [En−1, En]

En+1−x
En+1−En

x ∈ [En, En+1]

0 x /∈ [En−1, En+1]

. (C6)

Note that for n �= 2 we have T H
n (x) � 0 for all x, while

T H
2 (x) � 0 for x � E1 but T H

2 (x) � 0 for x � E2.
Since this is only the spectral measure for bound states, we

only need to check the conditions that the phase-space spectral
measure has to satisfy for negative energies, i.e., only for I ⊂
R−, where R− is the set of negative real numbers. The normal-
ization condition gH (R−) = 1 follows from

∑∞
n=1 T H

n (x) = 1,
while the expectation value condition

∑∞
n=1 gH (En; �q, �p) =

H (�q, �p) follows from
∑∞

n=1 EnT H
n (x) = x.

The phase-space spectral measure for angular momentum is
constructed in a similar way,

gLi (I; �q, �p) =
∑

m:mh̄∈I

T Li
m [Li(�q, �p)] (C7)

for m ∈ Z. Here T Li
m are the sawtooth functions given as

T Li
m (x) =

⎧⎪⎪⎨⎪⎪⎩
x−(m−1)h̄

h̄ x ∈ [(m − 1)h̄, mh̄]
(m+1)h̄−x

h̄ x ∈ [mh̄, (m + 1)h̄]

0 x /∈ [(m − 1)h̄, (m + 1)h̄]

. (C8)

The normalization condition gLi (R) = 1 follows from∑
m∈Z T Li

m = 1 and the expectation value condi-
tion

∑
m∈Z mh̄gLi (mh̄; �q, �p) = Li(�q, �p) follows from∑

m∈Z mh̄T Li
m (x) = x.

Proposition 7. We have gH (En)gLi (mh̄) �= 0 only if |m| �
2(n + 1).

Proof. Let n ∈ N and m ∈ Z be such that
gH (En)gLi (mh̄) �= 0, which implies gH (En) �= 0 and
gLi (mh̄) �= 0. We have gH (En) �= 0 only if H (�q, �p) ∈
(En−1, En+1), which implies

−| �p|2
2μ

+ κ

| �q| > |En+1|. (C9)

We have

|En+1| < −| �p|2
2μ

+ κ

| �q| �
κ

| �q| (C10)

which yields

| �q| <
κ

|En+1| . (C11)

Using Eq. (C9) we also get

|En+1| + | �p|2
2μ

<
κ

| �q| (C12)

from which we get

| �p|2| �q| < 2μ(κ − |En+1|| �q|) � 2μκ. (C13)

We have gLi (mh̄) �= 0 only if Li(�q, �p) ∈ ((m − 1)h̄, (m + 1)h̄)
which implies

(|m| − 1)h̄ < |Li|. (C14)

Using the formula for the norm of the cross product we get
|Li| � |�L| � | �q|| �p| and we get

(|m| − 1)h̄ < | �q|| �p|. (C15)

By squaring both sides and using Eq. (C13) we get

(|m| − 1)2h̄2 < | �q|2| �p|2 < 2μκ| �q| (C16)

and finally using Eq. (C11) we obtain

(|m| − 1)2h̄2 < 2μκ| �q| < 2μ
κ2

|En+1| = 4μκa0(n + 1)2

= 4h̄2(n + 1)2.(C17)

Taking a square root we obtain the final expression

|m| � 2(n + 1). (C18)

�
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APPENDIX D: HYDROGEN ATOM IN A NONSTATIONARY ELECTRIC FIELD

Let

H (�q, �p) = | �p|2
2μ

− κ

| �q| , (D1)

He(�q, �p, t ) = −2eE sin(ωt )q3 (D2)

be the corresponding Hamiltonians. Let f : R6 → R be a function on the phase space, then we have

LHe f (�q. �p) = −2eE sin(ωt )
∂

∂ p3
f (�q, �p) (D3)

and

LH f (�q, �p) = − �p
μ

· �∇q f (�q, �p) −
{{

κ

| �q| , f (�q, �p)

}}
. (D4)

We then have

LHeLH f (�q, �p) = −2eE sin(ωt )
∂

∂ p3

(
− �p

μ
· �∇q f (�q, �p) −

{{
κ

| �q| , f (�q, �p)

}})
(D5)

= −2eE sin(ωt )

(
− 1

μ

∂

∂q3
f (�q, �p) − �p

μ
· �∇q

∂

∂ p3
f (�q, �p) −

{{
κ

| �q| ,
∂

∂ p3
f (�q, �p)

}})
(D6)

= 2eE sin(ωt )
1

μ

∂

∂q3
f (�q, �p) + LHLHe f (�q, �p) (D7)

and we get

LHeLH − LHLHe = 2eE sin(ωt )
1

μ

∂

∂q3
= LG (D8)

for

G = −2eE

μ
sin(ωt )p3. (D9)

