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Ratchet current in a PT -symmetric Floquet quantum system with symmetric sinusoidal driving
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We consider the ratchet dynamics in a PT -symmetric Floquet quantum system with symmetric temporal
(harmonic) driving. In the exact PT -symmetry phase, for a finite number of resonant frequencies, we show that
the long-lasting resonant currents can be generated with the symmetric time-continuous driving, which would
otherwise forbid the generation of directed currents in the Hermitian limit. Such a non-Hermitian resonant current
can be enhanced by increasing the non-Hermitian level and, in particular, the resonant current peaks (reaches
the largest negative value) under the condition that the imaginary part of the potential depth is equal to the
real part, at which the stable asymptotic current occurs owing to exceptional points mechanism. Moreover, the
directed currents originating from the symmetry breaking are reported, which increase linearly with the driving
frequency, the mechanism behind which is that the cutoff of the momentum eigenstates for the Floquet state
with maximum imaginary quasienergy increases as the driving frequency is continuously increased. We also
present a non-Hermitian three-level model that can account for the resonant currents and gives surprisingly
good agreement with direct numerical results for weak driving, even in the broken-PT -symmetry regime for the
first-order resonance. Our results provide a means of realizing the non-Hermiticity-controlled ratchet current by
means of a smooth continuous driving, previously used only to generate currents in Hermitian systems.
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I. INTRODUCTION

The ratchet effect, that is, directed transport under a zero
mean force, has attracted a continuous interest over the past
few decades. This is due to its fundamental and practical
importance: on the one hand, its mechanism is relevant to the
understanding of quantum chaos and quantum-classical corre-
spondence [1–5], and on the other hand, it has found diverse
applications in many fields, from mechanical devices to quan-
tum systems [6–10]. To achieve the ratchet effects, the system
must be driven out of equilibrium, and relevant spatiotemporal
symmetries, which would otherwise prevent the formation of
a directed current, must be broken [2,4,11,12]. Aside from the
classical ratchets, the ratchet phenomenon has also been ex-
tended to the quantum regime as it is of great importance, for
example, in the design of coherent nanoscale devices [7,13].
Due to the high degree of quantum control, Bose-Einstein
condensates (BECs) of dilute gases loaded into optical lattices
have proven to be excellent candidates for the study of such
coherent ratchet effects. Considerable progress has been made
in this direction through the study of the quantum kicked rotor
[14–19], a paradigm of quantum chaos, which can be realized
by exposing a sample of cold atoms to short pulses of an op-
tical standing wave [20]. Other schemes and proposals to im-
plement directed (ratchet) quantum transport in BECs involve
the use of time-continuous driving [2–5,21], which has the
advantage of being less heating than kick-type driving [21].
Directed transport in the presence of nonlinearity arising from
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the many-body nature of BECs has also been investigated in
the literature [22–27], where it has been found that the inter-
actions between atoms can be harnessed to generate directed
transport even when time-reversal symmetry holds [24].

So far, most investigations of the quantum ratchet effect
have been performed in the context of Hermitian dynamics.
The Hermiticity requirement of a Hamiltonian guarantees its
real energy eigenvalues and the conserved total probability.
However, a large class of non-Hermitian Hamiltonians that are
parity-time symmetric (PT symmetric) can still have com-
pletely real eigenvalue spectra as long as they commute with
the parity-time operator [28–34]. One of the most interesting
results of such PT -symmetric non-Hermitian Hamiltonian
systems is the phase (symmetry-breaking) transition, where
the spectrum changes from all real (the exact PT phase) to
complex (the broken-PT -symmetry phase) when the non-
Hermitian parameter exceeds a certain threshold [28–31]. At
the transition, the system has exceptional points, also called
non-Hermitian degeneracies, at which both the eigenvalues
and the eigenvectors of the underlying system coalesce, giv-
ing rise to many counterintuitive phenomena [35–45]. The
study of PT -symmetric systems has recently been extended
to systems with periodically driven potentials (Floquet sys-
tems), where the quasienergy (Floquet) spectrum takes the
place of the energy spectrum of the static systems [46–68].
A prototype example is the PT -symmetric kicked rotor (KR),
where chaos has been shown to assist the exact PT phase
[46]. The transport properties in suchPT -symmetric KR have
also attracted some attention in recent years [69–71]. For
example, a type of non-Hermitian unidirectional transport,
called non-Hermitian accelerator modes, has been discovered
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in the delocalized regime (quantum resonances) for a PT -
symmetry extension of the KR model [69]. Additionally,
directed momentum current induced by the PT -symmetric
driving in the KR model has been investigated [70]. More
recently, Ref. [72] has proposed a scheme for generating a per-
sistent current using a static non-Hermitian ratchet. However,
knowledge of the quantum ratchet effect in PT -symmetric
Floquet systems with time-continuous driving (i.e., a poten-
tial that varies smoothly with time rather than being pulsed)
is still largely unknown, which from a theoretical point of
view may be due to the greater analytical challenges and
difficulties involved than with pulsed-type driving. In real-
ity, time-continuous driving excites fewer high-momentum
modes and generates less heating than kick-type driving, thus
better preserving atomic coherence and quantum effects in
the experiment, which is also one of the reasons for using
time-continuous driving in this work.

In this paper, we investigate the ratchet currents in a PT -
symmetric Floquet system with symmetric time-continuous
driving. In the exact PT -symmetry phase, although the sys-
tem is conservative on average, we find that the persistent
ratchet current can be generated for a finite set of reso-
nant driving frequencies. Such a resonant ratchet current is
a hallmark of non-Hermitian transport, as it would disappear
in the Hermitian limit. This means that to generate such a
non-Hermitian resonant current, no sawtoothlike asymmetric
temporal driving is required. We show that the resonant cur-
rent can be enhanced by increasing the non-Hermitian level.
This is because the time evolution of the current exhibits a
square-wave-like shape as the non-Hermitian level increases,
which is drastically different from the Rabi-type oscillation
in the Floquet-Hermitian system [2,21]. The time-averaged
current peaks (reaches a maximum) when the imaginary part
of the potential depth is equal to the real part, at which the
stable asymptotic current exists due to exceptional points
(EPs) mechanism. It is found that the maximum value of the
non-Hermitian resonant current exists at the EPs for a series of
discrete frequencies, i.e., the value of the driving frequencies
equal to a half-integer or an integer, which can either corre-
spond to the PT -symmetry-breaking points or, surprisingly,
arise as an isolated parameter point deep in the unbroken-PT -
symmetry regime. A non-Hermitian three-level model can be
used to capture the resonant current, and gives a surprisingly
good agreement with the numerically exact results for the
weak driving. In the broken-PT -symmetry regime, it is shown
that the asymptotic current increases linearly with the driv-
ing frequency. The underlying physics is that, after sufficient
evolution time, the system is dominated by the Floquet states
whose quasienergy has the largest imaginary part, and the cut-
off of the momentum mode of this Floquet state also increases
with increasing driving frequency. Finally, the nonlinearity
effects on the directed current at EPs are also discussed.

