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Quantum measurement-feedback models of friction beyond the diffusive limit
and their connection to collapse models
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We present and discuss a master equation blueprint for a generic class of quantum measurement-feedback-
based models of friction. A desired velocity-dependent friction force is realized on average by random repeated
applications of unsharp momentum measurements followed by immediate outcome-dependent momentum dis-
placements. The master equations can describe arbitrarily strong measurement-feedback processes as well as the
weak continuous limit resembling diffusion master equations of Caldeira-Leggett type. We show that the special
case of linear friction can be equivalently represented by an average over random position measurements with
squeezing and position displacements as feedback. In fact, the dissipative continuous spontaneous localization
model of objective wave-function collapse realizes this representation for a single quantum particle. We refor-
mulate a consistent many-particle generalization of this model and highlight the possibility of feedback-induced
correlations between otherwise noninteracting particles.
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I. INTRODUCTION

Friction is a ubiquitous phenomenon that affects most of
the dynamics we observe and use in everyday life. It is often
described phenomenologically as an emergent force between
macroscopic objects and media, conveniently kept under
wraps in undergraduate lectures on analytical mechanics. Mi-
croscopic quantum models of friction are typically based on
two paradigms: mediated interactions between mechanical
systems that come with retardation or delay, which lead to
velocity dependent forces; and the coupling of mechanical
systems to a large thermal reservoir, which converts useful
motion into uncontrolled excitations of many environmental
degrees of freedom.

An example of the first paradigm is the so-called quantum
friction that naturally arises as a velocity-dependent force be-
tween polarizable objects in relative motion [1,2]. An example
of the second paradigm is the Caldeira-Leggett master equa-
tion describing the quantum Brownian motion of a system,
arising either from continuous weak coupling to a bath of
harmonic oscillators [3] or from repeated collisions with a
background gas [4].

In contrast, many friction forces in the laboratory are en-
gineered by means of external control in order to cool down
motional degrees of freedom close to their ground state—a
crucial prerequisite for many quantum experiments with cold
atoms [5] or in optomechanics [6,7]. For example, if the in-
ternal structure of the system is accessible, Doppler cooling
can be used to dissipate kinetic energy [8] via spontaneous
emission. Alternatively, a loss of kinetic energy can also be
achieved by coherent light scattering into a damped cavity
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mode [9]. In feedback cooling, on the other hand, one moni-
tors the particle position and applies an appropriate feedback
force [10,11].

The latter feedback approaches to cooling typically op-
erate in the linearized, diffusive regime of continuous weak
measurements and weak Markovian feedback, for which
the closed-loop system dynamics are well described using
Langevin equations or Caldeira-Leggett-like master equa-
tions [12]. Here, we take one step back and consider a
generic blueprint of Markovian measurement-feedback fric-
tion models based on the random repeated application of
finite-resolution momentum measurements followed by finite-
strength unitary feedback operations. While a similar idea was
already formulated for position measurements and worked
out in the diffusive regime of weak measurements and linear
feedback in Ref. [13], we explore nondiffusive models for
more general momentum-dependent friction forces based on
momentum measurements of arbitrary strength—with gener-
alized diffusion master equations appearing as a limiting case.

After introducing our model and its main predictions for
a single-particle state in Sec. II, we focus on the most
prominent and convenient special case of linear friction in
Sec. III. Notably, this case allows us to reproduce the same
momentum-dependent friction force by position measure-
ments with subsequent feedback operations comprised of
squeezing and position-dependent translations. We prove that
the two alternative measurement-feedback models generate
the same outcome-averaged closed-loop dynamics. The model
will generally lead to a nonthermal equilibrium state, which
we will investigate in an exemplary harmonic oscillator case
study.

The last part of our paper, Sec. IV, explores the relation
between our framework and spontaneous collapse models,
which are objective modifications to the Schrödinger equa-
tion that reinstate macroscopic realism by gradually localizing
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the wave function of massive systems [14–17]. These mod-
els violate energy conservation, and recent experiments have
placed stringent bounds on the model parameters [18,19],
putting forth variations of these models that could include
dissipation. We focus on the dissipative extension of the most-
studied continuous spontaneous localization model (dCSL)
[20], which restricts the unbounded heating predicted by the
original CSL model [17,21] to a finite energy scale. We
find that the ensemble-averaged dynamics of a single particle
under dCSL can be understood as a measurement-feedback
friction process, i.e., falls under our generic master equa-
tion model for linear friction. Finally, we show that, unlike
CSL, the many-particle generalization of the dCSL model
cannot be based on an arbitrary reference mass scale and may
induce correlations between noninteracting particles in close
vicinity.

II. MEASUREMENT-FEEDBACK FRICTION MODELS

We formulate a blueprint model for measurement-feedback
friction of a single particle based on general (possibly non-
Gaussian) momentum measurements followed immediately
by feedback momentum kicks, which occur randomly in time
at a chosen rate.

Consider a probability density μ(p) � 0 over three-
dimensional momenta p and let M̂(q) = √

μ( p̂ − q) be the
associated positive operator valued measure (POVM) opera-
tors, so that∫

d3q M̂†(q)M̂(q) =
∫

d3q μ(q)1 = 1. (1)

Formally, such a POVM can be thought of as arising from the
idealized pointer interaction with an appropriately initialized
ancilla state [13,22], where μ is usually taken to be Gaussian.
Also, the measurement operators could in principle be based
on any complex square root of μ, i.e., in all the following,√

μ(q) = eiϕ(q)|√μ(q)| may be understood more generally as
a complex-valued function whose absolute square is μ(q).

Notice that the unconditional outcome-averaged measure-
ment has the same net effect on the particle state as a random
unitary process of position displacements [23],∫

d3q M̂(q)ρM̂†(q) =
∫

d3y ν(y) eiy·p̂/h̄ρ e−iy·p̂/h̄. (2)

The displacements are distributed according to the even prob-
ability density

ν(y) = ν(−y) = 1

(2π h̄)3

∣∣∣∣
∫

d3q eiq·y/h̄
√

μ(q)

∣∣∣∣2, (3)

normalized by virtue of Plancherel’s theorem. The identity (2)
proves helpful in later calculations.

Coherent feedback without delay can be implemented by
applying a conditional unitary Û (q) to the postmeasurement
state, as described by the modified POVM operators L̂(q) =
Û (q)M̂(q) and the conditional nonlinear state transformations

ρ �→ �q[ρ] = L̂(q)ρL̂†(q)

tr{L̂†L̂(q)ρ} = Û (q)M̂(q)ρM̂(q)Û †(q)

tr{M̂2(q)ρ} , (4)

where tr{L̂†L̂(q)ρ} = tr{M̂2(q)ρ} is the probability density for
the result q to occur. We restrict our view to momentum kicks

as feedback,

Û (q) = e−i f (q)·x̂/h̄, (5)

with a chosen momentum kick by − f (q), conditioned on the
measurement outcome q. This kick could be realized by rapid
controlled collisions or force impulses and shall implement
a desired mean friction force. The unconditional state trans-
formation, averaged with respect to the probability density
tr{L̂†L̂(q)ρ} over all outcomes, is then given by the linear map

�[ρ] =
∫

d3q tr{L̂†L̂(q)ρ} L̂(q)ρL̂†(q)

tr{L̂†L̂(q)ρ}
=
∫

d3q Û (q)M̂(q) ρ M̂(q)Û †(q). (6)

Since � has the form of a Kraus decomposition with Kraus
operators L̂(q), we can conclude that it is a completely pos-
itive and trace-preserving (CPTP) map, also referred to as a
quantum channel. It is easy to see that this channel is transla-
tion covariant,

�[eiz·p̂/h̄ρ e−iz·p̂/h̄] = eiz·p̂/h̄�[ρ]e−iz·p̂/h̄, (7)

and thus does not depend on the chosen origin of the particle
coordinate system. However, the channel does depend on the
chosen inertial reference frame, as the feedback unitary will
single out the origin of momentum as the rest velocity.

For a dynamical friction model, we assume that the pre-
scribed measurement-feedback process continuously affects
the particle state at an average rate �, either in the form of a
Poisson process of repeated jump events or gradually building
up continuously in time in the form of a diffusion process.
Ensemble-averaged over all possible random trajectories, we
can describe the evolution of the particle state ρt over a
small time step from t to t + dt as follows. With probability
1 − �dt , the particle state evolves undisturbed and unitarily
according to its Hamiltonian Ĥ , whereas with probability
�dt � 1, it is subjected to the channel (6), so that

ρt+dt = (1 − �dt )e−iĤdt/h̄ρt eiĤdt/h̄ + �dt �[ρt ] + O(dt2).
(8)

In the limit dt → 0, we can expand the coherent part and
arrive at the Markovian master equation

d

dt
ρt = − i

h̄
[Ĥ , ρt ] + �(�[ρt ] − ρt ), (9)

with its Lindblad operators given by L̂(q). This master equa-
tion is a special case of the continuous monitoring ansatz [24],
which can also be understood as the closed-loop master equa-
tion for a coherent feedback control model based on efficient
measurements [12].

