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The choice of mathematical representation when describing physical systems is of great consequence, and
this choice is usually determined by the properties of the problem at hand. Here we examine the little-known
wave operator representation of quantum dynamics and explore its connection to standard methods of quantum
dynamics, such as the Wigner phase-space function. This method takes as its central object the square root of the
density matrix and consequently enjoys several unusual advantages over standard representations. By combining
this with purification techniques imported from quantum information, we are able to obtain a number of results.
Not only is this formalism able to provide a natural bridge between phase- and Hilbert-space representations
of both quantum and classical dynamics, we also find the wave operator representation leads to semiclassical
approximations of both real and imaginary time dynamics, as well as a transparent correspondence to the
classical limit. It is then demonstrated that there exist a number of scenarios (such as thermalization) in which
the wave operator representation possesses an equivalent unitary evolution, which corresponds to nonlinear
real-time dynamics for the density matrix. We argue that the wave operator provides a new perspective that links
previously unrelated representations and is a natural candidate model for scenarios (such as hybrids) in which
positivity cannot be otherwise guaranteed.
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I. INTRODUCTION

When describing physical dynamics mathematically, there
exist a number of equivalent representations that one can
choose between. This plethora of potential representations is
particularly pronounced in quantum dynamics. Besides the
Schrödinger and Liouville equations, there also exists more
esoteric formulations such as the Wigner-Weyl phase-space
representation [1–5] or the Feynman path integral [6]. Each of
these carries its own strengths and weaknesses. For example,
the phase-space representation is commonly used in quantum
chemistry and optics [4], while path integrals find a natural
home in the description of open system dynamics via the
influence functional [7–16]. On a more fundamental level, the
choice of representation can change the degree to which the
correspondence principle is manifestly present. To draw again
on the example of the path integral and Wigner function, the
h̄ → 0 limit makes clear that for the former the only path of
finite weight is that corresponding to the classical action [10],
while the equation of motion for the Wigner function reduces
to the classical Poisson bracket.

In the realm of quantum dynamics, one’s choice of rep-
resentation can often lead to issues of interpretation. For
instance, the measure of a path integral is only finitely addi-
tive and therefore not guaranteed to converge [17], while the
Wigner function exhibits negativity. This is particularly prob-
lematic, as this potential negativity means it is uninterpretable
as a density, despite being derived from one. In the case of
pure states, this difficulty was resolved with the demonstration
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that the Wigner function should be interpreted as a phase-
space probability amplitude [18]. This is in direct analogy
with the Koopman–von Neumann (KvN) representation of
classical dynamics [19–32], which explicitly admits a wave
function on phase space, and which the Wigner function of a
pure state corresponds to in the classical limit. The extension
of this interpretation to mixed states has to date been lacking,
however, given that such states must be described by densities
and therefore lack a direct correspondence to wave functions.

Here we address this issue by employing the little-known
wave operator formalism. Such a representation of dynamics
has been deployed in a number of contexts, including open
systems [33], quantum holonomy in density matrices [34],
the development of phase-space wave functions [35], as well
as nonlinear dynamical models [36–38]. In fact, the motiva-
tion for a “square root” of the density and the advantages it
provides can be found even when not explicitly referenced.
For example, the recently developed ensemble rank truncation
[39] and corner-space renormalization [40–42] methods have
at their heart a method for representing a Lindbladian evolu-
tion of a density in terms of a weighted sum of wave functions.
The wave operator has also been used for foundational re-
search [43–45], but here we extend this to demonstrate that
when combined with purification techniques from quantum
information it provides a natural bridge between the Hilbert-
space representation of quantum dynamics, the phase-space
Wigner representation of the same, as well as KvN dynamics
[46]. Through this, we are able to derive not only a consistent
interpretation of mixed states in the Wigner representation,
but also establish a connection between the commonly utilized
phase-space methods of quantum chemistry, and quantum in-
formation. We also find that this representation of quantum

2469-9926/2023/108(5)/052208(10) 052208-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7972-456X
https://orcid.org/0000-0002-3626-4804
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.052208&domain=pdf&date_stamp=2023-11-08
https://doi.org/10.1103/PhysRevA.108.052208


MCCAUL, ZHDANOV, AND BONDAR PHYSICAL REVIEW A 108, 052208 (2023)

dynamics leads to semiclassical approximations of both real
and imaginary time dynamics, as well as a transparent corre-
spondence to the classical limit. In the context of thermalizing
imaginary time evolutions, the wave operator representation is
also be used to establish that such dynamics may be directly
mapped to unitary real-time dynamics, which are explicitly
nonlinear on the level of densities.