The paper is organized as follows. In Sec. II, we de-
scribe the model system and show that the introduction of
non-Hermiticity gives rise to the Floquet states with asym-
metric momentum distribution. In Sec. III, we study the
non-Hermitian resonant currents both numerically and analyt-
ically. In Sec. IV, the directed currents due to EPs mechanism
are identified. In Sec. V, the directed currents originating
from the symmetry breaking are reported, which are found

to increase linearly with the driving frequency. In Sec. VI, we
show that the non-Hermitian directed current can be induced
or suppressed by introducing nonlinearity. The results are
summarized in Sec. VII.

II. MODEL AND CURRENT-CARRYING
FLOQUET EIGENSTATES

We consider condensed atoms confined in a toroidal trap,
where the thickness r of the toroidal trap is much smaller
than its radius R, so that lateral motion is neglected and the
system is essentially one dimensional. Hence, our problem
is described by the dimensionless nonlinear Gross-Pitaveskii
(GP) equation (taking h̄ = m = 1)

i
∂

∂t
ψ (x, t ) =

[
p̂2

2
+ g|ψ (x, t )|2 + V (x, t )

]
ψ (x, t ), (1)

where x is the coordinate, p̂ = −i∂/∂x is the angular-
momentum operator, g = 8NaR/r is the scaled strength of
nonlinear interaction, N is the number of atoms, and a is the
s-wave scattering length for elastic atom-atom collisions. The
condensate is driven by a complex external potential which is
periodic in time and has a zero mean, reading as

V (x, t ) = K[sin x + iλ cos (x + φ)] sin (ωt ), (2)

where K and ω denote the strength and angular frequency
of the flashing potential, φ is the initial spatial phase of
the non-Hermitian potential (in our investigation, we will set
φ = 0, and introducing the initial phase can be used to change
the plus-minus sign of the mean currents, thereby steering
the transport direction), and λ > 0 is the non-Hermitian pa-
rameter measuring the strength of the imaginary part of the
potential. Throughout this paper, we measure all energies in
units of h̄2/2mR2, and our analysis will focus mostly on the
linear case (g = 0) unless explicitly stated otherwise. One can
easily verify that the considered Hamiltonian is PT symmet-
ric since the system is invariant under the combined action of
the parity operator P̂ : x → −x and the time-inversion opera-
tor T̂ : i → −i, t → −t .

In Eq. (1), the periodic boundary condition ψ (x, t ) =
ψ (x + 2π, t ) allows us to expand the wave function as
|ψ (t )〉 = ∑∞

n=−∞ cn(t )|n〉, where |n〉 = 1√
2π

einx denotes an
eigenstate of the undriven Hamiltonian with (quantized) mo-
mentum nh̄.

The time evolution of a quantum state over one period T =
2π/ω is governed by the Floquet operator

Û (t + T, t ) = T̂e−i
∫ t+T

t dt Ĥ (t ), (3)

where T̂ stands for the time-ordering operator. The eigenequa-
tion of the Floquet operator reads as

Û (t + T, t )|φα (t )〉 = e−iεαT |φα (t )〉, (4)

where εα indicates the quasienergy and |φα (t )〉 the Floquet
mode. As in the undriven case, the Floquet PT -symmetric
system is said to be in the unbroken-PT -symmetry phase
if the quasienergies are entirely real, while it is said to be
in the broken-PT -symmetry phase if complex-conjugate
quasienergies emerge when λ exceeds a certain threshold, i.e.,
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FIG. 1. The sum of the absolute values of the imaginary parts of
the quasienergies ξ = ∑N

α=1 |εi
α| versus the non-Hermitian parameter

λ for (a) weak driving K = 0.1; (b) strong driving K = 1. Here ξ is
shown for two driving frequencies ω = 0.5 (black circles) and ω = 1
(red triangles) for each K . For ω = 0.5, PT -symmetry breaking
is clearly observed at λc = 1 for both weak and strong driving.
However, for ω = 1, the PT -symmetry-breaking points are different
for weak (λc = 6.34) and strong (λc = 1.181) driving. (c) Threshold
Kλc versus driving frequency ω for a weak driving (K = 0.1) and a
strong driving (K = 1). In the numerical calculation, ξ is summed
up over the N = 512 Floquet modes. Quantities plotted in all the
figures are dimensionless.

λ > λc. Such a phase transition is referred to asPT -symmetry
breaking.

To identify such a spontaneous PT -symmetry breaking,
we numerically compute the sum of the absolute values of the
imaginary parts of all quasienergies (see Fig. 1),

ξ =
N∑

α=1

∣∣εi
α

∣∣, (5)

where the Floquet matrix is truncated with N = 512 in mo-
mentum space, and εi

α denotes the imaginary part of the αth
quasienergy. More accurate numerical diagonalization calcu-
lations are presented in the Refs. [73,74]. Figure 1 shows the
numerical behavior of the sum of |εi

α| as a function of the non-
Hermitian parameter λ for weak driving K = 0.1 [Fig. 1(a)]
and strong driving K = 1 [Fig. 1(b)]. There is indeed a thresh-
old λc above which the sum of |εi

α| increases from zero to
a nonzero value, representing a spontaneous PT -symmetry
breaking, as shown in Figs. 1(a) and 1(b). Additionally,
the PT -symmetry-breaking threshold varies with the driving
frequency. The dependence of the PT -symmetry-breaking
threshold on the driving frequency is also plotted in Fig. 1(c),
where we observe that the PT -symmetry-breaking threshold
varies almost periodically with the driving frequency, i.e., it
reaches a maximum when ω takes integer values and instead
reaches a minimum when ω takes half-integer values. We
also observe that the threshold Kλ forPT -symmetry breaking
increases with the driving strength K .

Let us have a look at the properties of the Floquet
state that shed light on the understanding of the transport
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FIG. 2. Occupation of the momentum modes for three types of
Floquet states in the unbroken-PT -symmetry regime. The blue bars
are for the population probabilities in different momentum modes,
and the gray thin bars [see (a) and (b)] are for the distribution
of the real parts of the amplitudes in different momentum modes
for corresponding Floquet states. (a), (b) Correspond to a pair of
degenerate Floquet states with the same momentum occupation, but
with different real parts of the probability amplitudes. (c), (d) A pair
of degenerate Floquet states that occupy the momentum modes in
a symmetric manner. These two types have no contribution to the
current because of no projection onto the initial state |0〉. (e) A typical
example of a nondegenerate Floquet state that carries a current and
overlaps with the initial state. The parameters are K = 1, ω = 1, and
λ = 0.1.