A. Friction and diffusion effect

The time evolution of the mean and the variance of the
particle’s position and momentum provides a clear picture of
the impact of the measurement-feedback master equation (9).
For any observable Â, the expectation value 〈Â〉t = tr{Âρt }
evolves according to

d

dt
〈Â〉t = i

h̄
〈[Ĥ, Â]〉t + �〈�†[Â]〉t − �〈Â〉t . (10)
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Here, �† denotes the adjoint channel defined through
tr{�†[Â]ρ} ≡ tr{Â�[ρ]}, which has the form

�†[Â] =
∫

dq M̂(q)Û †(q)ÂÛ (q)M̂(q). (11)

Denoting classical expectation values by Eμ(q)[ f (q)] =∫
d3q μ(q) f (q), we can express the transformation of purely

momentum- or position-dependent functions under the adjoint
channel by

�†[F ( p̂)] = Eμ(q)(F [ p̂ − f ( p̂ − q)]), (12)

�†[G(x̂)] = Eν(y)[G(x̂ − y)]. (13)

See Appendix A for a step-by-step derivation. Note that, in the
case of the position operator, we have made use of (2), and the
result does not depend on the choice of the feedback function
f .

From the above expressions and the fact that ν is an even,
zero-mean distribution, we can deduce the time evolution of
the first and second moments of position and momentum. The
mean values evolve according to

d

dt
〈x̂〉t = i

h̄
〈[Ĥ , x̂]〉t , (14)

d

dt
〈p̂〉t = i

h̄
〈[Ĥ , p̂]〉t − �Eμ(q)[〈 f ( p̂ − q)〉t ]. (15)

Leaving the Hamiltonian part aside, we observe that the
measurement-feedback channel leaves the mean particle posi-
tion unaffected, while inducing a momentum-dependent mean
force, as determined by the chosen feedback function f
smeared out over the distribution of uncertain measurement
outcomes.

For the pure second moments, we have

d

dt
〈x̂2〉t = i

h̄

〈
[Ĥ, x̂2]

〉
t + �Eν(y)[y2], (16)

d

dt
〈p̂2〉t = i

h̄
〈[Ĥ , p̂2]〉t − 2�〈p̂ · Eμ(q)[ f ( p̂ − q)]〉

+ �〈Eμ(q)[ f 2( p̂ − q)]〉. (17)

Here, we observe that the momentum measurement causes
position diffusion, i.e., a constant growth of the position
uncertainty over time. This noise effect is the result of
measurement backaction on the observable conjugate to the
measured one, regardless of whether a feedback unitary Û (q)
is applied upon measuring q. The momentum uncertainty, on
the other hand, may be lowered by the effective friction force,
but this is compromised by the injected feedback noise, as
given by the non-negative last term in (17). It arises because
the actual strength of the feedback is determined by the uncer-
tain measurement outcome through f . In the usually studied
setting of weak measurements and linear feedback, both the
measurement and the feedback noise reduce to constant (i.e.,
state-independent) diffusion rates of the conjugate coordinates
[12]. Here, however, the more general feedback function f
admits state-dependent momentum diffusion.

We remark that
√

μ and
√

ν are related to each other by
Fourier transform, in the same fashion as position and mo-
mentum wave functions. This implies an uncertainty relation

between the second moments,

(Eμ(q)[q2] − Eμ(q)[q]2)Eν(y)[y2] � 3
4 h̄2, (18)

which expresses a trade-off between the feedback noise and
the measurement noise that the process imparts on the particle
in (16) and (17).

In order to realize a net friction force that slows down
the particle, the feedback kick − f should point opposite to
the measured momentum, i.e., f (q) = f̄ (q)q/q with some
f̄ (q) � 0. Together with the additional requirement of an
isotropic measurement distribution μ(q) = μ̄(q), this ensures
that the measurement-feedback channel � is rotationally co-
variant; see Appendix E for a proof. The simplest and most
natural choices for the feedback include: (i) f (q) = αq mim-
icking linear friction with a dimensionless strength parameter
α > 0, (ii) f (q) = αCq/q mimicking a constant friction, and
(iii) f (q) = αSqq mimicking a quadratic drag. We will restrict
our view to the linear option (i), as it keeps calculations com-
parably simple and admits a straightforward many-particle
generalization. The other two options could be considered as
viable alternatives that result in a relative enhancement of the
friction rate at (ii) smaller or (iii) greater velocities.

B. Diffusion limit and the Caldeira-Leggett master equation

The majority of case studies in quantum feedback control
and its quantum optical implementations are concerned with
the limit of weak measurement-feedback processes, mostly
in the form of a continuous diffusion process. In our model
(9), this amounts to a broad measurement distribution μ that
barely resolves the particle’s momentum state and to small
momentum kicks f that barely displace the particle. Expand-
ing the measurement-feedback channel up to second order
in the position and momentum quadratures leaves us with a
diffusion master equation,

d

dt
ρ ≈ − i

h̄
[Ĥ − F · x̂, ρ] − �

∑
jk

(Ajk[ p̂ j, [ p̂k, ρ]]

+ iB jk[x̂ j, { p̂k, ρ}] + Cjk[x̂ j, [x̂k, ρ]]); (19)

see Appendix B for a detailed derivation. Here F = �Eμ[ f ]
denotes a constant mean drift force and A, B,C are real-valued
diffusion matrices with elements

Ajk = −1

8
Eμ(q)

[
∂2 ln μ(q)

∂q j∂qk

]
= Eν(y)[y jyk]

2h̄2 ,

Bjk = 1

2h̄
Eμ(q)

[
∂ f j (q)

∂qk

]
, Cjk = Eμ(q)[ f j (q) fk (q)]

2h̄2 . (20)

Leaving the Hamiltonian Ĥ aside, these terms can be identi-
fied as the drift and diffusion coefficients of a six-dimensional
Fokker-Planck equation that evolves the Wigner function rep-
resenting the particle state in phase space [25]. The matrices A
and C are responsible for position and momentum diffusion,
respectively, while B incorporates an effective friction force.

Conversely, if one is given a friction-diffusion master equa-
tion of the above form (19), the identities (20) can be viewed
as prescriptions for constructing a measurement distribution μ

and feedback function f such that (19) approximates the mas-
ter equation (9). Contrary to the former, the latter is comprised
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of mathematically benign bounded measurement and unitary
feedback operators, which can improve numerical stability in
simulations.

As an instructive example that we will expand upon in the
following sections, consider the case of linear friction, f (q) =
αq, and a Gaussian measurement distribution with zero mean
and covariance matrix 
 � 0,

μ(q) = 1

(2π )−3/2
√

det(
)
e− 1

2 qT
−1q. (21)

This choice results in a vanishing drift, F = 0, while the
diffusion matrices simplify to

A = 1

8

−1, B = α

2h̄
1, C = α2

2h̄2 
. (22)

They are all diagonal in the orthonormal eigenbasis of 
.
Without loss of generality, we can thus take these eigenvectors
as the Cartesian axes of our coordinate system, which allows
us to express the diffusion master equation (19) in diagonal
form,

d

dt
ρ = − i

h̄
[Ĥ , ρ] − �

2

3∑
j=1

(
1

4σ 2
j

[p̂ j, [ p̂ j, ρ]]

+ i
α

h̄
[x̂ j, { p̂ j, ρ}] + α2σ 2

j

2h̄2 [x̂ j[x̂ j, ρ]]

)
, (23)

where the σ 2
j denote the eigenvalues of 
. This form high-

lights the trade-off between measurement and feedback noise
in the process. Outcome-averaged momentum measurements
lead to position diffusion in proportion to 1/σ 2

j , which is less
invasive the poorer the measurement resolution. Conversely,
the feedback is based on the measurement outcomes and
therefore inflicts more momentum diffusion the greater the
measurement uncertainties σ 2

j .
The master equation (23) can be rewritten in the familiar

Lindblad form [26],

d

dt
ρ =− i

h̄

⎡
⎣Ĥ + �α

2

3∑
j=1

{x̂ j, p̂ j}, ρ
⎤
⎦+ �

2

3∑
j=1

D[�̂ j]ρ,

(24)

with the usual abbreviation D[L̂]ρ = L̂ρL̂† − {L̂†L̂, ρ}/2 and
the Lindblad operators

�̂ j = α

√
2σ j

h̄
x̂ j + i

1√
2σ j

p̂ j . (25)

We recognize (24) as a three-dimensional and completely
positive version of the Caldeira-Legett master equation [3,26].