The remainder of this paper is outlined as follows. Sec-
tion III borrows from the field of quantum information to
express the wave operator in a purified form. This is then
exploited in Sec. IV to introduce Bopp operators into the
wave operator description. Equipped with this formulation,
in Sec. V it is possible to identify the phase-space represen-
tation of the wave operator with the Wigner function, while
in Sec. VI we use it to demonstrate that the classical limit
of the wave operator description reduces exactly to the KvN
representation of classical dynamics. Section VII then applies
the same technique to the imaginary-time Bloch equation,
where we are able to derive a semiclassical correction to the
equilibrium state of a system, and illustrate its effect using the
examples of a quadratic and quartic oscillator. Section VIII
demonstrates two further scenarios, one in which linear-wave-
operator dynamics leads to nonlinear dynamics in the density
matrix, and a complementary case where the opposite rela-
tionship occurs. The paper then concludes with a summary
of key findings, as well as outlining both open questions and
future research directions.

II. THE WAVE OPERATOR

We begin our treatment by making explicit a freedom
present in the Liouville equation. This describes the dynamics
for the density matrix ρ̂ of a quantum system:

ih̄∂t ρ̂ = [Ĥ , ρ̂] ≡ Ĥ ρ̂ − ρ̂Ĥ , (1)

where Ĥ is a self-adjoint Hamiltonian. The expectation value
of an observable Ô is obtained as

〈O〉 = Tr(ρ̂Ô). (2)

First, the density matrix, as a non-negative operator, can al-
ways be decomposed into the form

ρ̂ = �̂�̂†, (3)

where in what follows we shall refer to �̂(t ) as the wave
operator. Following this assignation, we might ask what form
the dynamics of �̂(t ) can take while remaining consistent with
both Eqs. (1) and (3). We find that the most general form of
evolution permitted is

ih̄∂t �̂ = [Ĥ , �̂] − �̂F̂ , (4)

where F̂ is an arbitrary self-adjoint operator. It is easy to show
from this that

ih̄∂t (�̂�̂†) = [Ĥ, �̂�̂†] (5)

is satisfied at all times if it is satisfied at a single moment
(e.g., t = 0). Consequently, the Liouville dynamics described
by Eq. (1) may instead be described via the wave operator

using Eq. (4), together with a prescription for expectations:

〈O〉 = Tr(�̂†Ô�̂). (6)

The principal advantages of expressing a quantum system’s
dynamics in terms of �̂(t ) rather than ρ̂(t ) are twofold. First,
by evolving the “square root” of the density, any dynamics
using �̂(t ) are guaranteed to enforce the positivity of ρ̂. While
in the forms of dynamics considered in the present paper this
positivity is already preserved for ρ̂, it is a significant ben-
efit when considering scenarios such as quantum chemistry
applications [47], open quantum systems [33], and quantum-
classical hybrids [48,49], where the dynamics of ρ̂ do not
identically preserve this property.

The presence of F̂ in Eq. (4) is a direct consequence of
this automatic positivity preservation. The physical meaning
of this addition can be understood by means of a Peierls
substitution [50–52], where �̂F̂ may be removed from the
equation of motion with the substitution �̂ → �̂e−i 1

h̄ F̂ t . From
this perspective it is clear that F̂ may therefore be interpreted
as the generator of the phase of the non-self-adjoint wave
operator. From this perspective, the requirement that F̂ be
self-adjoint (i.e., Hermitian) is necessary to preserve the re-
lationship given by Eq. (3).

The existence of F̂ does, however, permit some conceptual
freedom in how to interpret the evolution of �̂. For instance,
the case of F̂ = 0 of the wave operator description has been
studied in [34,45] and produces an identical Liouville equa-
tion of motion as for ρ̂. Furthermore, in such a case it is clear
that for pure states, we have ρ̂ = �̂, while a nonzero F̂ will
introduce for pure states a phase relationship ρ̂ = ei 1

h̄ F̂ t �̂. If
one were to choose F̂ = Ĥ , then the dynamics of �̂ would be
Schrödinger-like but still reproduce the Liouville equation for
ρ̂. This translates into a small numerical advantage, insofar as
only Ĥ�̂ need be calculated, rather than the full commutator.
Finally, a more concrete exploitation of this freedom may be
found in [33], noting that at each time step F̂ may be chosen
so as to maintain a lower triangular shape for �̂ and thus
minimize the number of coefficients that must be propagated.
Being able to �̂ in this lower-triangular form is broadly ap-
plicable, as evidenced by its use in machine-learning-assisted
quantum-state estimation [53]. Fundamentally, however, the
presence of F̂ cannot change the character of observable dy-
namics, and the main motivation for its inclusion in the present
article is for the sake of completeness.

