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Detachment between edge and skin states in a non-Hermitian lattice
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The integration of nonreciprocal non-Hermiticity and topological lattice systems can induce the emergence of
the non-Hermitian skin effect, enabling a clear distinction between the behaviors of bulk states in non-Hermitian
systems and those in Hermitian systems. Specifically, we focus on examining the localized directions of
eigenstates in an odd-sized Su-Schrieffer-Heeger-type lattice with intracell nonreciprocal hopping, and identify
a notable phenomenon of detachment between the edge and bulk states, which stands in stark contrast to the
behaviors observed in even-sized cases. The localized directions of the bulk and edge states are respectively
subjected to the non-Hermitian skin effect and isolated site induced by the odd size of the lattice, resulting in
the detachment between the edge and skin states. To provide a comprehensive understanding of the detachment
phenomenon, we present analytical solutions that illustrate the localized directions of the edge and skin states
whose results are in perfect agreement with the numerical findings. Furthermore, we demonstrate that a pair of
eigenstates exhibiting opposite localized directions to the skin states can appear in a trimer non-Hermitian lattice,
indicating the possibility of detachment between the edge and skin states in multimer non-Hermitian lattices as
well.
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I. INTRODUCTION

Since the discovery of topological insulators, there has
been significant interest in studying topological phases [1–3].
Among these efforts, the Su-Schrieffer-Heeger (SSH) model
holds a prominent position owing to its succinct band struc-
ture and valuable physical insights. Serving as one of the
simplest examples of a two-band topological insulator, the
one-dimensional SSH model can give rise to exponentially
localized edge states under open boundary conditions, which
exhibit robustness against disorder and scattering [4–7]. Fur-
thermore, in the thermodynamic limit, two degenerate in-gap
topological edge modes can correspond to a nonzero winding
number, i.e., the bulk-boundary correspondence relationships
[8–11]. Meanwhile, the SSH model and its numerous exten-
sions have been extensively studied to gain insights into a
wide range of physical phenomena. Among these extensions,
the odd-sized SSH model uniquely exhibits a single, persistent
edge state, in contrast to the two edge states observed in
even-sized cases. This intriguing phenomenon is commonly
referred to as the odd-even effect of the SSH model [8,12,13].

By introducing non-Hermiticity, the interaction between
topological insulators and the environment in open systems
exhibits more abundant physical phenomenon [14–19] whose
theoretical models have been successfully implemented in
diverse experimental platforms, including optomechanical
systems [11,20–22] and electronic circuits [13,23]. One of the
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unique features in non-Hermitian systems is the appearance
of complex energy spectra, except for certain systems with
parity-time (PT ) symmetry and pseudo-Hermiticity [24–27].
Another intriguing phenomenon in physics is known as the
non-Hermitian skin effect (NHSE), where the eigenstates of a
system tend to accumulate near the boundaries of a lattice or
system. [28–34]. Additionally, the non-Hermitian topological
systems incorporating nonreciprocal hopping display intricate
band structures and offer valuable physical insights, including
non-Hermitian bulk-boundary correspondence relationships
and exceptional points [35–43]. However, we should point out
that previous works related to the non-Hermitian SSH lattices
and their extensions tacitly acknowledged that the edge and
skin states should possess an aligned localized direction, yet
no one has ever suspected it. Therefore, a crucial question
arises: Can the bulk states exhibit an opposite localized di-
rection to that of the edge state in non-Hermitian lattices and
under what conditions does this phenomenon occur?