phenomenon. To better distinguish between non-Hermitian
and Hermitian situations, we first concentrate on the Flo-
quet states in the unbroken-PT -symmetry phase, where the
quasienergy spectrum is entirely real. In this case, our numer-
ical results show that the Floquet states fall into two classes,
degeneracy and nondegeneracy. The momentum distributions
of these two typical Floquet states are shown in Fig. 2. These
degenerate Floquet states appear as doublets, which are of
two kinds: the pair of degenerate Floquet states that occupy
the same momentum component but with different real parts
(marked by gray thin bars), as shown in Figs. 2(a) and 2(b),
and the pair of degenerate Floquet states that occupy the
negative and positive momentum components in a symmetric
manner, as shown in Figs. 2(c) and 2(d). In this paper, we
assume that the system is initially prepared in the zero-current
state |0〉, which is experimentally convenient because it is
the ground state of the undriven Hamiltonian. With such
an initial preparation, none of these degenerate states will
contribute to the current since they are well localized in the
momentum space and have no projection onto the initial state.
Furthermore, our numerical results reveal that all nondegen-
erate Floquet states have asymmetric momentum distributions
around the mode |0〉, thus acquiring nonzero mean momentum
and becoming transporting. A representative example of such
a nondegenerate Floquet state is illustrated in Fig. 2(e). Due
to their asymmetric nature, it is reasonable to expect that
these nondegenerate Floquet states would give origin to the
directed currents of the Floquet PT -symmetry system in the
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FIG. 3. Time-averaged current (TAC), plotted as a function of the driving frequency ω. (a) TAC for weak driving with K = 0.1 and λ = 0.1.
The TAC peaks only at ω = 0.5 and 1, in agreement with the resonance condition n2

2 = mω, representing the first- and the second-order
dynamics, respectively. (b) TAC for strong driving with K = 1 and λ = 0.1. More resonances are observed for the strong driving and the
pronounced resonance is shifted from ω = 1 to 1.5. (c) The same as in (b), but with a strong non-Hermitian parameter λ = 0.5. As we can see,
the TAC at resonant frequencies is significantly enhanced by increasing the non-Hermitian strength λ. Insets in (a) are for the detailed current
behavior at ω = 1 resonance: top: time evolution of the populations Pn in momentum space; bottom: Rabi oscillation of the current I (t ).

unbroken-PT -symmetrey phase. Finally, we should point out
that in the Hermitian limit λ → 0, where directed current
generation is forbidden, these asymmetric Floquet states can
no longer exist.

At the PT -symmetry phase transition point, also known as
so-called exceptional point (EP), not only the quasienergies
but also the Floquet states become the same. Thus, due to
the singularity at the EP, we cannot expand the quantum state
on the basis of the Floquet states, nor can we study the time
evolution of the current only by means of the analysis of
the Floquet states. However, some analytical solutions for
currents at EPs can be given in this paper (see Sec. IV for
details). In the broken-PT -symmetry phase, the dynamics of
the ratchet current is dominated by the Floquet states, the
quasienergy of which has the largest imaginary part; more
details will be given in Sec. V.

III. NON-HERMITIAN RESONANT CURRENTS

To start out, we introduce the asymptotic time-averaged
current (TAC), which is defined as

Ī = lim
t→∞

1

t

∫ t

t0=0
dt ′I (t ′), (6)

where the current I (t ) is given by

I (t ) =
∫ 2π

0 dx ψ∗(x, t ) p̂ψ (x, t )

N (t )
, (7)

with N (t ) = ∫ 2π

0 dx|ψ (x, t )|2 being the norm of the quantum
state [69].

In this section, we are particularly interested in a special
type of transport phenomenon in the Floquet PT -symmetric
system when the conditions for quantum resonance are ful-
filled, i.e., n2

2 = mω, where n2

2 is the unperturbed level
difference between |0〉 and |n〉. The resonance condition is
referred to as the integer multiples of the driving frequency
equal to the energy-level gap between the unperturbed ini-
tial states and the resonant states. Physically, if the energy
of m photons mω matches the gap, the system is capa-
ble of absorbing photons of sufficient energy to bridge the

energy difference n2/2 between the unperturbed levels,
through which the quantum transition takes place. Mathemat-
ically, with the resonance condition, the dynamics is mainly
limited in the degenerate subspace of the extended Hilbert
space under the weak driving.

In Fig. 3, we numerically study the TAC over a wide range
of driving frequencies with fixed driving strength, focusing
on the case of unbroken-PT -symmetry phase. Figure 3(a)
shows clear signatures of resonant currents at ω = 0.5, 1, for
weak driving K = 0.1, where the pronounced resonance at
ω = 1 arises from the mixing between |0〉 (the initial state)
and the current-carrying mode |±2〉 (see the insets). For
strong driving K = 1, we find that more resonant currents
are visible and the position of the pronounced resonance is
shifted to ω = 1.5, as shown in Fig. 3(b). This is obvious
because strong driving will excite a larger number of higher
momentum modes. Meanwhile, if we keep K = 1 unchanged
and increase the non-Hermitian strength λ, we observe that
the resonant currents are preserved and that the position
of the pronounced resonance does not shift with increasing
non-Hermitian strength, as can be seen in Fig. 3(c). More
interestingly, it can be seen from the comparison of Figs. 3(b)
and 3(c) that non-Hermiticity enhances the resonant currents.

The generation of resonant currents in the PT -symmetric
system is essentially due to the time-reversal symmetry break-
ing induced by the introduction of non-Hermiticity. This is
in contrast to the scheme for achieving directed current in
Hermitian systems, where a ratchet potential with asymmet-
ric temporal driving is required to simultaneously break the
time-reversal and space-inversion symmetries [2,21]. In what
follows, we attempt to understand such non-Hermitian reso-
nant currents by means of the well-established Floquet theory.
In the basis of the Floquet eigenstates, an arbitrary time-
evolved quantum state can be expanded as

|ψ (t )〉 =
∑

α

Cαe−iεαt |φα (t )〉, (8)

where Cα is the projection coefficient of the initial state
onto the Floquet state |φα (0)〉, such that Cα = 〈φα (0)|ψ (0)〉.
Thus, in the unbroken-PT -symmetry phase, the momentum
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expectation value is given by

〈p(t )〉 =
∑
α′α

C∗
α′Cαei(εα′ −εα )t 〈φα′ (t )| p̂|φα (t )〉

=
∑

α

|Cα|2〈φα (t )| p̂|φα (t )〉

+
∑
α′ 	=α

C∗
α′Cαei(εα′ −εα )t 〈φα′ (t )| p̂|φα (t )〉, (9)

where 〈φα (t )| p̂|φα (t )〉 is the mean instantaneous momentum
of the Floquet state, which is a periodic function due to
|φα (t )〉 = |φα (t + T )〉. In cases other than exact degeneracies,
the off-diagonal interference terms exp [i(εα′ − εα )t] would
average to zero for long enough times, and the contribu-
tions to the directed current are given only by the diagonal
terms 〈∑

α |Cα|2〈φα| p̂|φα〉〉T , where 〈. . . 〉T denotes the time
average over the period T . Since the non-Hermitian driving
potential breaks time-reversal symmetry, there exist asym-
metric Floquet states in the unbroken-PT -symmetry phase,
which can be either degenerate or nondegenerate, as we have
shown in Fig. 2. Despite the existence of the degenerate Flo-
quet states, which are well localized in momentum space, they
do not overlap with the initial state |0〉, i.e., the corresponding
expansion coefficients Cα are zero, thus having no conse-
quence on the currents. In our model, the numerical results
show that all the asymmetric nondegenerate Floquet states
overlap with the initial state |0〉 and have a negative mean
momentum, which contributes to the diagonal terms (α = α′)
in Eq. (9), thus leading to the appearance of directed currents
as shown in Fig. 3.