The second and most important benefit of the wave oper-
ator formalism is conceptual. Specifically, we shall see that
when employed in concert with the technique of canonical
purification, we obtain both a direct correspondence to the
Wigner phase function, as well as a generally applicable pro-
cedure for taking the classical limit of a quantum system.
Furthermore, when considering dissipative- and imaginary-
time evolutions, we find that the wave operator representation
can possess markedly different properties as compared to the
dynamics of ρ̂. Finally, the guarantee of positivity and abil-
ity to consistently perform classical limits are two properties
which may allow the wave operator to serve as the basis for
a physically consistent model of a quantum-classical hybrid,
but in the present work we restrict ourselves to the context
of a closed system, where we are able to demonstrate the
aforementioned classical limit.
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III. CANONICAL PURIFICATION
OF THE WAVE OPERATOR

In this section we will establish a close link between the
proposed wave operator description of quantum mechanics
and the notion of purification in quantum information theory
(see chapter 5 in [54]). Expressing the wave operator in a
purified form will later allow for the introduction of Bopp
operators and the establishment of a classical limit for the
formalism. To perform the purification, we first choose an
arbitrary orthogonal time-independent basis {|k〉} ⊂ H in a
Hilbert space H. This allows us to define a mapping from an
operator �̂ acting on H to a vector |�̂〉 ∈ H ⊗ H as

|�̂〉 ≡
∑

k

�̂|k〉 ⊗ |k〉 = (�̂ ⊗ 1̂)|ω〉, (7)

where

|ω〉 =
∑

k

|k〉 ⊗ |k〉. (8)

The transformation given by Eq. (7) is closely related to
the concept of canonical purification (see page 166 of [54]),
while in linear algebra, the mapping is also known as row-
major vectorization. Since Eq. (7) is a purification of the
density matrix ρ̂, the latter can be recovered as a partial
trace,

ρ̂ = Tr′|�̂〉〈�̂| ≡
∑

k

(1̂ ⊗ 〈k|)|�̂〉〈�̂|(1̂ ⊗ |k〉). (9)

A number of important identities can be derived from the
definition of Eq. (7),

|Â�̂〉 = (Â ⊗ 1̂)|�̂〉, (10a)

〈Â|B̂〉 = Tr(Â†B̂), (10b)

|�̂Â〉 = (1̂ ⊗ ÂT )|�̂〉, (10c)

where ÂT denotes the transpose of Â. The latter identity,
Eq. (10c), is a consequence of the following “ricochet” prop-
erty:

Â ⊗ 1̂|ω〉 =
∑
i jk

ai j |i〉〈 j|k〉 ⊗ |k〉 =
∑
i jk

ai jδ jk|i〉 ⊗ |k〉

=
∑

ik

aik|i〉 ⊗ |k〉 =
∑

i j

|k〉 ⊗ aki|i〉

=
∑
i jk

|k〉 ⊗ a jiδ jk|i〉 =
∑
i jk

|k〉 ⊗ a ji|i〉〈 j|k〉

= 1̂ ⊗ ÂT |ω〉. (11)

When this is combined with the fact that any operators of the
form 1̂ ⊗ Â and B̂ ⊗ 1̂ will commute, we obtain Eq. (10c).

By combining Eq. (4) with Eq. (10), it is possible to express
the evolution of the wave operator state in a Schrödinger-like
form:

ih̄∂t |�〉 = (Ĥ ⊗ 1̂ − 1̂ ⊗ (Ĥ + F̂ )T )|�〉, (12)

〈O〉 = 〈�|Ô ⊗ 1̂|�〉. (13)

The free choice of F̂ also means that this evolution can corre-
spond either to a Liouville-type commutator evolution when

F̂ = 0 or a Schrödinger equation with an ancillary space when
F̂ = −Ĥ . The dynamics denoted by Eq. (12) can also be
arrived at from a Dirac-Frankel variational principle [55],

δ

∫ t f

ti

〈�(t )|ih̄∂t − (Ĥ ⊗ 1̂ − 1̂ ⊗ (Ĥ + F̂ )T )|�(t )〉dt = 0,

(14)

where the choice of the “phase generator” F̂ in (12) does not
affect the values of the observables since

ih̄∂t 〈O〉 = 〈�|[Ô, Ĥ ] ⊗ 1̂|�〉. (15)

The choice of an orthonormal basis in Eq. (7) to construct
the purification of the wave operator is equivalent to fixing
the “phase generator” F̂ and hence bears no observational
consequences. If |�〉 and |�′〉 denote two purifications of �̂

corresponding to the different bases {|k〉} and {|k′〉}, then there
exists a a unitary Û such that |�〉 = (1̂ ⊗ Û )|�′〉 [54]. Then
Eq. (12) is invariant under the “gauge” transformation

|�〉 → |�′〉, F̂ → (Û †(Ĥ + F̂ )T Û + Ĝ)T − Ĥ , (16)

where the self-adjoint Ĝ is defined as ih̄∂tÛ = ĜÛ (i.e.,
Stone’s theorem) [56].