APPENDIX E: SCATTERING THEORY OF THE HYDROGEN ATOM

Letting H (�q, �p) = |�p|2
2μ

+ V (�q) be a Hamiltonian, we will decompose the time evolution equation for a state ρ as follows:

ρ̇ = {{H, ρ}} =
{ | �p|2

2μ
, ρ(t ; �q, �p)

}
+ {{V (�q), ρ(t ; �q, �p)}} (E1)

=
{ | �p|2

2μ
, ρ(t ; �q, �p)

}
+

∫
R3

{{V (�q), δ(3)( �p − �p′)}}ρ(t ; �q, �p′)d3p′, (E2)

where we have used that in {{V (�q), ρ(t ; �q, �p)}} only partial derivatives in �p act on ρ(t ; �q, �p). Let us denote

K (�q, �p, �p′) = {{V (�q), δ(3)( �p − �p′)}}. (E3)

Also note that { | �p|2
2μ

, ρ(t ; �q, �p)

}
= − �p

μ
· �∇qρ(t ; �q, �p) (E4)

where �∇q is the gradient in �q. Putting all this together we get a new form of the time evolution equation:

ρ̇(t ; �q, �p) + �p
μ

· �∇qρ(t ; �q, �p) =
∫
R3

K (�q, �p, �p′)ρ(t ; �q, �p′)d3p′. (E5)

In order to solve this equation we will use the fact that the retarded Green’s function for the differential operator on left-hand
side is known. That is, let

G(�q, �p, t ) = θ (t )δ(3)

(
�q − �pt

μ

)
, (E6)
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where θ (t ) is the Heaviside step function and δ(3)(�q − �pt
μ

) is to be integrated over �q. Then we have

Ġ(�q, �p, t ) + �p
μ

· �∇qG(�q, �p, t ) = δ(t )δ(3)(�q). (E7)

Before we construct the solution of the time evolution that we aim for, we have to discuss initial conditions. In this case we
want to have initial conditions formally at t = −∞. In order to define these initial conditions in a meaningful way let ρin be the
solution of the free time evolution equation, that is,

ρ̇in =
{ | �p|2

2μ
, ρin

}
. (E8)

Then as an initial condition we require that (pointwise)

lim
t→−∞(ρ − ρin ) = 0. (E9)

One finds easily that

ρ(t ; �q, �p) = ρin(t ; �q, �p) +
∫
R

∫
R3

∫
R3

G(�q − �q′, �p, t − τ )K ( �q′, �p, �p′)ρ(τ ; �q′, �p′)d3p′d3q′dτ (E10)

satisfies the initial condition (E9). In addition, applying Eq. (E10) to the left-hand side of Eq. (E5) gives immediately the
right-hand side of Eq. (E5), by virtue of Eqs. (E6) and (E8).

Equation (E10) is still an integral equation but we will be able to solve it iteratively. Plugging in the expression for G and
integrating we get

ρ(t ; �q, �p) = ρin(t ; �q, �p) +
∫
R

∫
R3

∫
R3

θ (t − τ )δ

(
�q − �q′ − �p(t − τ )

μ

)
K ( �q′, �p, �p′)ρ(τ ; �q′, �p′)d3p′d3q′dτ (E11)

= ρin(t ; �q, �p) +
∫
R3

∫ t

−∞
K

(
�q − �p

μ
(t − τ ), �p, �p′

)
ρ

(
τ ; �q − �p

μ
(t − τ ), �p′

)
dτd3p′. (E12)

We can solve the equation above in a perturbative manner via V (�q) → λV (�q) and the expansion

ρ(t ; �q, �p) =
∞∑

n=0

∞∑
k=0

h̄2nλkρn,k (t ; �q, �p). (E13)

Our strategy is now to determine how ρn,k (t ; �q, �p) depends on | �q|. We do this since we assume that the detector is positioned far
from the center of the potential, so we are interested only in the limit | �q| → ∞. In order to simplify the notation let a0 = 1, then
after plugging this expression into Eq. (E12) we get

∞∑
n=0

∞∑
k=0

h̄2nλkρn,k (t ; �q, �p) = ρin(t ; �q, �p) +
∞∑

n=0

∞∑
n′=0

∞∑
k=0

an′ h̄2(n+n′ )λk+1

∫
R3

∫ t

−∞

(
V

(
�q − �p

μ
(t − τ )

)
D2n′+1

ω δ(3)( �p − �p′)
)

ρn,k

(
τ ; �q − �p

μ
(t − τ ), �p′

)
dτd3p′. (E14)

We proceed by comparing terms of the same powers in λ on both sides. First of all observe that for k = 0 we have ρ0,0 = ρin

and ρn,0 = 0 for n > 0. For k � 1 we get

∞∑
n=0

h̄2nρn,k (t ; �q, �p)