As shown in Fig. 3, the non-Hermitian ratchet current can
be significantly increased for a finite set of resonant driving
frequencies. To give an excellent account of the resonant
currents, we follow the perturbative method of [21] and gen-
eralize it to the non-Hermitian model, which is found to be
in surprisingly good agreement with numerical results. Our
starting point for the study is given by the unperturbed Floquet
states |n, m〉 = 1√

2πT
einxe−imωt , which are Floquet eigenstates

of the unperturbed Floquet Hamiltonian p̂2

2 − i∂/∂t , with the

Floquet quasienergies ε = n2

2 − mω. When the initial state is
prepared as the ground state of the unperturbed Hamiltonian,
which corresponds to the Floquet state |0, 0〉, we may expect
the driving to mix |0, 0〉 with the other unperturbed Floquet
states |n, m〉 satisfying the resonance condition m = n2

2ω
. For

example, for the case ω = 1, the system is expected to evolve
from |0, 0〉 towards |2, 2〉 and |2̄, 2〉 (for notational brevity, we
use n̄ ≡ −n), where the mixing with the higher-lying (n > 2)
resonant Floquet states is very small and can be neglected
under weak driving. Thus, when ω = 1, truncating the Hilbert
space to just these three resonant states {|2, 2〉, |0, 0〉, |2̄, 2〉}
is sufficient to describe the dynamics under weak driving.

By applying the time-independent perturbation theory in
the extended Hilbert space spanned by the relevant three
resonant Floquet states {|2, 2〉, |0, 0〉, |2̄, 2〉}, the dynamics of
the system can be described by an effective three-level non-
Hermitian model for ω = 1 (more details can be seen in the

Appendix):

T �

⎡
⎢⎢⎣

0 
− 0


+ 0 
−
0 
+ 0

⎤
⎥⎥⎦, (10)

where 
± = K2λ2
±/8 and λ± ≡ λ ± 1. We can see that the

effective T matrix is non-Hermitian due to λ 	= 0. By solving
the Schrödinger equation on the basis of the effective three-
level model, we obtain the time evolution of the populations
on the momentum eigenstates as follows:

P2(t ) = 
2
−

�2
sin2(�t ),

P0(t ) = cos2(�t ),

P−2(t ) = 
2
+

�2
sin2(�t ), (11)

where Pn denotes the population in the momentum mode |n〉,
and the Rabi oscillation frequency is given by � = √

2
−
+.
The corresponding norm thus reads as N (t ) = P−2 + P0 +
P2 = cos2 �t + 
2

−+
2
+

�2 sin2 �t . By definition, Eq. (7), after
omitting the contribution of the norm to the current behavior,
the current is given by

I (t ) = −2(
2
+ − 
2

−)

(
2+ + 
2−) + �2 cot2(�t )
. (12)

When the non-Hermitian strength λ = 0 is zero, we have

+ = 
− such that I (t ) = 0, which is a natural consequence
due to the fact that the limit of λ → 0 leads to the recovery
of the time-reversal symmetry. In this way, we analytically
confirm the conclusion that the non-Hermiticity produces the
resonant current in the system with symmetric temporal driv-
ing, which would otherwise forbid the generation of direct
currents. Note that as soon as the non-Hermitian term is
switched, the ratchet current appears, regardless of whether
the system hasPT symmetry or not. However, for the specific
PT -symmetric driving potential, as will be shown later, there
is a rich variety of current dynamics in different phase regions
(invariant PT symmetry, EPs, and broken PT symmetry).

Considering the other resonant frequency ω = 0.5, the
weakly driven system can also be truncated to an effec-
tive three-level model operating in a reduced Hilbert space
of resonant Floquet states |n, m〉 = {|1, 1〉, |0, 0〉, |1̄, 1〉}. The
corresponding effective T matrix is given by

T �

⎡
⎢⎢⎣

0 −
′
− 0

−
′
+ 0 
′

−
0 
′

+ 0

⎤
⎥⎥⎦, (13)

where 
′
± = K (1 ± λ)/4. A comparison of the T matrices

at ω = 0.5 and 1 shows that the effective coupling 
± is
proportional to K2 when ω = 1, while when ω = 0.5, the
effective coupling 
′

± is proportional to K . This is because
for ω = 1 the mixing between |0, 0〉 and the states |2, 2〉 and
|2̄, 2〉 is the second-order transition via the virtual intermedi-
ate states |1, 1〉 and |1̄, 1〉, whereas for ω = 0.5 the mixing
between |0, 0〉 and the states |1, 1〉 and |1̄, 1〉 is the direct,
first-order transition. Following the same line of reasoning as
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above, we can obtain the populations in the momentum modes
|0〉 and |±1〉, from which we can further obtain the norm

N (t ) = 
′2
++
′2

−
|�′|2 | sin(�′t )|2 + | cos(�′t )|2, and the current as

I ′(t ) = − 
′2
+ − 
′2

−
(
′2+ + 
′2− ) + |�′2|| cot(�′t )|2 , (14)

in which �′ = √
2
′−
′+.

Let us further examine the second-order dynamics for the
ω = 1 resonance and the first-order dynamics for the ω = 0.5
resonance. For the former, the Rabi oscillation frequency
� = √

2
−
+, which corresponds to the quasienergy of the
original time-periodic system (1) treated accurately up to the
second order, is always real, whereas for the latter, �′ =√

2
′−
′+, which is the first-order quasienergy of the original
system (1), becomes purely imaginary when λ > 1. As such,
the analytical current (12) for ω = 1 resonance marks a pe-
riodic oscillation, implying that the second-order process can
only describe the unbroken-PT -symmetry phase dynamics.
On the other hand, for the ω = 0.5 resonance, as λ is increased
beyond the parameter point λ = 1, the periodic oscillation
of the current [see Eq. (14)] disappears and is replaced by
a hyperbolic behavior, with the norm growing exponentially
and the current approaching an asymptotic value of −1. This
implies that λ = 1 signals the onset of a PT -symmetry phase
transition for the ω = 0.5 resonance, which agrees exactly
with the numerical results shown in Sec. II for weak driving,
and at the same time indicates that the perturbative ana-
lytical formula for the first-order process is also applicable
in the broken-PT -symmetry phase. Currently, the analyti-
cal quasienergies (based on the effective T matrix) for the
ω = 1 resonance are always real and thus do not predict the
PT -symmetry transition point, which should be pushed to a
higher-order correction to obtain more accurate quasienergies,
but the process is lengthy and beyond the scope of our paper.