IV. BOPP OPERATORS FOR PURIFIED
WAVE OPERATORS

Having defined the wave operator and its dynamics when
represented as a purified state, we now show that this for-
malism provides a transparent method for the introduction
of Bopp operators [57–59]. These not only allow one to
transit between Hilbert and phase-space representations of a
quantum system, but also enable a classical limit to be taken
transparently, as we shall find in a later section. For sim-
plicity, hereafter we will consider a system with one degree
of freedom, but the extension to a multidimensional case is
trivial.

In anticipation of later developments and following the
conventions of [60–62], we shall refer to quantum coordinate
and momentum variables as x̂ and p̂, where the bold font
is used to indicate their status as noncommuting quantum
operators rather than vectorial notation. These will obey the
Heisenberg canonical commutation relation

[x̂, p̂] = ih̄. (17)

We will also assume that the operator functions H (x̂, p̂) and
F (x̂, p̂) are represented in a Weyl-symmetrized form. We then
introduce the Bopp operators as

x̂ = 1

2
(1̂ ⊗ x̂T + x̂ ⊗ 1̂), p̂ = 1

2
(p̂ ⊗ 1̂ + 1̂ ⊗ p̂T ),

θ̂ = 1

h̄
(1̂ ⊗ x̂T − x̂ ⊗ 1̂), λ̂ = 1

h̄
(p̂ ⊗ 1̂ − 1̂ ⊗ p̂T ), (18)

while the inverse transformations read

x̂ ⊗ 1̂ = x̂ − h̄

2
θ̂ , p̂ ⊗ 1̂ = p̂ + h̄

2 λ̂,

1̂ ⊗ x̂T = x̂ + h̄

2
θ̂ , 1̂ ⊗ p̂T = p̂ − h̄

2 λ̂. (19)
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The commutation relations of these Bopp operators can be
calculated as (for example)

[x̂, p̂] = 1

4
([x̂, p̂] ⊗ 1̂ + 1̂ ⊗ [x̂T , p̂T ]), (20)

[θ̂ , λ̂] = − 1

2h̄
([x̂, p̂] ⊗ 1̂ + 1̂ ⊗ [x̂T , p̂T ]). (21)

Since (x̂p̂)T = p̂T x̂T , transposing the fundamental commuta-
tion relation yields the identity [x̂T , p̂T ] = −ih̄ and means the
Bopp operators obey the following algebra:

[x̂, p̂] = [θ̂ , λ̂] = 0, (22a)

[ p̂, θ̂ ] = [x̂, λ̂] = i. (22b)

With the help of the identities

1̂ ⊗ H (x̂T , p̂T ) = H (1̂ ⊗ x̂T , 1̂ ⊗ p̂T ), (23)

H (x̂, p̂) ⊗ 1̂ = H (x̂ ⊗ 1̂, p̂ ⊗ 1̂), (24)

which are valid for any Weyl-symmetrized Ĥ , the equa-
tions for the state dynamics and expectations read

ih̄∂t |�〉 = Ĝ|�〉, (25)

Ĝ = H

(
x̂ − h̄

2
θ̂ , p̂ + h̄

2
λ̂

)
− H

(
x̂ + h̄

2
θ̂ , p̂ − h̄

2
λ̂

)

− F (x̂ + h̄

2
θ̂ , p̂ − h̄

2
λ̂), (26)

〈O〉 = 〈�|O
(

x̂ − h̄

2
θ̂ , p̂ + h̄

2
λ̂

)
|�〉. (27)

We note that Eqs. (25)–(27) have been derived in Ref. [63] but
from an entirely different perspective.

Since x̂ and p̂ commute, they share a common eigenbasis:

x̂|xp〉 = x|xp〉, p̂|xp〉 = p|xp〉, (28)

1̂ ⊗ 1̂ =
∫

dxd p|xp〉〈xp|. (29)

It follows from the commutator relationship (22) that

〈xp|x̂|�〉 = x〈xp|�〉, 〈xp|λ̂|�〉 = −i∂x〈xp|�〉,
〈xp| p̂|�〉 = p〈xp|�〉, 〈xp|θ̂ |�〉 = −i∂p〈xp|�〉. (30)

Hence,

ih̄∂t 〈xp|�〉 = (H (x+, p−) − H (x−, p+)

− F (x−, p+))〈xp|�〉, (31)

〈O〉 =
∫

dxd p〈�|xp〉O(x+, p−)〈xp|�〉, (32)

x± = x ± i
h̄

2
∂p, p± = p ± i

h̄

2
∂x. (33)

When F = 0 Eq. (31) coincides with the equation of motion
for the Wigner function (see, e.g., Eq. (2.77) in [58]). In this
case, however, the original wave operator is not restricted to
representing a pure state, meaning that Eq. (27) in cojunction
with Eq. (25) extend the interpretation of the Wigner function

as a wave function [18] to include the general case of mixed
states.