To tackle these inquiries, we investigate the localized direc-
tions of edge and skin states in a one-dimensional odd-sized
non-Hermitian lattice under open boundary conditions. Our
findings demonstrate that the lattice can support four types
of edge and skin states, determined by the signs of the
directional inverse participation ratio (dIPR), namely, [left-
localized edge state (L-E), right-localized skin states (R-S)],
[left-localized edge state (L-E), left-localized skin states
(L-S)], [right-localized edge state (R-E), left-localized skin
states (L-S)], and [right-localized edge state (R-E), right-
localized skin states (R-S)], respectively. Our results reveal
that the localized directions of the bulk and edge states are
respectively determined by the non-Hermitian skin effects and
isolated site induced by the odd size of the lattice, resulting
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in the detachment between edge and bulk states. Notably,
this phenomenon has not been elucidated in other litera-
ture, including the nonreciprocal non-Hermitian even-sized
SSH lattices [16,19,31,32], PT -symmetric non-Hermitian
systems [26,27], and non-Hermitian topological lattices with
long-range interactions [17,29,39]. To gain a comprehensive
understanding of the opposite localization behaviors among
eigenstates, we analyze and calculate the boundary conditions
governing the localization directions of edge and skin states,
which enables us to classify eigenstates into distinct localiza-
tion types. Importantly, our analytical results closely match
the numerical findings, validating the accuracy and validity
of our approaches. Furthermore, we expand this unique be-
havior to trimer non-Hermitian lattices and identify a pair
of eigenstates exhibiting opposite localization compared to
the skin states. Our research reveals the inherent detachment
between edge and skin states in dimer and even multimer
non-Hermitian systems with nonreciprocal hopping.

The paper is organized as follows. In Sec. II, we demon-
strate the model and Hamiltonian. In Sec. III, the detachment
between edge and skin states is analyzed and discussed. In
Sec. IV, the analytical and numerical results are investigated.
In Sec. V, we extend the detachment between edge and skin
states into the trimer and multimer non-Hermitian lattice. Fi-
nally, we give the conclusion in Sec. VI.

II. MODEL AND HAMILTONIAN

We consider an odd-sized non-Hermitian SSH model under
open boundary conditions, described by the Hamiltonian

H =
N∑

j=1

[tLc†
j,Ac j,B + tRc†

j,Bc j,A]

+
N∑

j=1

[νc†
j+1,Ac j,B + νc†

j,Bc j+1,A], (1)

where c(†)
j,A and c(†)

j,B are the annihilation (creation) operators
for sublattices A and B in the jth cell, respectively. The in-
tracell hopping strengths in opposite directions are denoted as
tR(L) = λ(t ± �) and ν = λJ is the reciprocal intercell hop-
ping strength with λ = 1 being set as the unit of energy. Here,
� and J are positive real constants and the total lattice size is
L = 2N + 1.

The non-Hermitian skin effect arises from the presence
of intracell nonreciprocal hopping terms, which leads to the
localization of eigenstates at one edge of the lattice. To assess
the extension and localization of these eigenstates, we employ
the inverse participation ratio IPRn = ∑L

j=1 |ψn, j |4/(〈ψn |
ψn〉)2. Here |ψn〉 denotes the right eigenstate with compo-
nent ψn, j and satisfies H |ψn〉 = En|ψn〉, with H being the
model Hamiltonian and En the nth eigenenergy. Notably, in
the thermodynamic limit (L is large enough), the IPR −→ 0
for extended states and IPR −→ 1 for localized states, re-
spectively. However, relying solely on the IPR is insufficient
to directly discern the localized directions of the edge and
bulk states. Consequently, we introduce the dIPR [37,38] as

FIG. 1. Schematic diagram of even-sized (L = 2N) and odd-
sized (L = 2N + 1) SSH lattices shown in (a) and (b). The intracell
nonreciprocal and intercell reciprocal hoppings are represented as
tR(L) = λ(t ± �) and λJ , respectively. The blue and red circles de-
note sublattices A and B. Here, TNP means topological nontrivial
phase. ES and BS correspond the edge and bulk states of system.
L-S (E) and R-S (E) denote the left-localized and right-localized
skin(edge) states, respectively.

a complementary measure, defined as

dIPR(ψn) = P (ψn)
L∑

j=1

|ψn, j |4
(〈ψn|ψn〉)2 , (2)