III. SINGLE-PARTICLE MODELS
WITH LINEAR FRICTION FORCE

We now put our focus on measurement-feedback models
for linear friction on a single particle, viz. the channel (6)
and the master equation (9) with f (q) = αq. We show that the
same channel can be realized in a different manner, as a po-
sition measurement-feedback protocol. Moreover, we discuss

the dissipation dynamics under the master equation, highlight-
ing that the steady state is in general not a Gibbs state. As an
exemplary case study, we consider one-dimensional motion
in a harmonic trap. Finally, we comment on the advantages of
restricting to the often used Gaussian measurements.

A. Equivalence to a position measurement-feedback channel

The Kraus representation of a quantum channel is not
unique. In the present case of a continuous set of Kraus op-
erators L̂(q), consider an invertible transformation to the new
set of operators,

K̂ (y) =
∫

d3q u(y, q)L̂(q), (26)

where the kernel obeys
∫

d3y u(y, q)u∗(y, q′) = δ(3)(q − q′).
It is then clear that

�[ρ] =
∫

d3q L̂(q)ρL̂†(q) =
∫

d3y K̂ (y)ρK̂†(y). (27)

We obtain a surprisingly simple and intuitive alternative repre-
sentation of the measurement-feedback channel (6) for linear
friction f (q) = αq if we choose the rescaled Fourier kernel
u(y, q) = (α/2π h̄)3/2 exp(iαy · q/h̄) and restrict to 0 < α <

1:

K̂ (y) =
( α

2π h̄

)3/2
∫

d3q ei[αy·q− f (q)·x̂]/h̄
√

μ( p̂ − q)

= exp

(
i p̂
h̄

αy
1 − α

)
Ŝ(α)

√(
α

1 − α

)3

ν

[
α

1 − α
(x̂ − y)

]
(28)

In other words, the channel � comprised of unconditional
momentum measurements according to the distribution μ

with outcomes q and subsequent linear momentum transla-
tions by −αq can be equivalently represented by position
measurements according to the conjugate distribution (3)
over positions rescaled by α/(1 − α), followed by unitary
feedback. The latter consists of the (outcome-independent)
squeezing operation

Ŝ(α) = exp

[
i ln (1 − α)

x̂ · p̂ + p̂ · x̂
2h̄

]
, (29)

followed by a linear position translation by −αy/(1 − α). The
proof of this equivalence is detailed (and extended to α > 1)
in Appendix C.

A pictorial representation of the channel � in Wigner-
Weyl phase space is sketched for one spatial dimension
in Fig. 1. We start from an initial state ρ correspond-
ing to the Wigner function wρ (x, p) ∝ �(p − 3p0)�(8p0 −
p)�(x − x0)�(6x0 − x) depicted in Fig. 1(a), where x0, p0

are some chosen position and momentum units such that
x0 p0 = h̄. Figures 1(b)–1(d) illustrate the application of �

expanded in terms of the L̂, as given by (6): an unsharp
(here Gaussian) momentum measurement with outcome q
yields the postmeasurement state [Fig. 1(b)], which is then
displaced in momentum by the subsequent feedback kick in
Fig. 1(c), and integrating over all possible outcomes q then
results in the state in Fig. 1(d). Figures 1(e)–1(h) show the
alternative K̂-representation of the channel in (27) in terms
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FIG. 1. Illustration of two alternative quantum measurement-feedback protocols representing the same friction channel � of strength α =
1/2 in one-dimensional phase space. Positions and momenta are given in some natural units x0 and p0, and we assume Gaussian momentum
measurements with standard deviation 2p0. Starting from the exemplary Wigner function in (a), the first protocol consists in (b) an unsharp
momentum measurement, here with outcome q = 6p0, followed by (c) a momentum displacement by −αq = −3p0, which after averaging
over all possible outcomes q yields the final state (d). Alternatively, one performs (e) a conjugate unsharp position measurement with outcome
y = 2x0, followed by (f) a momentum squeezing operation by ξ = − ln 2 and (g) a translation by αy/(α − 1) = −2x0, which results in the
same outcome-averaged state (h) as before.

of an unsharp position measurement [Fig. 1(e)], squeezing
[Fig. 1(f)], position translation [Fig. 1(g)], and integration
over all measurement outcomes [Fig. 1(h)].

Once again, we take
√

ν as a generalized (possibly
complex-valued) square root of ν defined via

√
ν(y) =

∫
d3q

(2π h̄)3/2
eiq·y/h̄

√
μ(q). (30)

The squeezing caused by (29) can be made explicit by in-
troducing auxiliary harmonic frequencies ω j and bosonic
operators â j for the Cartesian components j = 1, 2, 3, such
that â j = √mω j/2h̄(x̂ j + i p̂ j/mω j ). We can then express the
unitary (29) as a product of three single-mode squeezing op-
erators defined in the usual manner [27],

Ŝ(α) =
3⊗

j=1

exp

[
ξ ∗

j â2
j − ξ j â

†2
j

2

]
, (31)

with squeezing parameters ξ j = ln(1 − α).
We notice that the Kraus operators (28) are ill-defined for

α = 0, which shows that the equivalence between the two
channels only holds in the presence of a feedback force. For
α = 1 and α > 1, we have similar but rather technical results
that are explained in Appendix C.

The representation of the measurement-feedback channel
in terms of the K̂ (y) will be useful in Sec. IV A, where we
show that the dCSL model for a single particle is equivalent
to the linear measurement-feedback friction model with a
Gaussian distribution μ.

B. Dissipation effect and steady state

Let the particle be subject to random applications of the
measurement-feedback channel with rate � in an arbitrary
potential, Ĥ = p̂2/2m + V (x̂). At first glance, the linear feed-

back induces a net slowing of the particle for any α > 0, as
apparent from the resulting damping term in the equation of
motion for the average momentum (15),

d

dt
〈p̂〉t = −〈∇V (x̂)〉t − �α〈p̂〉t + �αEμ(q)[q]. (32)

Presuming that the momentum measurement is unbiased,
Eμ(q)[q] = 0, a free particle would eventually come to a halt
on average, 〈p̂〉t→∞ → 0. However, damping of average mo-
mentum does not always imply dissipation of kinetic energy.
Its time evolution is given by

d

dt

〈
p̂2〉

t = −〈 p̂ · ∇V (x̂) + H.c.〉t − �α(2 − α)〈p̂2〉t

− 2�α(1 − α)〈p̂〉t · Eμ(q)[q] + �α2Eμ(q)[q2],
(33)

which results in a damping term only for 0 < α < 2. Indeed,
the linear feedback function f describes a translation by α

times the outcome q of an imprecise measurement of the
particle momentum. In the absence of bias (Eμ(q)[q] = 0), the
possible outcomes would be centered around 〈p̂〉t , and kicking
the particle by more than twice the magnitude of that outcome
would thus result in average heating rather than dissipation.

The last term in (33) contributes momentum diffusion at
a constant rate, which ultimately limits how much kinetic
energy can be dissipated. This feedback noise is due to the
imprecise momentum measurement; it would vanish in the
limit of a perfect measurement, μ(q) = δ(q), which, however,
implies diverging measurement noise, i.e., position diffusion
in (16).

In the friction regime α ∈ (0, 2), we expect the particle to
reach a finite-energy steady state. In general, this state will
not be a Gibbs state of thermal equilibrium, ρth = e−Ĥ/kBT /Z ,
with one notable exception that we will highlight shortly.
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The reason is intuitively clear: For the Gibbs (or any other
Ĥ -diagonal) state to be a steady state, it must also be a fix
point of the measurement feedback channel �. Since � is
translationally covariant and causes unbounded position diffu-
sion, we conclude that a unique steady state would have to be
translationally invariant, which cannot be Ĥ -diagonal unless
V (x̂) = const ≡ 0.

More formally, let

χρ (P, X ) = tr
{
ei(P·x̂+p̂·X )/h̄ρ

}
(34)

be the Wigner-Weyl characteristic function representation of
the single-particle state ρ [26], i.e., the Fourier transform of
its Wigner function. A straightforward calculation reveals that
the linear friction channel � transforms it like

χ�[ρ](P, X ) = A(P, X )e−iαP·X/2h̄χρ (P, (1 − α)X ),

A(P, X ) =
∫

d3q eiαq·X/h̄
√

μ(q − P)μ(q). (35)

Hence, a fix point of � must obey

χρ (P, (1 − α)X )
!= e−iαP·X/2h̄

A(P, X )
χρ (P, X ). (36)

We prove in Appendix D that this can only hold for sin-
gular functions, such as functions of the form χρ (P, X ) =
δ(P)ξ (X ) that correspond to translation-invariant improper
states.