V. THE PHASE-SPACE REPRESENTATION
OF THE WAVE OPERATOR

In this section we will provide an alternative derivation
of Eqs. (31) and (32). The Wigner-Weyl transformation of
Eqs. (4) and (6) reads

ih̄∂t�(x, p) = H (x, p) 	 �(x, p) − �(x, p) 	 H (x, p)

− �(x, p) 	 F (x, p), (34)

〈O〉 =
∫

dxd p�(x, p)∗ 	 O(x, p) 	 �(x, p), (35)

where 	 denotes the Moyal product, and H (x, p), �(x, p),
F (x, p), and O(x, p) are the Weyl symbols for the opera-
tors Ĥ , �̂, F̂ , and Ô, respectively. Utilizing the “lone star”
identity

∫
f (x, p) 	 g(x, p)dxd p = ∫

f (x, p)g(x, p)dxd p (see
Eq. (16) in [4]) and

f (x, p) 	 g(x, p) = f (x+, p−)g(x, p), (36)

g(x, p) 	 f (x, p) = f (x−, p+)g(x, p), (37)

(see, e.g., Eqs. (12) and (13) in [4,60]), we obtain

ih̄∂t�(x, p) = (H (x+, p−) − H (x−, p+)

− F (x−, p+))�(x, p), (38)

〈O〉 =
∫

dxd p�(x, p)∗O(x+, p−)�(x, p). (39)

Comparing these two equations with Eqs. (31) and (32), we
conclude that 〈xp|�〉 ≡ �(x, p), i.e., 〈xp|�〉 is the Wigner-
Weyl transform of �̂.

We can also recover a more direct interpretation of �(x, p)
in the case that W (x, p) is the Wigner function for a pure
quantum state ρ̂. Recalling that purity implies W (x, p) 	

W (x, p) = 1
2π h̄W (x, p) (see, e.g., Eq. (25) in [4]), one shows

〈O〉 =
∫

dxd p O(x, p)W (x, p) =
∫

dxd p O(x, p) 	 W (x, p)

= 2π h̄
∫

dxd p O(x, p) 	 W (x, p) 	 W (x, p)

= 2π h̄
∫

dxd pW (x, p)O(x, p) 	 W (x, p)

= 2π h̄
∫

dxd pW (x, p)O(x+, p−)W (x, p). (40)

Since the Wigner function is real by construction, Eq. (40) is
recovered from Eqs. (39) and (38) in the case F=0 if

�(x, p) =
√

2π h̄W (x, p). (41)

Equations (40) and (41) therefore provide an alternative and
much more simple derivation of the interpretation put forth
in [18] of the Wigner function for a pure quantum system
as a Koopman–von Neumann wave function. In particular,
Eqs. (40) and (41) coincide with Eqs. (19) and (8) in [18].
In the general mixed case, we are still able to identify the
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wave operator with the Wigner function thanks to Eqs. (31)
and (32).

VI. THE CLASSICAL LIMIT OF THE WAVE
OPERATOR DESCRIPTION

The proposed formalism also offers a direct route to the
classical limit of quantum dynamics, where the Koopman–von
Neumann representation of classical dynamics is naturally
recovered. Beginning from Eq. (25), we first scale our arbi-
trary phase F → h̄F , purely as a matter of convenience when
taking the classical limit. Having done so, we then Taylor
expand the Hamiltonian around the Bopp operators,

H (x̂ ∓ h̄

2
θ̂ , p̂ ± h̄

2
λ̂) = H (x̂, p̂) ± h̄

2
∂pH (x̂, p̂)λ̂

∓ h̄

2
∂xH (x̂, p̂)θ̂ + O(h̄2). (42)

Inserting this into Eqs. (25) and (26), we obtain

Ĝ = ∂pH (x̂, p̂)λ̂ − ∂xH (x̂, p̂)θ̂

+ F

(
x̂ + h̄

2
θ̂ , p̂ − h̄

2
λ̂

)
+ O(h̄2). (43)

Taking limh̄→0 Ĝ recovers the well-known KvN propagator,
describing classical dynamics:

i∂t |�〉 = [∂pH (x̂, p̂)λ̂ − ∂xH (x̂, p̂)θ̂ + F (x̂, p̂)]|�〉. (44)

We see that the phase generator in the classical limit cor-
responds to the arbitrary phase-space function one obtains
in standard derivations of KvN [19,20,64–66], which it-
self relates KvN to alternative dynamical equations such as
Koopman–van Hove (KvH) [21,67,68].