Figure 4 shows an extremely good agreement between
the numerical results and the analytical results of the time-
dependent currents and the normalized probabilities for a
weak driving K = 0.1. Since the effective coupling 
± ∼ K2

for the ω = 1 resonance is smaller than the one (
′
± ∼ K)

for the ω = 0.5 resonance, the former oscillation period is
an order of magnitude larger than the latter, and for better
comparison we use different axis scales (red for ω = 0.5 and
black for ω = 1) to show the current behaviors. As shown
in Fig. 4(a), the current for the ω = 0.5 resonance shows
the Rabi-type oscillation, but for the ω = 1 resonance, the
currents show the deviation from the Rabi-type oscillation.
When λ increases, the departure from Rabi-type oscillation
becomes drastic, deforming into a square-wave-like shape
with a significant duration of staying at a steady value
of −2 for the current with ω = 1 resonance. This process
is accompanied by the significant duration of the normal-
ized probability staying at P̄−2(t ) ≈ 1, P̄2(t ) ≈ P̄0(t ) ≈ 0, as
shown in Fig. 4(b), implying that TAC will be enhanced
upon increasing the non-Hermitian strength. In addition,
in Fig. 5, we numerically investigate the TAC as a func-
tion of the non-Hermitian strength λ for both the ω = 0.5
resonance [Fig. 5(a)] and the ω = 1 resonance [Fig. 5(b)],
which show good agreement with the analytical results de-
rived from the effective three-level model. In both cases,

FIG. 4. Comparison of the exact numerical results (shown by
lines) with the analytical results predicted by the effective three-level
non-Hermitian model (circles, triangles, diamonds, and squares) in
the unbroken-PT -symmetry regime with weak driving K = 0.1.
(a) Time evolution of the current I (t ), with different parameters
ω = 0.5, λ = 0.5 (solid line and circles), ω = 1, λ = 0.5 (dashed
line and diamonds), and ω = 1, λ = 0.8 (dotted line and squares).
(b) Time-dependent normalized probabilities P̄n(t ) = Pn(t )/N (t ),
corresponding to the current shown by the dotted line and squares
with fixed parameters ω = 1, λ = 0.8.

when λ < 1, the time-averaged currents are enhanced with
increasing non-Hermitian strength λ, while above the pa-
rameter point λ = 1 (marked by the green vertical line), the
time-averaged currents are instead reduced with increasing
non-Hermitian strength λ. The boundary λ = 1, separating
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FIG. 5. Time-averaged current versus non-Hermitian parameter
λ with weak driving K = 0.1, for (a) the ω = 0.5 resonance; (b) the
ω = 1 resonance. The green dotted vertical lines mark the λ = 1, and
the red dashed vertical lines mark the spontaneous PT -symmetry-
breaking threshold λc. We can see that for weak driving strength
the agreement between the analytical results predicted by the three-
level model and the exact numerical results is excellent, even in the
broken-PT -symmetry regime (λ > 1) for the ω = 0.5 resonance.
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the two regions with physically different dependence of the
current on non-Hermitian strength, corresponds exactly to the
symmetry-breaking point for the ω = 0.5 resonance, but is
located deeply in the unbroken-PT -symmetry regime for the
ω = 1 resonance (the symmetry-breaking threshold is marked
by λc). What is more, for the ω = 0.5 resonance, the analytical
result of the three-level model is still applicable in the broken-
PT -symmetry regime (λ > 1), showing a good agreement
with the direct numerical result based on Eq. (1).

IV. DIRECTED CURRENTS AT EXCEPTIONAL POINTS

An interesting property of non-Hermitian systems is the ex-
istence of spectral singularities, known as exceptional points
(EPs) [34,45], which has led to a variety of novel phenomena
and fascinating applications. At this point, not only are the
eigenvalues identical, but also the corresponding eigenvectors
coalesce to one. For PT -symmetric systems, it turns out that
the spontaneous symmetry-breaking points, beyond which the
spectrum changes from all real to complex, are just those
values at which an EP of the system appears.

The situation is richer when a non-Hermitian system is
periodically driven. As discussed above, for the ω = 0.5
resonance, the parameter point λ = 1 corresponds to the
symmetry-breaking point and, consequently, to the EP. Our
further numerical investigation shows that for general ω =
0.5l with integer l , the parameter point λ = 1 (the real and
imaginary parts of the potential depth are equal) is very
unique, where the current and the Floquet spectrum behave
unexpectedly, regardless of whether λ = 1 is the symmetry-
breaking point. If l is odd, λ = 1 represents the spontaneous
PT -symmetry-breaking point. However, if l is even, λ = 1
is below the phase transition point, but it is an EP where
the quasienergies and the Floquet states coincide simultane-
ously. As shown in Fig. 6, for K = 0.1 and ω = 1, λ = 1 (as
pointed out in Fig. 1, it is not a symmetry-breaking point)
indeed represents an EP, where we observe the two pairs
of coincident (identical) Floquet states, corresponding to the
degenerate quasienergy −0.498 (upper panels) and the degen-
erate quasienergy 0.007 (lower panels), respectively. Under
such a circumstance, there appears a persistent current with
an asymptotically constant value and a power-law increase
of the norm N (t ) ∝ t2 (see Fig. 7), even though λ = 1 is
not the symmetry-breaking point and is deeply rooted in the
unbroken-PT -symmetry regime.

We analytically investigate the current and population
behaviors at the exceptional point using a specific driving
frequency ω = 0.5. The Schrödinger equation (1) in the mo-
mentum representation can be written as

i
∂

∂t
cn = n2

2
cn + iK sin(ωt )

2
(λ+cn+1 + λ−cn−1), (15)

where cn denotes the population amplitude on the momentum
mode |n〉 and the coupling coefficients are given by λ+ =
−2i〈n| f (x)|n + 1〉 and λ− = −2i〈n| f (x)|n − 1〉, with f (x) =
sin x + iλ cos(x + φ). Since the coupling strength in the hop-
ping direction to the negative momentum state is greater than
to the positive momentum state, a negative average current
is generally expected. Despite the presence of nonreciprocal
hopping in Eq. (15), there is no non-Hermitian skin effect in
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FIG. 6. Probabilities (blue thick bar) and real parts of the prob-
ability amplitudes (gray thin bar) in different momentum modes for
two pairs of coincident Floquet states, corresponding to quasienergy
−0.498 [upper panels (a) and (b)] and 0.007 [lower panels (c) and
(d)]. We see that the two quasienergies are identical, and the two
Floquet eigenvectors are also completely identical, which is indeed
the characteristic of exceptional point (EP) behavior. The parameters
are K = 0.1, ω = 1, λ = 1.

the momentum space as in Ref. [75] (where bulk states are
localized at the edges in the real space) because the periodicity
and the periodic boundary condition in the momentum space
are not present due to an extra onsite potential n2/2. However,
the nonreciprocal hopping can be used to steer the direction of
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FIG. 7. (a) Time dependence of current I (t ) with different pa-
rameters K = 0.01, ω = 0.5 (solid line) and K = 0.1, ω = 1 (dashed
line) at EPs. (b) Power-law growth of the norm at EPs, for K = 0.01,
ω = 0.5 (solid line), and K = 0.1, ω = 1 (dashed line). The ana-
lytical results (circles) for the norm, predicted by Eq. (19), and for
the current, predicted by Eq. (20), agree well with the numerical
results. (c) Asymptotic current versus frequency ω at EPs. (d) The
momentum mode cutoff (i.e., the maximum attainable negative mo-
mentum mode) versus the driving frequency ω at EPs. Here, the EPs
correspond to the parameter point λ = 1 and ω = 0.5l with integer l .
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the ratchet currents. At the exceptional point λ = 1, Eq. (15)
is reduced to

i
∂

∂t
cn = n2

2
cn + iK sin(ωt )

2
(λ+cn+1). (16)

To be specific, we consider the weakly driven system with the
resonance frequency ω = 0.5, starting from the initial state
cn(0) = δn,0, then the dynamics is limited in the subspace
spanned by the basis |n〉 = |−1〉, |0〉, |1〉, and Eq. (16) is trun-
cated to

i
∂

∂t

⎡
⎢⎢⎣

c−1(t )

c0(t )

c1(t )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2 iK sin(ωt ) 0

0 0 iK sin(ωt )

0 0 1
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c−1(t )

c0(t )

c1(t )

⎤
⎥⎥⎦.