For the special case of a free particle, Gibbs states corre-
spond to singular characteristic functions of the above form,
with ξ (X ) = e−mkBT X 2/2h̄2

. Setting P = 0 in (36) then leads to

A(0, X )
!= e−mkBT X2α(2−α)/2h̄2

, (37)

which by virtue of (35) requires that the measurement distri-
bution be an isotropic Gaussian, μ(q) = e−q2/2σ 2

/(2πσ 2)3/2.
Otherwise, the fix point will be stationary, but not a Gibbs
state. We conclude that an isotropic Gaussian momentum
measurement of resolution σ with linear feedback of strength
α thermalizes a single free particle to a temperature kBT =
ασ 2/(2 − α)m.

C. The case for an isotropic Gaussian measurement distribution

While the friction feedback always distinguishes an inertial
reference frame with zero velocity, we have seen that the
measurement-feedback channel is still translation covariant.
For linear friction, or more generally for any central friction
feedback f (q) = f̄ (q)q/q, one additionally achieves covari-
ance under fixed rotations of the reference frame if and only if
the measurement distribution is isotropic, μ(q) = μ̄(q). The
proof is given in Appendix E.

Most of the literature considers POVM measurements
of position or momentum that are exclusively Gaussian,
typically following an indirect pointer measurement model
[13,22]. From our perspective, a crucial property of a Gaus-
sian measurement distribution is that it factorizes, μ(q) =
μ1(q1)μ2(q2)μ3(q3). The same then holds for the distribution
ν(y) in (3). This ensures that the measurement channel with
linear feedback does not build up directional correlations in
the form of covariances between different momentum or posi-

tion components. Indeed, we find that the adjoint channel �†

acts upon the mixed second moments as

�†[ p̂ j p̂k] = (1 − α)2 p̂ j p̂k + α(1 − α)(Eμ(q)[qk] p̂ j

+ Eμ(q)[q j] p̂k ) + α2Eμ(q)[q jqk], (38)

�†[x̂ j x̂k] = x̂ j x̂k + Eν(y)[y jyk]. (39)

Accordingly, the Ehrenfest equations of motion under a dy-
namical application of the channel at rate � read as

d

dt
〈p̂ j p̂k〉t = −〈p̂ j∂kV (x̂) + ∂ jV (x̂) p̂k〉t

+ α(1 − α)(Eμ(q)[qk] p̂ j + Eμ(q)[q j] p̂k )

− α(2 − α)�
〈
p̂ j p̂k

〉
t + α2Eμ(q)[q jqk], (40)

d

dt
〈x̂ j x̂k〉t = 〈x̂ j p̂k + p̂ j x̂k〉t

m
+ �Eν(y)[y jyk]. (41)

The constant input provided by the last terms in both
equations would affect both the variances ( j = k) and
the covariances, but a factorizing, unbiased distribution μ

only increases the variances. In fact, the Kraus operators
themselves factorize into L̂(q) =⊗ j L̂ j (q j ) with L̂ j (q j ) =
e−iαq j x̂ j

√
μ j ( p̂ j − q j ). Hence, one can conveniently trace over

the motion along any one or two of the spatial directions and
obtain reduced channels of the same form acting individually
on the reduced states,

�1,2[ρ1,2] = tr3{�[ρ]}

=
∫

dq1dq2 L̂1(q1)L̂2(q2)ρ1,2L̂†
1 (q1)L̂†

2 (q2), (42)

�1[ρ1] = tr2,3{�[ρ]} =
∫

dq1 L̂1(q1)ρ1L̂†
1 (q1). (43)

Both features together, translation covariance and factoriza-
tion of the Kraus operators, would be realized by an isotropic
and factorizing distribution function,

μ(q) = μ̄
(√

q2
1 + q2

2 + q2
3

) = μ1(q1)μ2(q2)μ3(q3). (44)

It is easy to show that such a distribution can only be Gaus-
sian: Evaluating (44) at the origin and on each coordinate axis
(q = qe j) yields μ j (q)/μ j (0) = μ̄(|q|)/μ̄(0) ≡ ε(q2) for ev-
ery j = 1, 2, 3 and q ∈ R. In terms of the auxiliary function
ε, the condition (44) reduces to

ε
(
q2

1 + q2
2 + q2

3

) = ε
(
q2

1

)
ε
(
q2

2

)
ε
(
q2

3

) ∀q1,2,3 ∈ R, (45)

which is a functional equation constituting the exponential
function. Hence, if we also demand a finite norm, we get
μ̄(q) ∝ ε(q2) = e−q2/2σ 2

with some standard deviation pa-
rameter σ .

D. Equilibration of a harmonic oscillator

As a simple case study, we consider the one-dimensional
motion of a harmonically trapped particle, Ĥ = p̂2/2m +
mω2x̂2/2. Assuming a factorizing, but otherwise generic, mo-
mentum measurement distribution, we can ignore the other
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spatial dimensions and describe the measurement-feedback
channel by the reduced map (43), with Kraus operators
L̂1(q) = e−iαqx̂/h̄√μ1( p̂ − q) implementing linear friction.

The time evolution (9) under random repeated applications
of the channel yields a closed set of linear inhomogeneous
Ehrenfest equations of motion for the first and second mo-
ments of x̂ and p̂. For simplicity, we express these equations in
terms of the dimensionless quadratures ξ̂ = x̂/x0 and π̂ =
p̂/p0, where x0 = √

h̄/mω is the ground-state amplitude and
p0 = h̄/x0.

The first moments evolve according to

d

dt

(〈ξ̂〉t

〈π̂〉t

)
=
(

0 ω

−ω −�α

)(〈ξ̂ 〉t

〈π̂〉t

)
+ �α

p0

(
0

Eμ1(q)[q]

)
,

(46)
which for α > 0 resembles a damped harmonic oscillator
driven by a constant force proportional to the bias Eμ1(q)[q].
The oscillator is driven towards a stationary mean displace-
ment of 〈ξ̂ 〉∞ = �αEμ1(q)[q]/ωp0 over the damping time
scale 1/�α.

For the second moments, we obtain the system

d

dt

⎛
⎜⎝ 〈ξ̂ 2〉t

〈{ξ̂ , π̂}〉t

〈π̂2〉t

⎞
⎟⎠ = S

⎛
⎜⎝ 〈ξ̂ 2〉t

〈{ξ̂ , π̂}〉t

〈π̂2〉t

⎞
⎟⎠+ �

⎛
⎜⎝

Eν1(y)[y2]/x2
0

2α〈ξ̂ 〉tEμ1(q)[q]/p0

α2Eμ1(q)[q2]/p2
0 − 2α(1 − α)Eμ1(q)[q]〈π̂〉t/p0

⎞
⎟⎠, (47)

or, in short, v̇t = Svt + wt , with the abbreviated column vec-
tors vt ,wt . Notice the coupling to the first moments via wt in
case of a biased distribution. However, since the first moments
behave like a damped harmonic oscillator, we can approx-
imate wt ≈ w∞ when considering sufficiently large t . The
system matrix reads as

S =
⎛
⎝ 0 ω 0

−2ω −�α 2ω

0 −ω −�α(2 − α)

⎞
⎠. (48)

It is invertible if det(S) = −2ω2�α(2 − α) �= 0, in which
case there is a unique equilibrium of second moments, v∞ =
−S−1w∞. Whether this equilibrium is a stable attractor de-
pends on the eigenvalues of S. Namely, the real part of all
these eigenvalues must be negative, so that initial deviations
from equilibrium are exponentially damped over time. Oth-
erwise, deviations from equilibrium would grow, causing the
average energy to diverge [28]. We plot the greatest real part
of the eigenvalues in Fig. 2 as a function of �/ω and α. As
expected, it remains negative for 0 < α < 2, resulting in a

FIG. 2. Greatest real part of the eigenvalues of the system matrix
S/ω from (48) for one-dimensional harmonic motion of frequency ω

subject to repeated momentum measurements at the rate � and linear
feedback of strength α. Negative values (blue) imply that all second
moments of position and momentum converge to a stable equilibrium
configuration of finite energy. This is the case for any � > 0 and
α ∈ (0, 2).

stable equilibrium at finite energy. Any other α value leads to
an infinite heating of the motional state (provided, obviously,
that � > 0).