where the P (ψn) = sgn[
∑L

j=1( j − L
2 − δ)|ψn, j |]. Here, the

sgn(x) is positive for x > 0 and negative for x < 0. The
parameter δ satisfies 0 < δ < 0.5. P (ψn) encodes the direc-
tional information of eigenstates ψn, enabling dIPR to discern
whether a specific wave function is left-localized or right-
localized. In our paper, the positive and negative values of
dIPR represent right-localized and left-localized eigenstates,
respectively. As an illustration, we demonstrate the eigenen-
ergy spectra characterized by the dIPR in the even-sized
non-Hermitian SSH model whose model is shown in Fig. 1(a).
The dIPR values for the edge and bulk states consistently
exhibit positive values for t < 0 and negative values for t > 0,
respectively, as shown in Figs. 2(a) and 2(b). These findings
suggest that the edge and skin states consistently demonstrate
an aligned localized direction whose behaviors can also be
confirmed from their probability distribution of eigenstates,
as shown in Figs. 2(c) and 2(d). Notably, the inherent chiral
symmetry of the Hamiltonian leads to a notable phenomenon:
altering the signs of both t and � produces an equivalent
impact on the localized directions of the both edge state and
the skin state whose intriguing phenomenon has been metic-
ulously investigated in Ref. [44]. The behavior of eigenstates,
characterized by the aligned localized direction of the edge
and skin states, can be observed across various even-sized
non-Hermitian SSH models and their extensions. However,
whether the edge states consistently maintain the aligned lo-
calized direction as the skin states in dimer non-Hermitian
systems is still unclear.

III. DETACHMENT BETWEEN EDGE AND SKIN STATES

Here, we investigate the behavior of edge and bulk states
in an odd-sized non-Hermitian SSH model, as shown in
Fig. 1(b). We demonstrate the real and imaginary energy
spectrum of the odd-sized non-Hermitian SSH model char-
acterized by the dIPR in Figs. 3(a) and 3(b) in which an
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FIG. 2. (a) and (b) show the real and imaginary parts of the
energy spectra featured by dIPR under open boundary conditions with
the lattice size L = 30, in which the color bar of blue (dIPR < 0)
and yellow (dIPR > 0) regions denote the left-localized and right-
localized eigenstates. (c) and (d) correspond to the distributions
of some representative eigenstates eigenstates with t = −0.6 and
t = 0.6, respectively. The rest parameters are determined as J = 1.1,
� = 0.2, and δ = 0.2.
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FIG. 3. (a) and (b) demonstrate the real and imaginary parts
of the energy spectra featured by dIPR under open boundary con-
ditions with lattice size L = 31, in which the color bar of blue
(dIPR < 0) and yellow (dIPR > 0) regions denote the left-localized
and right-localized eigenstates. [(c)–(f)] correspond to the distribu-
tions of some representative eigenstates with t = −2, t = −0.35,
t = 0.35, and t = 2, respectively. The rest parameters are determined
as J = 1.1, � = 0.2, and δ = 0.2.

ever-present edge state occurs in the band gap as mentioned
before. The counterintuitive yet intriguing behaviors are man-
ifested through the signs of dIPR, where the dIPR displays
distinct signs for the edge and skin (bulk) states in certain
parameter regions, indicating the presence of opposite local-
izations between the edge and skin states. Subsequently, we
further categorize the eigenstates into four distinct regimes of
interest based on the signs of dIPR for the edge and skin states.

In regime I, the dIPR values for the edge and skin states
maintain opposite signs. Specifically, the edge state exhibits
a positive dIPR, while the skin states hold negative dIPR. This
phenomenon indicates the detachment between the edge and
skin states for t < −1.3 (−t > J + �). The presence of an
isolated site induced by the odd size ensures a right-localized
edge state (R-E), while the NHSE drives the bulk states to
the left boundary, resulting in left-localized skin states (L-S),
namely, R-E and L-S. Moreover, the probability distribution
of the edge (red line) and skin states (blue lines) in Fig. 3(c)
confirms their right-localized and left-localized behaviors,
consistent with the dIPR values in regime I.

In regime II, both the edge and bulk states have negative
dIPR values, which indicates that the edge and skin states
share the aligned localized direction for −1.3 < t < 0 (0 <

−t < J + �). In this case, the edge state is left-localized
(L-E) and the skin states are also left-localized (L-S), namely,
L-E and L-S. The presence of the isolated site and the skin
effect contributes to the left localization of the edge and bulk
states. Furthermore, the probability distributions in Fig. 3(d)
show that all eigenstates are left-localized, coinciding with the
behaviors of dIPR observed in regime II.