=
∞∑

n=0

∞∑
n′=0

an′ h̄2(n+n′ )
∫
R3

∫ t

−∞

[
V

(
�q − �p

μ
(t − τ )

)
D2n′+1

ω δ(3)( �p − �p′)
]
ρn,k−1

(
τ ; �q − �p

μ
(t − τ ), �p′

)
dτd3p′. (E15)

Using the general identity
∑∞

n=0

∑∞
n′=0 f (n, n′) = ∑∞

N=0

∑N
ñ=0 f (ñ, N − ñ) we get

∞∑
n=0

h̄2nρn,k (t ; �q, �p)

=
∞∑

N=0

N∑
ñ=0

a(N−ñ)h̄
2N

∫
R3

∫ t

−∞

[
V

(
�q − �p

μ
(t − τ )

)
D2(N−ñ)+1

ω δ(3)( �p − �p′)
]
ρñ,k−1

(
τ ; �q − �p

μ
(t − τ ), �p′

)
dτd3p′ (E16)
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and by comparing the terms with the same power in h̄ we obtain

ρn,k (t ; �q, �p) =
n∑

ñ=0

a(n−ñ)

∫
R3

∫ t

−∞

[
V

(
�q − �p

μ
(t − τ )

)
D2(n−ñ)+1

ω δ(3)( �p − �p′)
]
ρñ,k−1

(
τ ; �q − �p

μ
(t − τ ), �p′

)
dτd3p′. (E17)

Moreover we perform the substitution t − τ = u, and we get

ρn,k (t ; �q, �p) =
n∑

ñ=0

a(n−ñ)

∫
R3

∫ ∞

0

[
V

(
�q − �p

μ
u

)
D2(n−ñ)+1

ω δ(3)( �p − �p′)
]
ρñ,k−1

(
t − u; �q − �p

μ
u, �p′

)
dud3p′. (E18)

We next prove that ρn,k does not explicitly depend on time t ; the physical intuition for this is that the initial state ρin does not
depend on time and, since the experiment starts at t = −∞, for any finite time the flow of the scattered particles must have
stabilized. Mathematically we see from Eq. (E18) that ρn,k depends on t only if ρñ,k−1 depends on t for some ñ ∈ {0, . . . , n}.
Since we already argued that ρñ,0 does not depend on t , we get that ρñ,1 does not depend on t . Proceeding by induction we get
that ρn,k does not depend on t for all k and n. For this reason we will drop the explicit time dependence and we will write

ρn,k (�q, �p) = ρn,k (t ; �q, �p) (E19)

and

ρ(�q, �p) = ρ(t ; �q, �p). (E20)

Observe that in the expression V (�q − �p
μ

u)D2(n−ñ)+1
ω δ(3)( �p − �p′) the nonzero contributions are only from terms where ∂

∂qi
acts

on V (�q − �p
μ

u) and so we have

V

(
�q − �p

μ
u

)
Dn′

ω δ(3)( �p − �p′) =
3∑

i1=1
...

in′=1

[
∂

∂qin′
· · · ∂

∂qi1

V

(
�q − �p

μ
u

)][
∂

∂ pin′
· · · ∂

∂ pi1

δ(3)( �p − �p′)
]
, (E21)

where n′ ∈ N is an odd number. Since we have

∂

∂qi

1∣∣�q − �p
μ

u
∣∣k

=
−k

(
qi − pi

μ
u
)∣∣�q − �p

μ
u
∣∣k+2 (E22)

and every derivative either acts on the term in the denominator in this way, or acts on the polynomial in the numerator, we see
that every derivative decreases the order | �q| by 1. We thus have

V

(
�q − �p

μ
u

)
D2(n−ñ)+1

ω δ(3)( �p − �p′) =
f̃2(n−ñ)+1

( �q
| �q| − �p

μ
u
| �q| , �p, �p′)

| �q|2(n−ñ)+2
(E23)

where f̃2(n−ñ)+1 is some suitable function which also contains derivations of the Dirac distributions. Plugging this expression
into Eq. (E18) we get

ρn,k (�q, �p) =
n∑

ñ=0

a(n−ñ)

∫
R3

∫ ∞

0

f̃2(n−ñ)+1
( �q

| �q| − �p
μ

u
| �q| , �p, �p′)

| �q|2(n−ñ)+2
ρñ,k−1

(
�q − �p

μ
u, �p′

)
dud3p′. (E24)

Using the substitution u = |�q|v we get

ρn,k (�q, �p) =
n∑

ñ=0

a(n−ñ)

| �q|2(n−ñ)+1

∫
R3

∫ ∞

0
f̃2(n−ñ)+1

( �q
| �q| − �p

μ
v, �p, �p′

)
ρñ,k−1

(
�q − �p

μ
| �q|v, �p′

)
dvd3p′ (E25)

and we see that the last term inside the integral that depends on | �q| is ρñ,k−1(�q − �p
μ
| �q|v, �p′). At this point it is useful to compute