The equilibrium energy can be given explicitly as

〈Ĥ〉∞
h̄ω

= α

2 − α

Eμ1(q)[q2]

p2
0

+ α2

2

(
�

ω

)2(Eμ1(q)[q]

p0

)2

+
[

1

α(2 − α)
+ α

4

(
�

ω

)2
]
Eν1(y)[y2]

x2
0

. (49)

Although one might be tempted to associate an effective tem-
perature T to this equilibrium value, the equilibrium state is
not a Gibbs state, ρ∞ �= e−Ĥ/kBT /Z . This is already evident
from the equilibrium second moments,

〈{ξ̂ , π̂}〉∞ = −
(

�

ω

)
Eν1(y)[y2]

x2
0

, (50)

〈ξ̂ 2 − π̂2〉∞ =
(

�

ω

)2
[

αEν1(y)
[
y2
]

2x2
0

+
(

αEμ1(q)[q]

p0

)2
]
.

(51)

The first term describes correlations between the position and
the momentum quadrature, while the second term describes an
imbalance between the position and the momentum spread.
Both terms would exactly vanish for a Gibbs state, which
in phase space corresponds to an isotropic Gaussian Wigner
function. Decreasing the feedback strength α leads to a lower
imbalance at a higher mean energy, but it leaves the correla-
tion term unaffected. Only in the limit of slow measurements,
� � ω, does the equilibrium approximate a thermal state. To
lowest order in �/ω, the mean energy (49) then becomes rate
independent,

〈Ĥ〉∞
h̄ω

≈ 1

2 − α

(
αEμ1(q)[q2]

p2
0

+ Eν1(y)[y2]

αx2
0

)
, (52)

as in the case of conventional weak-coupling equilibration
with a thermal environment.
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IV. DISSIPATIVE CONTINUOUS
SPONTANEOUS LOCALIZATION

After laying out the blueprint for generic Markovian
measurement-feedback-based friction models, we now dis-
cuss its application in the context of macrorealistic collapse
models. A prime example is the continuous spontaneous
localization (CSL) model [21], which averts quantum super-
positions and reinstates classical realism on the macroscale
through a random process that gradually localizes the wave
function of large masses by measuring the positions of its
constituent particles. The unavoidable side effect is that an
otherwise isolated system of particles would heat up indefi-
nitely at a constant rate [17]. To mitigate this effect, Ref. [20]
proposed a modified variant, the dissipative CSL (dCSL)
model. The employed method to include dissipation draws
from master equation models for collisional decoherence due
to background gas scattering [4].

In the following, we show that the observable conse-
quences of the single-particle dCSL model are equivalent to
our measurement-feedback master equation for linear friction.
We then point out two crucial shortcomings of the many-
particle dCSL model with respect to the consistency principles
stated in Ref. [29]: First, we show that the reduced dynamics
of one particle is affected by the mere presence of other
masses through the dissipation effect. Second, we correct the
mass dependence of the dCSL parameters originally stated
in Ref. [20] to ensure a consistent treatment of compound
particles, which however introduces an artificial mass scale
below which the model no longer dissipates energy.

A. Single-particle description

The dCSL model in Ref. [20] predicts that the ensemble-
averaged state of a single particle of mass m subject to the
Hamiltonian Ĥ evolves according to the master equation

d

dt
ρt = − i

h̄
[Ĥ , ρt ] + γ

m2
0

∫
d3yD[B̂(y)]ρ, (53)

B̂(y) = m

(2π h̄)3

∫
d3Q eiQ(x̂−y)/h̄e− r2

CSL
2h̄2 |(1+k)Q+2k p̂|2

. (54)

Here, m0 is a reference mass unit (typically the proton mass),
rCSL a length scale parameter, k a dimensionless dissipation
strength parameter, and γ a rate density parameter in units of
volume per time. The unmodified CSL model corresponds to
k = 0, in which case one can rewrite γ = (4πr2

CSL)3/2λCSL in
terms of the more common rate parameter λCSL representing
the localization rate for a single proton.

With the help of several manipulations, one can show that
the dCSL Lindblad operators B̂(y) have the same form as the
Kraus operators (28) representing a measurement-feedback
model with a Gaussian measurement distribution and linear
friction,

μ(q) =
(

2krCSL√
π h̄

)3

e−(2krCSLq/h̄)2
, α = 2k

1 + k
. (55)

Using the measurement rate

� =
(

m

m0

)2
γ

[2
√

π (1 + k)rCSL]3
, (56)

we can then identify

√
�K̂ (y) =

√
�

√
2π h̄

3

(
2k

1 + k

)3/2 ∫
d3q e2ik(y−x̂)q/h̄(1+k)

×
(

2krCSL√
π h̄

)3/2

e− r2
CSL
2h̄2 (2k p̂−2kq)2

=
√

�

[
(1 + k)rCSL

2π
√

π h̄2

]3/2 ∫
d3Q eiQ(x̂−y)/h̄

× e−r2
CSL[(1+k)Q+2k p̂]2/2h̄2

=
√

γ

m0
B̂(y), (57)

where we substituted Q(q) = −2kq/(1 + k). Hence, the
single-particle dCSL master equation (53) is a special case
of our measurement-feedback model (9).

The equivalence suggests alternative interpretations and
unravelings of the dCSL master equation into stochastic
Schrödinger equations [26]. The dCSL model itself unrav-
els (53) directly as a Gaussian diffusion process based on
the Lindblad operators B̂(y). Instead, we may also unravel
the master equation as a piecewise deterministic or diffusive
process based on our momentum measurement and feedback
operators L̂(q), which could prove useful and more robust in
numerical simulations.

B. Consistent many-particle generalization

Macrorealistic collapse models are universal modifications
to the Schrödinger equation that should apply consistently
to many-body systems on arbitrary scales, in such a way
that the collapse effect is negligible in the atomic mass and
size regime, but quasi-instantaneous in the macro world. This
requires that the single-particle formulation be generalized to
N-particle systems of arbitrary masses mn under the following
symmetry and consistency constraints [29]: (i) the exchange
symmetry between identical particles and most fundamental
symmetries underlying nonrelativistic mechanics should be
preserved, (ii) the reduced state of any N ′ < N masses must
be consistently described by the corresponding N ′ version of
the model, (iii) the center-of-mass motion of a rigid, point-like
compound of N masses must be described by the single-
particle model at mass M =∑N

n=1 mn, and (iv) the effective
localization rate should amplify with the total mass involved
in a quantum superposition state.

Conditions (ii) and (iii), in particular, establish a local and
scale-invariant theory: we can restrict our view to the interro-
gated quantum particles only, and we are allowed to speak of
point-like test masses, coarse-graining over rigidly bound con-
stituents whenever their internal motion cannot be resolved.
Violating the conditions implies that additional masses in
close vicinity to the interrogated system can no longer be
omitted as “innocent bystanders” and that the motional state
of a compound must be expanded in terms of a predetermined
set of constituents.

In conventional macrorealistic models such as CSL, the
only known tractable way to fulfill the constraints is to elevate
the single-particle Lindblad operators into a mass-weighted
sum of single-particle operators. Condition (ii) is then auto-
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matically fulfilled when the individual operators are chosen
as self-adjoint. Condition (iii) follows if each single-particle
summand is weighted in proportion to its mass. The growing
sum of single-particle operators will additionally ensure that
(iv) the total collapse rate amplifies with the total mass.

Reference [20] proposes to follow the same ansatz for the
dCSL model and subject an N-particle state ρ to a dissipator
generated by the sum of the single-particle Lindblad operators
(57),

d

dt
ρ = − i

h̄
[Ĥ, ρ] +

∫
d3yD

[
N∑

n=1

√
�nK̂n(y)

]
ρ. (58)

We allow the measurement rates and the other free parame-
ters in the single-particle operators acting on each individual
constituent to depend on its mass mn,

K̂n(y) =
( αn

2π h̄

)3/2
∫

d3q eiαnq·(y−x̂n )/h̄
√

μn( p̂n − q). (59)

Identical quantum particles of equal mass share the same �n,
αn, and μn, which renders the ansatz (58) exchange symmetry
preserving. Note that we do not yet need to restrict to the
Gaussian measurement distribution in (55).

The major shortcoming of this many-body dCSL ansatz
follows from the feedback effect, which renders the single-
particle operators (59) not self-adjoint: Condition (ii) does not
hold, and if we trace over k particles, the dCSL dissipator in
(58) will not retain its form restricted to the N − k remaining
ones. Although there is no direct interaction mediated by a
potential, the vicinity to the k neglected masses can now
influence the state of the others through the dCSL mechanism.
The rather technical proof of this observation is given in
Appendix F.