(17)

The solution of Eq. (17) can be obtained exactly as follows:⎧⎪⎪⎨
⎪⎪⎩

c−1(t ) = iK
2 te− it

2 − iK sin(ωt ),

c0(t ) = 1,

c1(t ) = 0,

(18)

which gives the power-law increase of the norm

N (t ) � 1 + K2t2/4. (19)

As time tends to infinity, the asymptotic current reads as

I (t → ∞) = lim
t→∞

−1

1 + 4
K2t2

= −1. (20)

Our theoretical prediction is verified by numerical results,
as shown in Fig. 7 [see the analytical results (circles) and the
numerical results (black solid lines) in Figs. 7(a) and 7(b)]. We
also numerically investigate the behavior of the current and
the norm for ω = 1, as shown in Figs. 7(a) and 7(b) (see the
red dashed lines), where we observe that the magnitude of the
asymptotic current is larger than its counterpart for ω = 0.5.
This is evident from the fact that for ω = 1, the system can be
excited to a higher momentum state |−2〉. The dependence
of the asymptotic current on the resonant frequency ω is
also investigated numerically, and it is found in Fig. 7(c) that
the asymptotic current increases as the resonant frequency ω

increases. Such a dependence stems from the fact that the
momentum mode cutoff (i.e., the maximum attainable nega-
tive momentum mode) increases with the resonant frequency
[see Fig. 7(d)]. In our work, our focus is only on the case
of φ = 0. If we set the initial phase φ = π , the coupling co-
efficients are reversed, i.e., λ+ = 2i〈n + 1| f (x)|n〉 and λ− =
2i〈n − 1| f (x)|n〉, leading to a positive mean current, which
opens an avenue to steer the direction of the directed currents.
Such a way of controlling the direction of the ratchet current
is essentially based on swapping the nonreciprocal hopping
terms in Eq. (15).

To sum up this section, through numerical and analytical
investigations, an asymptotic current dependent on a series
of discrete frequencies at EPs is revealed, which provides a
different type of driving-frequency-dependent current at EPs
and broadens the understanding of directed transport at EPs. It
should be noted that this type of driving-frequency-dependent
asymptotic steady current at EPs depends on the choice of
the driving protocol, which is completely different from the
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FIG. 8. (a) Time evolution of the current in the broken-PT -
symmetry regime at different driving frequencies, ω = 3 (blue dotted
line), ω = 5 (green dashed line), and ω = 7 (gray solid line).
(b) Time evolution of the corresponding norms. (c) Asymptotic cur-
rent versus driving frequency ω. The blue triangle, green square,
and gray circle represent the corresponding asymptotic currents [the
saturation levels of I (t ) with the corresponding colors] in (a). (d) The
Floquet eigenstates in the momentum space with the largest imagi-
nary quasienergy for ω = 3 (blue thick bar), ω = 5 (green medium
bar), and ω = 7 (gray thin bar), which give rise to the three different
asymptotic currents in (c) marked by triangle, square, and circle,
respectively. In all plots the parameters are K = 1, λ = 1.5.

staircase growth of the momentum current in the vicinity of
EPs previously discovered in the non-Hermitian kicked rotor
model [70].

V. PT -SYMMETRY-BREAKING-INDUCED
RATCHET CURRENTS

In this section, we turn our attention to the current dynam-
ics of the broken-PT -symmetry regime, in which the norm
starts to grow exponentially. Figure 8(a) shows the numerical
results for the time evolution of the current in the broken-PT -
symmetry regime at different driving frequencies. As we can
see, the current evolves to a nonzero asymptotic value for all
driving frequencies and the asymptotic current grows as the
driving frequency increases, which bears a close resemblance
to the current behavior at EPs as shown in Fig. 7(a). The main
difference is that for a fixed non-Hermitian parameter, the
asymptotic current in the broken-PT -symmetry regime can
be generated for all continuously varying driving frequencies,
whereas the asymptotic current at EPs can only be generated
for certain discrete driving frequencies. The time evolution
of the corresponding norms is illustrated in Fig. 8(b), where
we observe that the norm grows exponentially and acceler-
ates as the driving frequency increases. The enhancement of
the asymptotic current by increasing the driving frequency is
more clearly demonstrated in Fig. 8(c). In Fig. 8(c), we see
that the value of asymptotic current increases almost linearly
with the driving frequency.

The mechanism of the generation of the asymptotic current
in the broken-PT -symmetry regime can be understood as
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follows. At the initial time, an arbitrary state can be expanded
on the basis of the Floquet eigenstates, namely,

|ψ (0)〉 =
∑

α

Cα|φα (0)〉, (21)

where Cα are the amplitudes for the Floquet eigenstates
|φα (0)〉. With the time evolution, the quantum state takes
the form of |ψ (t )〉 = ∑

α Cαe−iεαt |φα (t )〉. In the broken-PT -
symmetry regime, the quasienergy is complex, i.e., εα = εr

α +
iεi

α . Accordingly, we have

|ψ (t )〉 =
∑

α

Cαe−iεr
αt+εi

αt |φα (t )〉. (22)

As time increases, the component Cα exp(εi
αt ) with εi

α > 0
grows exponentially and that with εi

α < 0 decays, so that the
quantum state |ψ (t )〉 eventually evolves to the Floquet eigen-
state with the maximum εi

α . Thus, the mean momentum 〈p〉
corresponding to these Floquet eigenstates with maximum εi

α

is the main contributor to the current. To confirm our analysis,
in Fig. 8(d) we present numerically the momentum distribu-
tions of the Floquet eigenstates with maximum εi

α for three
different driving frequencies (marked by thick, medium, and
thin bars with different colors). A detailed inspection shows
that the mean momentum 〈p〉 corresponding to these Floquet
eigenstates increases as the driving frequency increases, and
shifts to larger negative values, with each mean momentum
having a one-to-one correspondence with the asymptotic cur-
rent as shown in Fig. 8(a).

Same as in the unbroken-PT -symmetry regime, we find
that most of the Floquet eigenstates in the broken-PT -
symmetry regime are degenerate and well localized in the
momentum space, which results in that Floquet eigenstates
with the largest εi

α always appear in pairs as shown in
Figs. 9(a)–9(c). Interestingly, we find that when the driving
frequency is below a certain threshold ωc, these two Floquet
eigenstates occupy the same momentum modes (that is, the
population probabilities in the momentum modes are iden-
tical) with a nonzero and negative mean momentum. This
leads to a stable negative asymptotic current. When the driv-
ing frequency is above the threshold, i.e., ω > ωc, these two
degenerate Floquet eigenstates begin to gradually separate
from each other. As ω increases, these two Floquet eigen-
states become more and more separated and populate the
momentum modes in an almost symmetrical manner: one with
a positive mean momentum and the other with a negative
mean momentum. Due to the linear superposition of these two
different degenerate eigenstates with the largest εi

α , the initial
state evolves into one of the two degenerate eigenstates with
unpredictability. This means that the system will randomly
settle into one of the two different degenerate eigenstates with
the largest εi

α , leading to an unpredictability of the current
direction. Thus, to achieve a stable asymptotic current, we
should limit the driving frequency to less than the thresh-
old value, i.e., ω < ωc. The phase diagram of the frequency
threshold ωc in the (K, λ) space is plotted in Fig. 9(d). It can
be observed that the threshold value increases with both the
driving amplitude K and the non-Hermitian parameter λ.