The connection between Eq. (44) and the standard Li-
ouville equation for the density can be made explicit by
expressing this equation of motion in phase space,

∂t�(x, p) = {H (x, p),�(x, p)} − iF (x, p)�(x, p), (45)

where {·, ·} indicates the Poisson bracket. Using ρ(x, p) =
|�(x, p)|2, we immediately recover the Liouville equation for
the density.

It is also interesting to note that when expanding the right-
hand sides of Eqs. (25) and (42) in series in h̄, all terms
corresponding to even powers of h̄ will cancel. An immediate
consequence is that for quadratic Hamiltonians, the h̄ → 0
limit may only affect the arbitrary phase term F . Otherwise,
the wave operator and Wigner function formalisms share
the same property that the quantum equations of motion for
quadratic systems remain unchanged in the classical limit
h̄ → 0.

VII. WAVE OPERATOR REPRESENTATION
OF THERMAL STATES

The wave operator formalism is also instructive when con-
sidering the quantum correction to equilibrium states. Recall
that the density matrix for the Gibbs state at temperature
kBT = 1

β
can be found (up to normalization) via imaginary time

propagation starting from β=0 (see, e.g., [47,61]):

∂βρ̂ = − 1
2

(
Ĥ ρ̂ + ρ̂Ĥ

)
, ρ̂(0) = 1̂. (46)

The solution to this equation is clearly the un-normalized den-
sity ρ̂(β ) = e−βĤ , which selects the ground state as β → ∞.
The matching equation for the wave operator is

∂β�̂ = − 1
4 (Ĥ�̂ + �̂Ĥ ), �̂(0) = 1̂. (47)

Equation (47) can be proved directly by showing that the
density matrix ρ̂ = �̂�̂† is the solution to Eq. (46) when �̂

solves Eq. (47). Significantly, while one could introduce a
phase generator into this equation for �̂ using Ĥ → Ĥ + iF̂ ,
in this case F̂ must not only be self-adjoint but commute with
Ĥ in order to reproduce Eq. (46). Such a restriction means that
the potentially exploitable freedom of choice for F̂ in real time
does not exist in this instance, and we therefore set F̂ = 0.

By vectorizing the thermal state wave operator �̂ according
to Eq. (7), Eq. (47) can be restated in terms of Bopp operators
as

∂β |�〉 = −1

4

[
H

(
x̂ − h̄

2
θ̂ , p̂ + h̄

2
λ̂

)

+ H

(
x̂ + h̄

2
θ̂ , p̂ − h̄

2
λ̂

)]
|�〉. (48)

Series expansion of the right-hand side of Eq. (48) in h̄ gives

∂β |�〉 = 1

2
H (x̂, p̂)|�〉 + h̄2

4

(
∂2

x H (x̂, p̂)θ̂2

+ ∂2
pH (x̂, p̂)λ̂2)|�〉 + O(h̄4). (49)

Thus the lowest order quantum correction to the ground or
thermal state is of order h̄2, and only the terms corresponding
to even powers of h̄ survive. This means that unlike in real
time, Eq. (48) retains its form in the classical limit h̄ → 0 only
for linear Hamiltonians. It is interesting to observe that the
semiclassical correction has the form of a Fokker–Planck-like
diffusive term when expressed in phase space. We note also
that imaginary time evolution remains a non-trace-preserving
operation, regardless of whether one represents it with ρ̂ or �̂,
and the un-normalized states presented here will still require
the calculation of a partition function. Nevertheless, being
able to represent the wave operator semiclassical dynamics as
the Fokker-Planck equation in phase space means that regard-
less of the system dimension, normalization can be achieved
with summation over a discretized grid of phase-space co-
ordinates, rather than tracing over a Hilbert space whose
dimensionality has an exponential dependence on system size.

In order to showcase the distinction between classical and
quantum worlds within the wave operator formalism, let us
compare the thermal states for benchmark one-dimensional
quadratic and quartic systems. These will be described by the
Hamiltonians

Ĥ (n) = 1
2 p̂2 + 1

2 x̂n, (50)

where n = 2 and n = 4, respectively. Let us consider three
levels of approximation to Eq. (48): We label |�(n)

q 〉 as
the state obtained when evolving using the fully quantum
Eq. (47). A semiclassical |�(n)

s 〉 is derived from Eq. (49) by
dropping the O(h̄4) terms, and finally |�(n)

c 〉 is the evolu-
tion using the h̄ → 0 limit of Eq. (49), which additionally
wipes out O(h̄2) terms. Figure 1 illustrates these three types
of evolution. As expected, the quantum and semiclassical
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FIG. 1. Comparison of the imaginary time dynamics for quantum, semiclassical, and classical systems in the cases of quadratic and quartic
Hamiltonians. All quantities are given in natural units using h̄ = kB = 1. In both cases, the expected energy of the system is distinguished
by the zero-point energy present in the quantum and semiclassical evolutions. Finally, the uncertainty relation in position and momentum is
clearly respected in the quantum and semiclassical system, while in the classical system it approaches zero, reflecting the zero-energy classical
ground state.