Regarding condition (iii), consider a point-like compound
particle in which the N constituents are rigidly bound close
to the center of mass such that their relative motion is not
resolved by the dCSL position measurement. We may then
approximate each constituent position and momentum by
the center-of-mass coordinates, x̂n ≈ x̂c.m. =∑k mk x̂k/M and
p̂n ≈ mn p̂c.m./M = (mn/M )

∑
k p̂k . The sum of Lindblad op-

erators in (58) turns into a single operator acting on the center
of mass,√

�c.m.K̂c.m.(y) ≡
∑

n

√
�nK̂n(y)

≈
∑

n

√
�n

( αn

2π h̄

)3/2
∫

d3q eiαnq(y−x̂c.m. )/h̄

×
√

μn

(mn

M
p̂c.m. − q

)
=
∑

n

√
�n

( αnmn

2π h̄M

)3/2
∫

d3qn ei(αnmn/Mh̄)qn(y−x̂c.m. )

×
√(mn

M

)3
μn

[mn

M
( p̂c.m. − qn)

]
, (60)

where we substituted qn = Mq/mn. In order to make this a
unique operator acting on a test mass M, regardless of the
chosen subdivision into constituent masses mn, we demand
that each term under the n sum be proportional to mn. This is

achieved by scaling the individual �n, αn, and μn with respect
to fixed reference parameters �0, α0, and μ0 at the chosen
reference mass m0,

�n ≡ �(mn) = m2
n

m2
0

�0, αn ≡ α(mn) = m0

mn
α0,

μn(q) ≡ μ(q; mn) = m3
0

m3
n

μ0

(
m0

mn
q
)

. (61)

Inserting these expressions into (60), one immediately obtains
that dCSL acts on the point-like compound’s center of mass
consistently like on a single-point particle of mass M.

An important consequence of the mass scaling is that the
m0 can no longer be regarded as merely an arbitrary choice of
reference mass units. The friction rate α(m) increases beyond
the reference value α0 for smaller masses m < m0 until it
may eventually exceed the critical value α(m) � 2 at which
friction turns into heating. The dCSL model should no longer
be deemed valid below this critical mass scale. Given that
dCSL is a nonrelativistic model and thus only applicable from
the atomic scale onward, the conventional value m0 = 1 u and
any α0 � 2 would be a safe choice.

Rephrasing the scaling rules (61) via (55) in terms of the
dCSL parameters k and rCSL defined in the literature, we arrive
at a nonlinear mass scaling with respect to the reference values
k0 and r0 at m0,

k(m) = m0/m

1 + (1 − m0/m)k0
k0,

rCSL(m) =
[
1 +

(
1 − m0

m

)
k0

]
r0. (62)

In Ref. [20], the dCSL model was introduced with a universal
(mass-independent) length scale parameter rCSL and a friction
parameter that is linear in mass, k ∝ m. This would obey the
consistent scaling requirement (iii) only approximately, in the
limit k0 � 1 and for superatomic masses m � m0.

In summary, a straightforward and scale-invariant many-
body extension of the dCSL model based on the operator
sum ansatz of frictionless models fails to fulfill the usual
consistency requirements. A recent alternative approach to
incorporate friction into collapse models could circumvent
this problem [30].

V. CONCLUSIONS

We presented a versatile and intuitive master equa-
tion framework to describe friction forces in the quantum
domain. Friction models are based on random repeated mo-
mentum measurements of arbitrary resolution, followed by
unitary momentum displacements of arbitrary strength as
feedback. They make a quantum particle equilibrate to a finite-
energy steady state that is, however, generally not thermal.

The model master equations with their bounded Lindblad
operators could be realized, mathematically or in practice, as
the ensemble averages of continuous diffusion or piecewise
deterministic Poisson processes. Moreover, in the diffusive
limit of weak measurements and feedback, they reduce to
the familiar Caldeira-Leggett form with unbounded Lindblad
operators linear in position and momentum.

052209-9



MICHAEL GAIDA AND STEFAN NIMMRICHTER PHYSICAL REVIEW A 108, 052209 (2023)

For the specific case of linear friction, we showed an
equivalent representation in terms of random position mea-
surements followed by momentum squeezing and linear
translations. This uncovered a link to objective collapse theo-
ries: the dissipative extension of the continuous spontaneous
localization model [20] can be viewed as a representa-
tive of our measurement-feedback framework. We found
that its many-particle generalization comes with previ-
ously unnoticed technical drawbacks such as the possible
buildup of correlations between noninteracting test masses
via the feedback force. This calls for a closer inspection of
the observable consequences of spontaneous collapse mod-

els with friction or with other feedback forces such as
gravity [31–33].

Future work could tap into possible experimental imple-
mentations of nondiffusive measurement-feedback friction,
compare the dynamics of diffusive and nondiffusive friction
models, and study nonlinear feedback forces.
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APPENDIX A: ACTION OF THE ADJOINT CHANNEL

Here we prove the expressions (12) and (13) for the action of the adjoint measurement-feedback channel (11) on arbitrary
operator-valued functions F (x̂) and G( p̂). To this end, we simplify the expectation values of these functions with respect to the
transformed state �(ρ). For F , we get

〈F ( p̂)〉�[ρ] = tr{F ( p̂) �[ρ]} =
∫

d3q tr{F ( p̂) Û (q)M̂(q) ρ M̂(q)Û †(q)} =
∫

d3q tr{F ( p̂ − f (q)) μ( p̂ − q)ρ}

=
∫

d3 p 〈p| ρ |p〉
∫

d3q F (p − f (q))μ(p − q) =
∫

d3 p 〈p| ρ |p〉
∫

d3Q F (p − f (p − Q))μ(Q)

=
∫

d p 〈p| ρEμ(Q)[F ( p̂ − f ( p̂ − Q))] |p〉 = 〈Eμ(Q)[F ( p̂ − f ( p̂ − Q))]〉ρ, (A1)

where we used the cyclic property of the trace, applied the momentum kick operators on F , expanded the trace in the momentum
representation, and substituted Q(q) = p − q. Since the result must holds for all states ρ, we can identify the action of the adjoint
channel �† as (12).

Similarly, we arrive at (13) for G by simplifying

〈G(x̂)〉�[ρ] = tr{G(x̂)�[ρ]} =
∫

d3q tr{G(x̂)M̂(q)ρM̂(q)} =
∫

d3y ν(y)tr{e−i y· p̂
h̄ G(x̂)e+i y· p̂

h̄ ρ}

=
∫

d3y ν(y)〈G(x̂ − y)〉ρ = 〈Eν(y)[G(x̂ − y)]〉ρ. (A2)

Here, we have made use of the identity (2).

APPENDIX B: DIFFUSION LIMIT

Here, we calculate the diffusive expansion of the measurement-feedback channel � in (6) and the associated master
equation (9) up to second order in the position and momentum quadratures. This is valid for states ρ restricted to much
smaller momenta than what the measurement distribution μ can resolve, and for feedback kick strengths much smaller than
the characteristic momentum scale occupied by ρ. More formally, let us assume that there are positive constants Rx and Rp such
that

∫
|x|>Rx

〈x|ρ|x〉 ≈ 0 and
∫
|p|>Rp

〈p|ρ|p〉 ≈ 0. Then, in the limit Rp � √
Eμ(q)[q2], we can Taylor-expand the measurement

operators M̂(q) around q; and in the limit | f (q)| � h̄/Rx for |q| � Rp, we can also expand the feedback unitary Û (q). To
this end, we only consider asymptotically well-behaved distributions μ �= 0 that obey |q|2μ(q) → 0, |q|2|∇μ(q)| → 0, and
|q|2| f (q)∇μ(q)| → 0 for |q| → ∞.

In order to simplify notation, we set Q = −q, introduce the Hesse matrix Hμ(Q) with elements [Hμ(Q)] jk = ∂2μ(Q)/∂Qj∂Qk ,
and use the “≈” sign whenever we neglect third-order terms in the components of x̂ and p̂. We first expand the measurement
operator:

√
μ( p̂ − q) =

√
μ(Q + p̂) ≈

√
μ(Q) + p̂ · ∇μ(Q)

2
√

μ(Q)
+ 1

4

[
p̂THμ(Q) p̂√

μ(Q)
− ( p̂ · ∇μ(Q))2

2μ3/2(Q)

]
. (B1)

This yields the unnormalized postmeasurement state

σQ ≡
√

μ(Q + p̂) ρ
√

μ(Q + p̂) ≈ μ(Q)ρ + 1

2
{p̂ · ∇μ(Q), ρ} + 1

4

{
p̂T Hμ(Q) p̂, ρ

}
+ ( p̂ · ∇μ(Q))ρ( p̂ · ∇μ(Q))

4μ(Q)
− 1

8

{
( p̂ · ∇μ(Q))2

μ(Q)
, ρ

}
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= μ(Q)ρ + 1

2
{p̂ · ∇μ(Q), ρ} + 1

4

{
p̂T Hμ(Q) p̂, ρ

}− 1

8μ(Q)
[ p̂ · ∇μ(Q), [ p̂ · ∇μ(Q), ρ]]. (B2)