We would like to point out that the finding that the asymp-
totic current increases with successive increases in the driving
frequency in the broken-PT -symmetry phase is truly unique

FIG. 9. Momentum distributions of the three pairs of degenerate
Floquet states with the largest imaginary value of the quasienergy,
for (a) ω = 4 < ωc, (b) ωc = 9, and (c) ω = 15 > ωc. Here, a pair
of degenerate Floquet states are represented by blue thick and light
gray thin bars. The other parameters are K = λ = 2 which corre-
spond to a broken-PT -symmetrty phase. (d) Threshold frequency
ωc, corresponding to the appearance of the separation of the mo-
mentum distribution of the degenerate Floquet eigenstates with the
largest imaginary part of the quasienergy, as a function of the driving
amplitude K and the non-Hermitian strength λ. The different map
colors specify different values of ωc.

to the time-continuous driving system and is not accessible in
the non-Hermitian kicked rotor system with PT -symmetric
driving potential [70].

VI. NONLINEARITY EFFECTS
ON THE NON-HERMITIAN CURRENTS

Finally, we address the impact of interatomic interactions
on the current behaviors, with particular emphasis on the
dynamics at the EPs. As mentioned above, for EPs in the
noninteracting case, the current tends asymptotically to a
constant value and the norm shows a power-law growth.
First of all, we consider the parameters λ = 1 and ω = 1,
corresponding to the EP for the noninteracting case g = 0,
which is below the symmetry-breaking point and is rooted in
the unbroken-PT -symmetry regime. In this case, the effects
of nonlinearity on the directed current can be visualized in
Fig. 10. In Fig. 10, the top row shows the time evolution of
the populations in momentum space, and the middle and bot-
tom rows show the respective currents and norms. For small
g = 0.01 [see Figs. 10(a), 10(d), and 10(g)], the current oscil-
lates periodically with time, acting like the resonant current in
the unbroken- PT -symmetry regime as shown in Fig. 3(a).
As g increases (from the left column to the right column),
we see that the coupling between the initial state |0〉 and
other momentum states is gradually suppressed, so that the
oscillatory amplitudes of the currents and norms are progres-
sively reduced, manifesting a self-trapping phenomenon in the
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FIG. 10. The nonlinearity effects on the directed currents at EP with K = 0.1, ω = 1, λ = 1, starting from the initial state |0〉. Top panels:
time evolution of the populations in momentum space. Middle panels: time evolution of current I (t ). Bottom panels: time evolution of norm
N (t ). From the left to the right column: g = 0.01, 0.1, 0.2. In (a)–(c), the color bar indicates the population Pn in the momentum mode |n〉.

momentum space due to the presence of nonlinearity. How-
ever, the dynamics are quite different for λ = 1 and ω = 0.5
that correspond to the symmetry-breaking point in the nonin-
teracting case. At g = 0.01 [see Figs. 11(a), 11(d), and 11(g)],
the quadratic growth of the norm is suppressed to some extent,
and the current I (t ) oscillates nonperiodically with time. As
the nonlinear strength g increases to 0.1 [see Figs. 11(b),
11(e), and 11(h)], the aperiodic oscillation of current and norm
becomes more pronounced. Particularly, there also exists an
asymptotic current as g continues to increase [see Figs. 11(c),
11(f), and 11(i)]. The appearance of the asymptotic current is
caused by the nonlinearity-induced PT -symmetry breaking,
and the population in the momentum mode |0〉 also grows with
time due to the nonlinear cross coupling of the momentum
modes. This contrasts sharply with the noninteracting system,
where the population of momentum mode |0〉 remains con-
stant because the coupling λ− = 〈n|V̂ |n − 1〉 vanishes at EP
with λ = 1 and the asymptotic current is induced by the EP. In
this work, we have only addressed how nonlinearity affects the
current behavior of EP in its linear counterpart. When other
parameter ranges are taken into account, the corresponding
current behavior should be much richer and deserves to be
explored in more detail in the future.

VII. CONCLUSION

To conclude, we report on the non-Hermitian ratchet cur-
rents in a PT -symmetric Floquet system with symmetric
harmonic driving. The main results of the ratchet current are
presented in Table I. In the exact PT -symmetry phase, for a
finite set of resonant frequencies, we show how a long-lasting
ratchet current arises from the non-Hermiticity. We show that
increasing the non-Hermitian strength can enhance the res-
onant currents, providing a means of controlling the directed
current for smooth continuous driving which has hitherto been
studied in the Hermitian system. The resonant currents exist
only when the non-Hermitian strength does not vanish, so
that they are indeed a signature of non-Hermitian directed
transport. The non-Hermitian resonant current reaches the
largest negative value when the real and imaginary parts of
the potential depth are equal, i.e., λ = 1, where the stable
asymptotic current occurs owing to the exceptional points
(EPs) mechanism. When λ = 1, we find that EPs occur at
the driving frequency of integer or half-integer values. More
interestingly, the asymptotic current at EPs can occur below
the phase transition (symmetry-breaking) threshold because
such driving frequencies (e.g., ω = 1) of EPs, correspond-
ing to the second-order resonance, lie in an isolated point

FIG. 11. The nonlinearity effects on the directed currents for the same set of parameters as in Fig. 10, but with ω = 0.5. From the left to
the right column, the nonlinearity strengths are g = 0.01, 0.1, 0.4. In (a)–(c), the color bar indicates the population Pn in the momentum mode
|n〉.
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TABLE I. Summary of main characteristics of currents and their physical mechanisms in different phase domains (invariant PT symmetry,
exceptional point, broken and nonlinear PT symmetry ).

Phase

Unbroken-PT -
symmetry

phase EPs Broken-PT -symmetry phase Nonlinear

Main characteristics of
currents

At resonance, the
current oscillates with

time and the
time-averaged current
reaches its maximum

value

Stable asymptotic
currents appear and

increase as the
resonance frequency is

increased

As the driving frequency is
successively increased, the

asymptotic current increases

Suppression or enhancement of
directed currents by nonlinearity

Physical origins of
current generation

Coupling of the initial
state to the resonant

current-carrying states

The singularity of
Hamiltonian in

momentum space

The dominance of the Floquet
state with the maximum
imaginary value of the

quasienergy over the dynamics

Self-trapping effect in the
momentum space and
nonlinearity-induced
PT -symmetry breaking

in the unbroken-PT -symmetry regime. For weak driving,
an effectively non-Hermitian three-level model is developed,
which shows excellent agreement with the direct numeri-
cal results, even in the broken-PT -symmetry regime for the
first-order resonance. Moreover, there also exist asymptotic
currents in the broken-PT -symmetry phase, which have a
different physical mechanism from the ones at the EPs. The
directed currents resulting from the PT -symmetry breaking
are the consequence of the predominance of the Floquet
state with the maximum imaginary value of the quasienergy
over the dynamics of the non-Hermitian system. Interestingly,
the momentum mode cutoff (the maximum attainable neg-
ative momentum eigenstate) of the Floquet states with the
largest imaginary value of the quasienergy increases as the
frequency is continuously increased, leading to an increase in
the asymptotic current with the driving frequency. Finally, we
consider the effect of the nonlinear interaction on the currents
in the parameter configurations where the corresponding lin-
ear system lies at the EPs. It is shown that the nonlinearity
can either destroy the ratchet effect due to the self-trapping
in the momentum space, or induce a stable asymptotic cur-
rent due to the nonlinearly induced PT -symmetry breaking.
Since the non-Hermitian Hamiltonian can be used to describe
nonequilibrium relaxation problems, optical wave transport in
dissipative media, exciton-polariton condensate systems, etc.,
our results may open new perspectives and applications of
ratchet effects in a variety of non-Hermitian systems.