evolutions are identical for an n = 2 quadratic Hamiltonian
but surprisingly produce only slightly different results for the
quartic n = 4 Hamiltonian. In all cases, however, the distinc-
tion between classical and quantum evolutions is clear, where
in the former case the absence of a fundamental commutation
relation (and therefore a zero-point energy) is reflected in both
the ground-state energy and �x�p, as shown in Fig. 1.

VIII. NONLINEARITY IN WAVE OPERATOR DYNAMICS

There exist a number of phenomena whose description
incorporates nonlinear models, such as Bose-Einstein conden-
sates [69] or wave-function collapse [70]. A natural question
to ask, therefore, is whether the wave operator and density
matrix representations may differ in the degree of nonlinearity
of their dynamics. There are, in fact, a number of scenarios in
which a linear evolution in either ρ̂ of �̂ leads to a nonlin-
ear evolution in the complementary representation. Here we
provide two conjugate examples of this phenomenon.

First, let us consider a thermal state ρ̂(β ) = 1
Z e−βĤ .

Representing this state as a wave operator, we find

|�(β )〉 = 1√
Z

∑
j

e− β

2 Ĥ |Ej〉 ⊗ |Ej〉, (51)

where |Ej〉 are eigenvectors of Ĥ . Remarkably, this object is
one of some importance in holography [71], as it may repre-
sent a black hole in anti–de Sitter conformal field theories [72]

and hence provide a platform for the study of many quantum
phenomena in this context [73,74]. In such a context it is
known as the thermofield double (TFD) state, and questions
of how to prepare this state are a focus of ongoing research
[75]. One consequence of this has been the finding that for a
harmonic oscillator of mass m and frequency ω, using

â =
√

mω

2h̄

(
x̂ + i

1

mω
p̂
)

, (52)

the TFD may be written as [76]

|�(β )〉 = 1√
1 − e−βω

∑
n

e− 1
2 nβω|n〉 ⊗ |n〉, (53)

where |n〉 is a state in the second-quantized basis. In this in-
stance, it is possible to express this normalized wave operator
as the unitary evolution of a two-mode squeezing Hamiltonian
on the vacuum state. This is given by [76]

|�(t )〉 = e− i
h̄ t (x̂⊗p̂+p̂⊗x̂)|0〉 ⊗ |0〉, (54)

where

t = 1

2
log

(
1 + e− 1

2 βω

1 − e− 1
2 βω

)
. (55)

Most interestingly, in the wave operator framework this leads
to a form of dynamics where (up to a phase) �̂(0) = ρ̂(0) =
|0〉〈0|, and the generator does not conform to the form spec-
ified by Eq. (12). This is due to the fact that this generator
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possesses nontrivial operators on both sides of the tensor
product. Nevertheless, Eqs. (10a)–(10c) may be employed to
depurify |�(t )〉, leading to a real-time equation of motion
describing thermalization on the level of �̂ in the number
basis:

ih̄∂t �̂ = p̂�̂x̂T + x̂�̂p̂T . (56)

The sandwiching of �̂ between operators has important con-
sequences for the corresponding dynamics of ρ̂, namely, that
it becomes intrinsically nonlinear. To demonstrate this we first
define the similarity transformation

Ā(�̂) ≡ Ā = �̂ÂT �̂−1. (57)

Note that for any finite temperature, the eigenvalues of �̂ will
be {e− β

2 Ej }. Given these are all nonzero, �̂−1 is guaranteed
to exist. The evolution of a thermal state in real time for the
density may then be described with

ih̄∂t ρ̂ = (x̂p̄ + p̂x̄)ρ̂ − ρ̂(p̄†x̂ + x̄†p̂), (58)

revealing that such a thermalizing evolution has drastically
different properties depending on the representation one
chooses for the state.

There also exists a complementary scenario in which the
nonlinearity relationship between the two representations is
reversed. If we consider a Lindblad equation of the form [39]

∂t ρ̂ = − i

h̄
[Ĥ , ρ̂] + 2L̂ρ̂L̂† − {L̂†L̂, ρ̂}, (59)

we find that the structure of the L̂ρ̂L̂† term leads to a dis-
sipative equation for �̂. Using a slightly modified definition
L̄ = �̂−1L̂�̂, we obtain [33]

∂t �̂ = − i

h̄
[Ĥ , �̂] + L̂�̂L̄† − L̂†L̂�̂, (60)

where once again a linear equation has been transformed
into a nonlinear one due to the presence of an operator-state-
operator sandwich term in the linear dynamics.