For feedback kicks of the form f (q) = f̄ (q)q/q = − f (Q), we expand the feedback unitary applied to the postmeasurement state
as

ei f (Q)x̂/h̄σQe−i f (Q)·x̂/h̄ ≈
(
1 + i

h̄
( f (Q)x̂) − 1

2h̄2 ( f (Q)x̂)2

)
σQ

(
1 − i

h̄
( f (Q)x̂) − 1

2h̄2 ( f (Q)x̂)2

)

≈ σQ + i

h̄
[ f (Q)x̂, σQ] + 1

h̄2 ( f (Q)x̂) σQ ( f (Q)x̂) − 1

2h̄2 {( f (Q)x̂)2, σQ}

= σQ + i

h̄
[ f (Q)x̂, σQ] − 1

2h̄2 [ f (Q)x̂, [ f (Q)x̂, σQ]]. (B3)

With the above expression σQ for the postmeasurement state, we obtain to second order,

ei f (Q)x̂/h̄
√

μ(Q + p̂) ρ
√

μ(Q + p̂) e−i f (Q)x̂/h̄

≈ μ(Q)ρ + 1

2
{ p̂ · ∇μ(Q), ρ} + 1

4
{ p̂T Hμ(Q) p̂, ρ} − 1

8μ(Q)
[p̂ · ∇μ(Q), [ p̂ · ∇μ(Q), ρ]]

+ i

h̄
μ(Q)[ f (Q) · x̂, ρ] + i

2h̄
[ f (Q) · x̂, { p̂ · ∇μ(Q), ρ}] − 1

2h̄2 μ(Q)[ f (Q) · x̂, [ f (Q) · x̂, ρ]]. (B4)

The transformed state �[ρ] follows after integration over Q, which can be done on each term individually. The second and third
terms vanish by virtue of Gauss’ theorem. For example, making use of the fact that |Q|2μ(Q) → 0, we can deduce∣∣∣∣

∫
|Q|�R

d3Q ∇μ(Q)

∣∣∣∣ =
∣∣∣∣
∫

|Q|=R
d2Q μ(Q)

∣∣∣∣ � 4πR2 sup
|Q|=R

μ(Q) −−−→
R→∞

0, (B5)

so that
∫

d3Q ∇μ(Q) = 0. Similarly, since [Hμ(Q)] jk = [∇∂ jμ]k , we also find that
∫

d3QHμ(Q) = 0.
Hence the transformed state reads as

�[ρ] =
∫
R3

d3Q ei f (Q)x̂/h̄
√

μ(Q + p̂) ρ
√

μ(Q + p̂) e−i f (Q)x̂/h̄

= ρ + i

h̄
[Eμ(Q)[ f (Q)] · x̂, ρ] − 1

8

∑
j,k

∫
d3Q

1

μ(Q)

∂μ(Q)

∂Qj

∂μ(Q)

∂Qk︸ ︷︷ ︸
≡Ã jk

[ p̂ j, [ p̂k, ρ]]

+ i

2h̄

∑
j,k

∫
d3Q f j (Q)

∂μ(Q)

∂Qk︸ ︷︷ ︸
≡B̃ jk

[x̂ j, { p̂k, ρ}] − 1

2h̄2

∑
j,k

∫
d3Q f j (Q) fk (Q)μ(Q)︸ ︷︷ ︸

≡C̃ jk

[x̂ j, [x̂k, ρ]]. (B6)

The auxiliary matrices defined here can be rewritten in a compact manner as the expectation values

Ã jk = −Eμ

[
∂k

∂ jμ

μ

]
= −Eμ[∂k∂ j ln(μ)], B̃ jk = −Eμ[∂k f j], C̃ jk = Eμ[ f j fk]. (B7)

For the first two matrices, we integrated by parts assuming once again vanishing boundary terms.
The matrix Ã can also be expressed in terms of moments of the conjugate distribution ν(y). To this end, we first notice

∂ jμ(Q)

2
√

μ(Q)
= ∂ j

√
μ(Q) = − i

h̄

∫
d3y

√
2π h̄

3 e−iQ·y/h̄y j

√
ν(y). (B8)

Consequently, we can rewrite

Ã jk = 4
∫

d3Q
∂ jμ(Q)

2
√

μ(Q)

∂kμ(Q)

2
√

μ(Q)
= − 4

h̄2

∫
d3Q

(2π h̄)3

∫
d3y
∫

d3z e−iQ·(y+z)/h̄ y jzk

√
ν(y)

√
ν(z)

= − 4

h̄2

∫
d3y y j (−yk )ν(y) = 4

h̄2 Eν(y)[y jyk]. (B9)
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The diffusion matrices (20) in the main text are simply given by A = Ã/8, B = B̃/2h̄, and C = C̃/2h̄2, so that the second order
expansion of the channel assumes the compact form

�[ρ] = ρ + i

h̄
[Eμ[ f ] · x̂, ρ] −

∑
j,k

(Ajk[ p̂ j[ p̂k, ρ]] + iB jk[x̂ j, { p̂k, ρ}] + Cjk[x̂ j[x̂k, ρ]]). (B10)

APPENDIX C: TRANSFORMATION FROM MOMENTUM TO POSITION MEASUREMENT UNDER LINEAR FORCE

Here we show the equivalence of the two representations (27) of the linear friction measurement-feedback channel, by
deriving the explicit form of the alternative Kraus operators (28) from the original Kraus operators,

L̂(q) = e−iαqx̂/h̄
√

μ( p̂ − q) =
√

μ( p̂ − (1 − α)q)e−iαqx̂/h̄. (C1)

The alternative operators (26) are defined as the Fourier transform K̂ (y) = √
α/2π h̄

3 ∫
d3q eiαqy/h̄L̂(q) for α > 0, which we can

simplify by expanding in momentum and position eigenstates to the left and to the right of the operator, respectively,

K̂ (y) =
∫

d3 p
∫

d3x |p〉〈p|K̂ (y)|x〉〈x| = α3/2

(2π h̄)3

∫
d3 p

∫
d3x |p〉〈x|e−ipx/h̄

∫
d3q eiαq(y−x)/h̄

√
μ(p − (1 − α)q)

= α3/2

(2π h̄)3

∫
d3 p

∫
d3x |p〉〈x|e−ipx/h̄

∫
d3Q

|1 − α|3
√

μ(Q)e−iα(p−Q)(x−y)/(1−α)h̄

= α3/2

(2π h̄)3/2

∫
d3 p eiαpy/(1−α)h̄

∫
d3x |p〉

〈
p

∣∣∣∣ x
1 − α

〉
〈x| (2π h̄)3/2

|1 − α|3

√
ν

[
α

1 − α
(x − y)

]

=
(

α

|1 − α|
)3/2

eiα p̂y/(1−α)h̄
∫

d3x
|1 − α|3/2

∣∣∣∣ x
1 − α

〉
〈x|︸ ︷︷ ︸

≡Ŵ (α)

√
ν

[
α

1 − α
(x − y)

]
. (C2)

In the second line, we substituted Q(q) = p − (1 − α)q, assuming α �= 1. The third line uses the Fourier representation (30) of
the conjugate function

√
ν. We distinguish the two cases 0 < α < 1 and α > 1. In the former case, which is also given in (28)

in the main text, the auxiliary operator Ŵ (α) is a scaling transformation,

Ŵ (α) = Ŝ(α) = exp

[
i ln |1 − α|

2h̄
{x̂, p̂}

]
=

3⊗
j=1

exp

[
i ln |1 − α|

2h̄

{
x̂ j, p̂ j

}]
. (C3)

It describes (anti-)squeezing of the position (momentum) quadratures, since

Ŝ†(α)x̂Ŝ(α) = 1

|1 − α| x̂, Ŝ†(α) p̂Ŝ(α) = |1 − α| p̂, Ŝ(α) |x〉 = 1

|1 − α|3/2
| x
|1 − α| 〉 . (C4)

Introducing bosonic ladder operators â j with respect to an arbitrary harmonic frequency ω, as done in the main text, we can
rewrite {x̂ j, p̂ j} = −ih̄(â2

j − â†2
j ), which yields the textbook definition of a squeezing operator (31) with squeezing parameter

ξ j = ln |1 − α| [27].
For α > 1, an additional parity operation must be performed, P̂ |x〉 = |−x〉,

Ŵ (α) =
∫

d3x
|1 − α|3/2

∣∣∣∣ x
1 − α

〉
〈x| =

∫
d3x

|1 − α|3/2

∣∣∣∣ −x
|1 − α|

〉
〈x| = P̂ Ŝ(α). (C5)

What remains is the special case α = 1 for which the squeezing transformation and the feedback translation become singular.
From the first line in (C2), we can directly deduce a representation of the channel in terms of singular sharp position
measurements, K̂ (y) = (2π h̄)3/2√μ( p̂)δ(x̂ − y) = (2π h̄)3/2√μ( p̂)|y〉〈y|.

