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Continuous-radiative-loss model for electron-spin dynamics in the radiation-dominated regime
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Spin dynamics in the constant homogeneous magnetic field is studied analytically and numerically in the
regime when the radiative losses are strong. Analytically we treat photon emission as a continuous process,
which allows us to describe system dynamics with a set of differential equations for both energy and spin of the
electrons. The developed model predicts that the radiative losses significantly damps polarization buildup in the
classical regime, i.e., when Lorentz invariant quantum parameter χ � 1. The spin-resolved Monte Carlo-based
algorithm for simulating spin dynamics is developed and verified. As expected, for the classical regime, the
theoretical solution is in very good agreement with numerical simulations. In the strong-field QED regime χ > 1
the model predictions and the numerical results coincide to each other only in order of magnitude.
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I. INTRODUCTION

Polarization effects in strong-field quantum electrodynam-
ics (SFQED) phenomena currently attracts great attention
[1–11]. Probing such effects requires high-energy particle
beams with high polarization degree and strong electromag-
netic fields, which can be generated by high-power lasers.
Thanks to progress in laser technology multipetawatt laser
facilities are now available [12–14] providing the radiation
intensity up to 1023 W/cm2 [15]. There are the projects aiming
to reach even higher laser power [16,17]. The spin properties
of leptons are widely used in the experimental studies to
measure the parameters of atoms and molecules [18], to ex-
plore radiation properties and nuclear structures [19,20], and
to probe physics beyond the standard model on linear collider
[21]. The latter especially requires highly polarized electron
beams. Highly polarized electrons can be obtained through
irradiation of a photocathode with a circularly polarized light
[22,23] or by using the Sokolov-Ternov effect [24–27]. The
idea behind this effect is that an electron radiating in a con-
stant magnetic field jumps into the state with spin either along
or opposite to the field. The latter state has slightly smaller
energy thus, over time, electron becomes polarized oppo-
site to the magnetic field. Those spin flips are exactly what
changes the polarization of the beam [28]. Beams obtained
with this technique have low current and it requires extensive
time to build up polarization. Nevertheless, new methods for
generating highly polarized electrons on femtosecond scales
are discussed [4,6,29–33]. These methods are based on an
interaction of strong laser pulses with particle beams or solid
targets [8,34–37]. Since the probability of SFQED processes
are spin dependent it is possible to produce the polarized
beams from the laser-plasma or laser-beam interaction. It is
worth mentioning a series of works dedicated to investigation
of the electron beam polarization in plasma-based accelerators
[38–43] and generating polarized beams using prepolarized
target [44]. An electron moving in strong electromagnetic
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fields radiates and loses its energy because of radiation re-
action [45]. In the classical regime (χ � 1) the radiation
reaction force in the form

f rr � − v

|v|
Pcl

c
(1)

can be added to the equation of motion, where v is an electron
velocity, c is the speed of light, and Pcl is the power radiated
by an electron. The parameter

χ = γ

Bcr

√(
E + v

c
× B

)2

−
(

E · v

c

)2

, (2)

is the dimensionless Lorentz invariant parameter [46], Bcr =
m2c3/eh̄ ≈ 4.41 109 T is the Sauter-Schwinger field, E and B
are the external electric and magnetic fields, respectively, γ