In regime III, resembling regime I, the edge and bulk states
exhibit opposite signs of dIPR. However, in this case, the dIPR

value for the edge state is negative, while the bulk states
exhibit positive dIPR values. This indicates the detachment
between the left-localized edge state (L-E) and the right-
localized skin states (R-S) for 0 < t < 0.9 (0 < t < J − �),
namely, L-E and R-S whose essence is similar to regime I,
but with opposite direction. The behaviors of the edge (red
line) and skin states (blue lines) in Fig. 3(e) confirm their
left-localized and right-localized characteristics, respectively,
consistent with the signs of dIPR in regime III.

In regime IV, similar to regime II, both the edge and
bulk states maintain positive dIPR values. This implies that
the edge state and the bulk states are simultaneously right-
localized for t > 0.9 (t > J − �), namely, R-E and R-S. The
presence of the isolated site and the skin effect contributes
to the right localization of both the edge and bulk states.
In addition, the probability distributions in Fig. 3(f) confirm
the right-localized behavior of all eigenstates, consistent with
the results in regime IV. Notably, regimes I and III exhibit a
counterintuitive phenomenon where the edge state is detached
from the skin states, a behavior rarely discussed in other non-
Hermitian literature.

IV. NUMERICAL AND ANALYTICAL RESULTS

A. Numerical results

Notably, in the previous chapter, we identified the de-
tachment phenomenon between the edge and bulk states,
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FIG. 4. Phase diagram of the eigenstates’ localized direction
presents degree of detachment as a function of the parameters t
and J with the system size L = 31 and � = 0.2. There are four
different phases. Blue regions denote the opposite localized phase
with Degree = 1/L = 0.032, where only one right-localized eigen-
state exists and the rest eigenstates are all left-localized. Cyan region
presents the same localized phase with Degree = 0/L = 0, where
all eigenstates are left-localized. Green region denotes the opposite
localized phase with Degree = 30/L = 0.968, where only one eigen-
state is left-localized and the rest of the eigenstates are localized on
the right boundary. Yellow region presents the same localized phase
with Degree = 31/L = 1, where all eigenstates are right-localized.
The red dashed and solid lines are the analytical phase boundaries of
the localized directions for the edge and skin states whose results are
demonstrated in Eqs. (3) to (5).

but it was limited to a specific parameter regime. It is cru-
cial to note that this finding does not reflect the general
behavior observed across all parameter regimes. To further
investigate the detachment phenomenon between edge and
skin states, the degree of detachment is introduced and
defined as Degree = Xn[dIPR(ψn) > 0]/{Xn[dIPR(ψn) > 0] +
Yn[dIPR(ψn) < 0]} [37,38], where Xn and Yn are the number of
eigenstates with right-localized and left-localized directions,
respectively. A degree of detachment being 1 indicates that
all eigenstates are right-localized, while the degree approach-
ing 0 suggests that all eigenstates are left-localized, and no
detachment phenomenon occurs. Intermediate degree values
between 0 and 1 indicate the presence of the detachment
phenomenon between edge and bulk states. Then we show
the degree of detachment as a function of t and J in Fig. 4.
The parameter plane is divided into four regions: the cyan and
yellow regions correspond to Degree = 0 and Degree = 1,
respectively, indicating all eigenstates are left or right local-
ization. In addition, the blue and green regions represent the
existence of only one right-localized edge state (R-E) and one
left-localized edge state (L-E), respectively, indicating the op-
posite localization between edge and skin states. The detailed
values of the degree are demonstrated in the annotation.

B. Analytical results

From an analytical perspective, we can explore the local-
ized behaviors of the edge and skin states and explain the
nature of the detachment phenomenon. Two crucial factors

come into play: the edge state determined by the compe-
tition between intracell and intercell hopping and the skin
states determined by the strength of nonreciprocal hopping
[18,28,31,38].

1. Localized direction for edge state

As is widely known, the presence of an isolated site can
give rise to the appearance of edge states when the strength of
intercell hopping surpasses that of intracell hopping, regard-
less of the Hermitian or non-Hermitian SSH model. However,
for odd-sized lattices, there is always an isolated site irrespec-
tive of the hopping strengths. The different hopping regimes
between the intracell and intercell result in distinct isolated
lattice sites, corresponding to different localized directions
for the edge states. When the strength of intercell hopping
exceeds the maximum value of the intracell nonreciprocal
hopping, a left-localized edge state occurs at the end of the
lattice. Conversely, a right-localized edge state appears. These
regimes can be described as boundary conditions between
the left and right-localized edge states as J = |max(tL, tR)|,
where a left-localized edge state appears for J > |max(tL, tR)|
and a right-localized edge state appears for the opposite case.
Specifically, for J < t + � when t > −� and J < −(t + �)
when t < −�, there is a right-localized edge state. In addi-
tion, a left-localized edge state appears while J > t + � and
J > −(t + �). These conditions of the localized directions
for edge state can be represented as

t > −�

{−� < t < J − �, L-E,

t > J − �, R-E,
(3)

t < −�

{−(J + �) < t < −�, L-E,

t < −(J + �), R-E.
(4)