ρn,1(�q, �p) to get some intuition for the following calculations. Using that ρ0,0 = ρin and ρn,0 = 0 for n � 1 we get

ρn,1(�q, �p) = an

| �q|2n+1

∫
R3

∫ ∞

0
f̃2n+1

( �q
| �q| ,

�q
| �q| − �p

μ
v, �p, �p′

)
νδ(3)( �p′ − �p0)dvd3p′ (E26)

and so we see that the dependence on | �q| becomes explicit. We will proceed as follows: assume that for a given k ∈ N and for
all n ∈ N we have

ρn,k−1(�q, �p) =
ρ̃n,k−1

( �q
| �q| , �p

)
| �q|α(n,k−1)

(E27)
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where α(n, k − 1) ∈ N. Then, using Eq. (E25) we get

ρn,k (�q, �p) =
n∑

ñ=0

a(n−ñ)

| �q|2(n−ñ)+1

∫
R3

∫ ∞

0
f̃2(n−ñ)+1

( �q
| �q| − �p

μ
v, �p, �p′

) ρ̃ñ,k−1

( �q− �p
μ
| �q|v

|�q− �p
μ
| �q|v| , �p′

)
∣∣�q − �p

μ
| �q|v∣∣α(ñ,k−1) dvd3p′ (E28)

which leads to

ρn,k (�q, �p) =
n∑

ñ=0

a(n−ñ)

| �q|2(n−ñ)+1+α(ñ,k−1)

∫
R3

∫ ∞

0
f̃2(n−ñ)+1

( �q
| �q| − �p

μ
v, �p, �p′

) ρ̃ñ,k−1

(
�q

| �q| − �p
μ
v

| �q
| �q| − �p

μ
v| , �p′

)
∣∣ �q
| �q| − �p

μ
v
∣∣α(ñ,k−1) dvd3p′. (E29)

We now want to show that 2(n − ñ) + 1 + α(ñ, k − 1) does not depend on ñ. For k = 2 this is straightforward as we see from
Eq. (E26) that α(ñ, 1) = 2ñ + 1 and thus we get

2(n − ñ) + 1 + α(ñ, 1) = 2n + 2. (E30)

Generalizing this assume that α(ñ, k − 1) = 2n + k for some k ∈ N, then

2(n − ñ) + 1 + α(ñ, k − 1) = 2n + k. (E31)

Since all of our assumptions hold for k = 1, we get using induction that α(n, k) = 2n + k and

ρn,k (�q, �p) =
ρ̃n,k

( �q
| �q| , �p

)
| �q|2n+k

(E32)

where

ρ̃n,k

( �q
| �q| , �p

)
=

n∑
ñ=0

a(n−ñ)

∫
R3

∫ ∞

0
f̃2(n−ñ)+1

( �q
| �q| − �p

μ
v, �p, �p′

) ρ̃ñ,k−1

(
�q

| �q| − �p
μ
v

| �q
| �q| − �p

μ
v| , �p′

)
∣∣ �q
| �q| − �p

μ
v
∣∣α(ñ,k−1) dvd3p′. (E33)

In order to compute the differential cross section we are only interested in the spatial density of the particles D(�q) =∫
R3 ρ(�q, �p)d3p, thus we want to compute

Dn,k (�q) =
∫
R3

ρn,k (�q, �p)d3p. (E34)

Using Eq. (E32) we get

Dn,k (�q) = fn,k (ϑ )

| �q|2n+k
(E35)

where fn,k (ϑ ) is some function of the scattering angle ϑ . Due to the symmetry of the scattering problem the spatial density
Dn,k (�q) cannot depend on the polar angle ϕ, but only on the azimuthal angle ϑ , which coincides with the scattering angle.
That is why fn,k (ϑ ) depends only on the scattering angle. The density of particles that reach the detector is given as
lim| �q|→∞ D(�q)| �q|2d�, where | �q|2d� is the infinitesimal surface element, d� = sin(ϑ )dϑdϕ. We get for λ = 1

lim
| �q|→∞

D(�q)d3q = lim
| �q|→∞

∞∑
n=0

∞∑
k=0

h̄2nDn,k (�q)| �q|2d� = lim
| �q|→∞

∞∑
n=0

∞∑
k=0

h̄2n fn,k (ϑ )

| �q|2n+k−2
d�. (E36)

In the limit we get nonzero contributions only from the terms where 2n + k − 2 � 0; these are n = 0, k � 2 and n = 1, k = 0.
Since ρ1,0 = 0 we have nonzero contribution only from the terms where n = 0. But these are only the terms that are obtained
using the Poisson bracket, hence lim| �q|→∞ D(�q)| �q|2d� must coincide with the predictions of classical theory.
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