Here, the position measurement is not followed by outcome-dependent feedback operation, but instead by the unsharp
momentum measurement

√
μ( p̂) that regularizes the postmeasurement state.

APPENDIX D: TRANSFORMATION OF THE CHARACTERISTIC FUNCTION UNDER LINEAR FRICTION

In order to study the fix point of the linear-friction channel, we first calculate the transformation (35) of the characteristic
function corresponding to the transformation ρ → �[ρ],

χ�[ρ](P, X ) = tr{ei(Px̂+X p̂)/h̄�[ρ]} = e−iPX/2h̄
∫

d3 p eiX p/h̄ 〈p − P| �[ρ] |p〉

= e−iPX/2h̄
∫

d3 p
∫

d3q eiX p/h̄ 〈p + αq − P|
√

μ( p̂ − q)ρ
√

μ( p̂ − q) |p + αq〉

052209-12



QUANTUM MEASUREMENT-FEEDBACK MODELS OF … PHYSICAL REVIEW A 108, 052209 (2023)

= e−iPX/2h̄
∫

d3R
∫

d3Q eiX [(1−α)R+αQ]/h̄
√

μ(Q − P)μ(Q) 〈R − P| ρ |R〉

=
(∫

d3Q eiαXQ/h̄
√

μ(Q − P)μ(Q)

)
︸ ︷︷ ︸

=A(P,X )

e−iαPX/2h̄ e−i(1−α)PX/2h̄
∫

d3R ei(1−α)XR/h̄ 〈R − P| ρ |R〉︸ ︷︷ ︸
=χρ (P,(1−α)X )

= A(P, X )e−iαPX/2h̄χρ (P, (1 − α)X ), (D1)

In the third line, we substituted (
R
Q

)
=
(

1 α

1 α − 1

)(
p
q

)
. (D2)

From the above result (D1) follows the condition (36) for states to be a fix point of �, χ�[ρ] = χρ . Taking the absolute value of
that condition, |χρ (P, (1 − α)X )| = |χρ (P, X )|/|A(P, X )|, and iterating this relation n times, we obtain

|χρ (P, (1 − α)nX )| = |χρ (P, X )|∏n−1
j=0 |A(P, (1 − α) jX )| . (D3)

In the denominator, we can upper-bound each term by unity with help of the triangle and the Cauchy-Schwarz inequality,

|A(P, X )| � A(P, 0) =
∫

d3q
√

μ(q − P)μ(q) � 1, (D4)

Note that the bound is saturated if and only if
√

μ(q) and
√

μ(q − P) are linearly dependent functions of q. Due to the
normalization, the only possibility is μ(q) = μ(q − P) for all q ∈ R3, which implies P = 0. Hence, |A(P, X )| � |A(P, 0)| < 1
for any P �= 0, so that (D3) results in

|χρ (P, (1 − α)nX )| � |A(P, 0)|−n︸ ︷︷ ︸−−−→
n→∞ ∞

|χρ (P, X )|. (D5)

Since (1 − α)nX −−−→
n→∞ 0 for any α ∈ (0, 2) that leads to friction, we conclude that the fix point must correspond to a singular

characteristic function: If we had a proper state with a finite, normalized Wigner function, then its Fourier transform χρ would
be a finite function with χρ (0, 0) = 1 and a finite support. However, for any pair P �= 0, X �= 0 with χρ (P, X ) �= 0, (D5) implies
that |χρ (P, 0)| → ∞, i.e., a singular point at (P, 0). The corresponding Wigner function would no longer be normalizable.

APPENDIX E: ROTATIONAL COVARIANCE OF THE MEASUREMENT FEEDBACK CHANNEL

Here we prove the equivalence between the rotation covariance of the measurement-feedback channel � and the isotropy
of the measurement distribution μ, under the assumption of a central feedback force, f (q) = f̄ (q)q/q. Consider the unitary
representation of the rotation group, ÛR for R ∈ SO(3) with ÛR |x〉 = |Rx〉, ÛRx̂Û †

R = RTx̂, and ÛR p̂Û †
R = RT p̂. Applying such a

unitary to the transformed state �[ρ] yields

ÛR�[ρ]Û †
R =

∫
d3q[ÛRe−i f̄ (q)q·x̂/h̄qÛ †

R ][ÛR

√
μ( p̂ − q)Û †

R ][ÛRρÛ †
R ][ÛR

√
μ( p̂ − q)Û †

R ][ÛRei f̄ (q)q·x̂/h̄qÛ †
R ]

=
∫

d3q e−i f̄ (q)q·RT x̂/h̄q
√

μ(RT p̂ − q) ÛRρÛ †
R

√
μ(RT p̂ − q) ei f̄ (q)q·RT x̂/h̄q

=
∫

d3Q e−i f̄ (Q)Q·x̂/h̄Q
√

μ[RT( p̂ − Q)] ÛRρÛ †
R

√
μ[RT( p̂ − Q)] ei f̄ (Q)Q·x̂/h̄Q, (E1)

where we have substituted Q = Rq. Rotational covariance of � means that ÛR�[ρ]Û †
R = �[ÛRρÛ †

R ] for any R, ρ. We see that
this is the case if and only if the measurement distribution is isotropic, μ(Rq) = μ(q) ≡ μ̄(q).

APPENDIX F: DCSL-MEDIATED INFLUENCE BETWEEN PARTICLES

Many-particle versions of spontaneous collapse models adhere to the principle that the collapse mechanism acts separately
on independent, non-interacting particles; their reduced states do not influence each other. This is no longer the case for collapse
models with feedback, such as the dCSL model.

To show this, it is sufficient to consider the simplest case of two particles. Let �n and K̂n(y) be, respectively, the individual
collapse rate and the Lindblad operators associated to the nth particle. Following the sum ansatz (58) for the two-particle model,
the reduced states of the two particles remain independent if

tr2

{∫
d3y D[

√
�1K̂1(y) +

√
�2K̂2(y)]ρ

}
!= �1

∫
d3y D[K̂1(y)]tr2{ρ}. (F1)

052209-13



MICHAEL GAIDA AND STEFAN NIMMRICHTER PHYSICAL REVIEW A 108, 052209 (2023)

Under this condition, we retain the single-particle dissipator for the reduced state of, say, the first particle when tracing over the
second one.

Let us now insert an arbitrary product state ρ = ρ1 ⊗ ρ2 into the left hand side of (F1), which yields

tr2

{∫
d3y D[

√
�1K̂1(y) +

√
�2K̂2(y)]ρ1 ⊗ ρ2

}
= �1

∫
d3y D[K̂1(y)]ρ1 + 1

2

√
�1�2

(∫
d3ytr{K̂†

2 (y)ρ2}[K̂1(y), ρ1] + H.c.

)
.

(F2)

Hence, the condition (F1) implies that∫
d3ytr{K̂†

2 (y)ρ2}[K̂1(y), ρ1]
!=
∫

d3ytr{K̂2(y)ρ2}[K̂†
1 (y), ρ1] (F3)

for any ρ1, ρ2. This is automatically true for self-adjoint Lindblad operators or operators that obey K̂†
n (y) = K̂†

n (−y), as is the
case for collapse models without feedback.

For the present case with Lindblad operators (28), consider the improper product state ρ = ρ1 ⊗ |x2〉〈x2|, which can be
arbitrarily well approximated by preparing the second particle in an increasingly sharp wave packet localized at x2. The relevant
trace expression in (F3) then reduces to the real-valued

tr{K̂2(y)ρ2} = 〈x2| K̂2(y) |x2〉 = 〈(1 − α2)x2 + α2y|
√

(1 − α2)3

√(
α

1 − α2

)3

ν

[
α2

1 − α2
(x̂ − y)

]
|x2〉

=
√

ν[α2(x2 − y)]
1

α
3/2
2

δ(3)(x2 − y) =
√

ν(0)

α
3/2
2

δ(3)(x2 − y) = tr{K̂†
2 (y)ρ2}. (F4)

Therefore, condition (F3) requires that [K̂1(x2) − K̂†
1 (x2), ρ1]

!= 0 for any chosen ρ1 and x2. This is clearly not possible here
since the Lindblad operators and their adjoints describe different transformations for α �= 0,

K̂1(y) = exp

(
i p̂
h̄

αy
1 − α

)
Ŝ(α)

√(
α

1 − α

)3

ν

[
α

1 − α
(x̂ − y)

]
, K̂†

1 (y) = exp

(
−iα

y p̂
h̄

)
Ŝ†(α)

√(
α

1 − α

)3

ν[α(x̂ − y)]. (F5)
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