In the Hermitian system, in order to generate the ratchet
current, one must choose a sawtoothlike asymmetric temporal
driving (e.g., two-frequency driving) to break both the time-
reversal and the space-inversion symmetries. However, our
study shows that even a single-frequency temporal driving
can produce a ratchet current in the non-Hermitian system.
The unique feature of using non-Hermitian driving to generate
ratchet currents is that no sawtoothlike asymmetric temporal
driving is required. Instead, a simple harmonic driving field
is sufficient. As was done in Ref. [76], a model that links
the Gross-Pitaevskii mean-field equation with an additional
imaginary potential to the Lindblad master equation was
established theoretically and justified experimentally, thus
providing a basis for the study of the ratchet current in the
open system. At present, there is still a lack of complete

knowledge about the ratchet currents in more realistic open
systems, and this deserves to be further investigated from the
perspective of the Lindblad master equation.
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APPENDIX

In this Appendix, we give a detailed derivation of the ef-
fective three-level model (10) in the main text for the weakly
driven system under resonance. For a time-periodic Hamil-
tonian, there exists a complete set of solutions of the form
|φα (t )〉 = e−iεαt |uα (t )〉, where the Floquet states inherit the
period of the driving, satisfying |uα (t )〉 = |uα (t + T )〉, which
can be obtained by solving the eigenvalue equation [Ĥ (t ) −
i ∂
∂t ]|uα (t )〉 = εα|uα (t )〉. Note that the quasienergies and the

Floquet states in the solution |φα (t )〉 are not uniquely defined.
If |uα (t )〉 are the eigenstates of the eigenvalue equation with
eigenvalue εα , then the replacement

εαm = εα − mω, |uαm(t )〉 = |uα (t )〉e−imωt (A1)

yields a new set of quasienergies and Floquet states cor-
responding to the same solution |φα (t )〉 = |uα (t )〉e−iεαt =
|uαm(t )〉e−iεαmt , satisfying[

Ĥ (t ) − i
∂

∂t

]
|uαm(t )〉 = εαm|uαm(t )〉. (A2)

For unperturbed system in the extended Hilbert space,
Eq. (A2) reads as(

p̂2

2
− i

∂

∂t

)
u0

nm(x, t ) = ε0
nmu0

nm(x, t ), (A3)

where unperturbed Floquet states read as

u0
nm(x, t ) = 〈x, t |n, m〉 = 1√

2πT
exp (inx − imωt ), (A4)
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with the zeroth-order quasienergy

ε0
nm = n2

2
− mω. (A5)

In the following, we will concentrate on the resonance condi-
tion, defined as

n2

2
= mω, (A6)

where the unperturbed Floquet states |n, m〉 are degenerate
with ε0

nm = 0 and we expect the largest value of the ratchet
current to appear.

These degenerate resonant states are connected by the
driving. The periodic driving can be expanded as Fourier
components

V̂ (x, t ) = K

4
(λ−eix + λ+e−ix )(eiωt − e−iωt ). (A7)

We can rewrite (A7) in the extended Hilbert space using the
unperturbed Floquet basis |n, m〉,

V̂ = K

4

∞∑
n,m=−∞

[(λ−(|n + 1, m + 1〉〈n, m|

− |n + 1, m〉〈n, m + 1|) + λ+(|n, m + 1〉〈n + 1, m|
− |n, m〉〈n + 1, m + 1|)]. (A8)

According to the perturbative method, the effective dynamics
up to the second order can be described by an effective T
matrix with the matrix elements

〈n, m|T̂ |n′, m′〉

� 〈n, m|V̂ |n′, m′〉+
∑
n′′,m′′

〈n, m|V̂ |n′′, m′′〉〈n′′, m′′|V̂ |n′, m′〉
−ε0

n′′,m′′
.

(A9)

Let us first focus on the case ω = 1, which specifies the
resonance condition n2

2 = mω with m = 2 and n = ±2, and

take it as an example to illustrate this perturbative analysis
method. The resonant states {|2, 2〉, |0, 0〉, |2̄, 2〉} are “degen-
erate” with quasienergy ε = 0 and are connected under the
effect of driving. The T -matrix elements for the second-order
dynamics, spanning the space ({|2, 2〉, |0, 0〉, |2̄, 2〉}), can be
calculated as follows. There is no direct coupling between
the initial state |0, 0〉 and |2, 2〉, |2̄, 2〉, i.e., 〈0, 0|V̂ |2, 2〉 =
〈0, 0|V̂ |2̄, 2〉 = 0. The second-order mixing between |0, 0〉
and |2, 2〉, |2̄, 2〉 is generated by virtual intermediate states
|1, 1〉 and |1̄, 1〉. Thus, all matrix elements 〈n, m|T̂ |n′, m′〉 can
be calculated as

〈2, 2|T̂ |0, 0〉 = 〈2, 2|V̂ |1, 1〉〈1, 1|V̂ |0, 0〉
−ε0

11

= K2λ−
8

, (A10)

〈0, 0|T̂ |2, 2〉 = 〈0, 0|V̂ |1, 1〉〈1, 1|V̂ |2, 2〉
−ε0

11

= K2λ+
8

, (A11)

〈0, 0|T̂ |2̄, 2〉 = 〈2, 2|T̂ |0, 0〉 = K2λ−
8

, (A12)

〈2̄, 2|T̂ |0, 0〉 = 〈0, 0|T̂ |2, 2〉 = K2λ+
8

, (A13)

with the remaining matrix elements being all zero. Restricted
to these second-order matrix elements, in the space spanned
only by the Floquet states {|2, 2〉, |0, 0〉, |2̄, 2〉} (using this or-
dering), the effective three-level model is given by the matrix

T �

⎡
⎢⎢⎢⎣

0 K2λ−
8 0

K2λ+
8 0 K2λ−

8

0 K2λ+
8 0

⎤
⎥⎥⎥⎦, (A.14)

which corresponds to Eq. (10) in the main text.
Following the same procedure as above, under the res-

onance condition n2

2 = mω, we can construct the effective
three-level model for the ω = 0.5 resonance, with the matrix
defined by Eq. (13) in the main text, which only involves
the first-order transition between the resonant Floquet states
{|1, 1〉, |0, 0〉, |1̄, 1〉}.
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