The analytical boundary conditions for the existence of
left-localized or right-localized edge states are consistent with
the numerical results, as the red dashed lines shown in Fig. 4
whose results identify the analytical solutions for the localized
direction of the edge state.

2. Localized direction for skin states

For the non-Hermitian skin effect, the behavior of bulk
states is closely related with the strength of nonreciprocal
hopping, which means that the max(|tL|, |tR|) determines the
localized direction of skin states. Left-localized skin states
appear when |tL| > |tR|, while right-localized skin states occur
when |tR| > |tL|. Therefore, the conditions of the localized
direction for the skin states can be expressed as{

t < 0, |t − �| > |t + �|, L-S,

t > 0, |t + �| > |t − �|, R-S.
(5)

Similarly, the analytical results for the skin states also
coincide with the numerical results, as in the red solid line
shown in Fig. 4. Furthermore, by combining the analytical so-
lutions for the edge and skin states, we provide their localized
conditions under different parameters in Table I. We confirm
that the parameter regions for aligned and opposite localized
directions correspond precisely to the cyan (yellow) and blue
(green) regions, respectively, as labeled in Fig. 4. Moreover,
our analytical results demonstrate excellent agreement with
the numerical findings.
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TABLE I. The localized directions of bulk and skin states are reflected by different nonreciprocal hopping parameters whose results
originate from Eqs. (3) to (5). Left and right localizations denote the localized directions of wave functions. Corporate localized directions
represent the behavior of all eigenstates in which the opposite and aligned directions indicate the edge and skin states maintain an opposite
and aligned localized direction. Parameter regions correspond to the numerical results in Fig. 4 in which the blue (green) and cyan (yellow)
regions indicate the existence and disappearance of the detachment phenomenon.

Hopping parameters Bulk states Edge states Corporate localized directions Parameter regions

t < −(J + �) left localization right localization opposite direction blue region
−(J + �) < t < −� left localization left localization aligned direction cyan region
t > J − �, t > −� left localization left localization aligned direction cyan region
J − � < t < 0 left localization right localization opposite direction blue region
0 < t < J − � right localization right localization aligned direction yellow region
t > J − �, t > 0 right localization left localization opposite direction green region

V. DETACHMENT PHENOMENA IN MULTIMER
NON-HERMITIAN LATTICE

The non-Hermitian SSH model and its various exten-
sions have been widely explored to reveal novel physical
phenomena whose each unit cell contains two sublattices
[26,31,33,34]. For comparison, we call it the SSH3 or SSHN
models when each cell contains three or more sublattices
[45,46]. Here, we extend our exploration to a trimer non-
Hermitian SSH3 model under open boundary conditions
whose model schematic illustration is demonstrated in Fig. 5.
The non-Hermitian Hamiltonian with intracell nonreciprocal
hopping can be written as (λ = 1 is omitted)

Htri =
N∑

j=1

[(t1 + γ )A†
jB j + (t1 − γ )B†

j A j]

+
N∑

j=1

[t2B†
jCj + t2C

†
j B j]

+
N−1∑
j=1

[TC†
j A j+1 + TA†

j+1Cj], (6)

where A(†)
j , B(†)

j , and C(†)
j are the annihilation (creation) oper-

ators for sublattices A, B, and C in the jth cell, respectively.
The reciprocal intercell hopping is represented by T , and
the intracell reciprocal and nonreciprocal hopping strengths
are denoted as t2 and t1 ± γ , respectively. Here, γ , t2, and T
are positive real constants. Similar to the previous analysis, we
examine the behavior of eigenstates by analyzing the real and
imaginary parts of energy spectra characterized by dIPR. The
results divide the behaviors of eigenstates into four regions,
as shown in Figs. 6(a) and 6(b), where the regions indicated
by blue arrows exhibit an aligned localized direction among
eigenstates, while the regions indicated by red arrows display
the opposite localized directions. For the regions denoted by