IX. DISCUSSION

Here we have presented a representation of Hilbert-space
dynamics, where positivity is automatically preserved by per-
forming dynamics on the square root of the density operator.
One advantage of the present formalism is that it may be set
in Hilbert space with a Schrödinger-like equation of motion.
Consequently, it is possible to use all of the highly effi-
cient tools developed for these dynamics (e.g., tensor network
algorithms) when performing wave operator calculations. Fur-
thermore, incorporating purification allows one to introduce
the Bopp operators to this formalism. This has resulted in a
phase-space representation of the wave operator, which in turn
allows us to identify the Wigner function as the projection of
the wave operator onto phase space.

Practical applications of the wave operator formalism are
already extant. For example, it has been used to formulate a
method of thermal density matrix minimization used to suc-
cessfully calculate the equilibrium density matrix of a 6912
atom silicon cell [47]. Furthermore, the structural advantages
of the wave operator representation have already inspired
proposals for the simulation of Lindbladian dynamics in the

context of quantum circuits [77] as well as machine-learning-
assisted quantum-state estimation [53].

Taking the classical limit of the wave operator formalism,
we find that it corresponds to the KvN representation of
classical dynamics. For quadratic Hamiltonians, this corre-
spondence to classical dynamics is exact even before taking
any h̄ → 0 limit. This mirrors similar results to be found
in the path integral and Wigner representations of dynamics
for quadratic systems. In the former case, a saddle-point ap-
proximation ensures only paths corresponding to the classical
action contribute to the propagator, while the Moyal bracket
operation evolving the quasiprobability W (x, p) reduces to the
Poisson bracket in the phase-space representation.

When performing an analogous procedure in imaginary
time, an O(h̄2) correction distinguishes quantum and classical
quadratic systems, suggesting the most significant difference
between the quantum and classical regime is in the ground
state systems inhabit, rather than their real-time dynamics
(see [78]). A potential application of this new semiclassical
expansion is in the calculation of tunneling rates [79], which
at present employ semiclassical path integrals. One future
avenue of research is to investigate how this is related to the
semiclassical wave operator and what if any advantage the lat-
ter may possess. The fact that the semiclassical expansion of
the imaginary time evolution exhibits a quadratic correction to
the classical Hamiltonian is strikingly similar to another con-
text in which the equilibrium state of a system is determined
by a correction to its bare Hamiltonian. Specifically, when
considering a system strongly coupled to an environment, its
thermal state is described by a “Hamiltonian of mean force”
that accounts for the environmental interaction. In those cases
where this effective Hamiltonian is known [8,80–83], the cor-
rection to the bare Hamiltonian is also quadratic rather than
linear. It is tempting to speculate that these two phenomena
may be related to each other.

There are a number of potential extensions to this for-
malism. For instance, the introduction of commuting Bopp
operators in previous sections relies on the canonical commu-
tation relation in an infinite-dimensional space of operators
[84]. Finite-dimensional Hilbert spaces are more restrictive
and generally do not allow introducing the analogs of the
Bopp operators with the desired commutation properties.
Nevertheless, one might employ (for example) a Jordan-
Schwinger map [85] to represent such a finite-dimensional
system. This would introduce an oscillator basis obeying
canonical commutation relations in the continuum limit and
open a route to calculations analogous to those presented
here. More generally, the hunt for efficient representations
for interacting systems is one of the chief motivations for
the development of the wave operator formalism. Specifically,
the fact that positivity is automatically preserved is of vital
importance when attempting to construct a hybrid formalism,
where a partial classical limit is taken on one part of an inter-
acting system. The importance of developing such formalisms
should not be understated, given that all our interactions
with the quantum world must be mediated through essentially
classical devices, which will themselves have a quantum back-
reaction. The growing sophistication of quantum technology
demands we be able to accurately describe such phenomena
via a quantum-classical hybrid. Traditionally, however, such
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hybrid representations map to the quantum density opera-
tor ρ̂, and the hybrid equations of motion derived (e.g. the
Alexandrov-Gerasimenko-Kapral equation [48,49,86]) do not
necessarily preserve the positivity of the state [21], calling
into question the physicality of the dynamics. This remains an
area of active research [86–91], with quantum computational
approaches to this problem already being explored [92]. It is
our hope that the wave operator formalism developed here will
provide a useful tool in the ongoing development of hybrid
system models.
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[65] I. Mezić, Analysis of fluid flows via spectral properties of the
Koopman operator, Annu. Rev. Fluid Mech. 45, 357 (2013).
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