FIG. 5. Schematic diagram of trimer SSH lattice. The intracell
hoppings denote as (t1 ± γ ) and t2; the intercell hoppings are repre-
sented as T . All of the hoppings are in units of λ = 1. The blue, red,
and yellow circles denote sublattices A, B, and C, respectively.

blue arrows, i.e., t1 < −0.5 and 0 < t1 < 0.94, the dIPRs of
the eigenstates maintain aligned signs and all eigenstates are
left-(right-)localized. This is evident from the probability dis-
tributions shown in Figs. 6(c) and 6(e) for their left-localized
and right-localized behaviors, respectively. In contrast, for
the regions denoted by red arrows, i.e., −0.5 < t1 < 0 and
t1 > 0.94, a pair of eigenstates exhibit opposite signs of dIPR

compared to the other eigenstates and the edge states support
the opposite localized directions with the skin states. This be-
havior can also be reflected from the probability distributions
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FIG. 6. (a) and (b) show the real and imaginary parts of the
energy spectra featured by dIPR for Htri under open boundary con-
ditions with lattice size L = 33, in which the color bar of blue
[dIPR(ψn) < 0] and yellow [dIPR(ψn) > 0] regions denote the left-
localized and right-localized eigenstates. [(c)–(f)] correspond to the
distributions of some representative eigenstates with t1 = −2, t1 =
−0.2, t1 = 0.2, and t1 = 2, respectively. The rest parameters are
determined as t2 = 0.6, T = 1, γ = 0.4, and δ = 0.2.
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in Figs. 6(d) and 6(f), where left-localized skin states and a
pair of right-localized edge states are observed in Fig. 6(d),
while right-localized skin states and a pair of left-localized
bound states are observed in Fig. 6(f). These results indi-
cate the existence of the detachment phenomenon among the
eigenstates in the trimer non-Hermitian system.

It is important to note two aspects: First, unlike the de-
tachment between the edge and skin states in the dimer
non-Hermitian system, a pair of opposite localized eigenstates
appear with respect to the trimer case, and the detachment
phenomenon can also occur for the bulk states. Second, the
opposite and aligned localization among eigenstates can also
be observed in the imaginary parts of the energy spectrum fea-
tured by dIPR. These findings demonstrate the presence of de-
tachment between eigenstates in multimetric non-Hermitian
lattices. Our work reveals the detachment phenomenon among
eigenstates and enriches our understanding of the localized
directions of eigenstates in non-Hermitian physics.

VI. CONCLUSION

In conclusion, we investigate the nonreciprocal non-
Hermitian odd-sized SSH lattice and reveal the nature of
detachment between the edge and skin states. We begin with
the spectrum featured by dIPR and analyzed the eigenstates
of the even-sized non-Hermitian SSH lattice, laying the foun-
dation for exploring the detachment between the edge and
skin states. By analyzing the spectrum and eigenstates of

the odd-sized system, we identify four types of eigenstates
based on the signs of dIPR for the edge and skin states: [L-E,
R-S], [L-E, L-S], [R-E, L-S], and [R-E, R-S]. Our results
reveal that the localized directions of bulk and edge states are
subject to skin effects and isolated site induced by odd size,
respectively. The signs of dIPR further confirmed the existence
of detachment between the edge and skin states. Moreover,
the analytical solutions provide compelling evidence for the
presence of aligned and opposite localized orientations be-
tween the edge and skin states whose findings are in excellent
agreement with the numerical results, further supported by
the degree of detachment. In the trimer non-Hermitian lattice,
we also observe the detachment phenomenon, where a pair
of eigenstates exhibit opposite localized directions compared
to the skin states. This intriguing discovery emphasizes the
occurrence of detachment phenomenon among eigenstates in
the trimer non-Hermitian lattice. Overall, our study reveals
the intriguing detachment phenomenon between the edge and
bulk states in the dimer odd-sized non-Hermitian SSH lat-
tice. This significant finding provides compelling evidence
for the existence of detachment in multimetric non-Hermitian
lattices.
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