is the Lorentz factor of an electron. h̄ is the Planck constant,
m is an electron mass, and e is the electron charge modulus.
In this case the electron trajectory can be calculated taking
into account the radiation reaction perturbatively. However,
the classical approach overestimates the radiative losses in
the χ � 1 regime and does not include the stochastic na-
ture of photon emission as well as spin effects. This can be
done in QED approach. In the case of multiphoton emis-
sion the quantum regime (χ > 1) the radiative losses can be
described only numerically, for example, exploiting Monte
Carlo methods [47]. In this case the photon emission is treated
as a random event. To achieve analytical advances at least in
quasiclassical regime the classical approach can be improved
by modifying Eq. (1) with the QED expression for the total
power radiated, P. In this case, the radiation reactions force
can be written as f rr = −(v/|v|)(P/c) [48–51]. The validity
condition of this continuous radiative losses (CRL) model will
be discussed in this paper. The interaction of an electron with
an electromagnetic field is accompanied by a change in the
polarization states of the electron. There are several physically
different mechanisms responsible for this change. The first
is the Larmor precession, which is described by Thomas–
Bargmann-Michel-Telegdi equation (T-BMT) [52,53]. Note
that, strictly speaking, this equation is only valid when E and
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B are constant and homogeneous. It should be noted that this
equation alone can not change the average polarization of an
electron beam [54]. The second mechanism that can alter the
electron polarization state is spin flips accompanying photon
emission or radiative polarization (RP) [54]. This mechanism
gives rise to the Sokolov-Ternov effect [24] and can change
the average polarization of an electron beam or a wave packet.
Another less intuitive mechanism is nonradiative polarization
(NRP) [54,55]. It arises in the second order of perturbation
theory when the one-loop self-energy (OLSE) interaction is
considered. The real part of the matrix element associated
with the second-order term is responsible for the rotation
of the spin vector and gives correction to the T-BMT equa-
tion through an anomalous magnetic moment. The imaginary
part of the matrix element provides an additional damping
mechanism for the spin vector. It is worth noticing that since
an electron posses the magnetic moment associated with spin
μs = (ge/2mc)S, where g ≈ −2.0023 is the electron g factor,
one can expect the appearance of the Stern-Gerlach force.
Here the vector S denotes the average spin vector [46]. This
averaging should be understood either in the sense of averag-
ing over a certain beam of particles, or in the sense of quantum
mechanical averaging. The ratio between the Stern-Gerlach
force and the Lorentz force can be estimated as follows:

|FSG|
|FL| ≈ h̄

mcLB
≈ 0.38 10−10 1

LB[cm]
, (3)

where LB ≈ |∇B|/B is the characteristic scale of change of the
field. For a wide variety of lasers, the condition |FSG|/|FL| � 1
stands true and thus we may neglect the Stern-Gerlach force
in the following analysis. It is noteworthy that an interac-
tion between a laser pulse and an electron beam leads to
the asymmetric deflection of the electrons with different spin
orientations and this deflection can be bigger than the one
caused by Stern-Gerlach force [56]. In this paper, we use the
CRL model in order to study the polarization dynamics of the
electrons moving in a constant magnetic field and emitting
photons. We discuss the validity condition of the CRL model.
Furthermore, we developed a numerical algorithm based on
first principles for simulating an interaction of a charged
particle with electromagnetic fields. The accuracy of CRL
model is verified analytically and by numerical simulations.
The paper is organized as follows. In Sec. II the effects that
are responsible for the spin change of an electron moving in a
electromagnetic field is discussed. The semiclassical model
is used in order to derive the radiative losses and the spin
evolution for the electron moving in a constant homogeneous
magnetic field in Sec. III. The numerical algorithm to cal-
culate the electron dynamics in the external electromagnetic
fields including the spin degrees of freedom is presented in
Sec. IV. In Sec. V the numerical algorithm is benchmarked
over known results and used to analyze the analytical results
derived in Sec. III. The validity of the CRL model is discussed
in Appendix A.

II. ELECTRON SPIN DYNAMICS
IN ELECTROMAGNETIC FIELDS

We start with an overview of the spin dynamics focusing
on the basic expressions for the spin vector evolution and

the spin-resolved radiation probability formula. It is generally
believed [54] that there are three main mechanisms, which
are responsible for the spin evolution: spin precession in
an external electromagnetic field, radiative polarization due
to the spin flips, and nonradiative polarization due to the
OLSE interaction. Spin gives rise to the magnetic moment,
which can exhibit precession in the presence of an external
electromagnetic field. This is called Larmor precession and
in the constant homogeneous electromagnetic field it can be
described using T-BMT [52,53]:

dS
dt

= e

mc
S ×

[
−

(
g(χ )

2
− 1

)
γ

γ + 1
(β · B)β

+
(

g(χ )

2
− 1 + 1

γ

)
B −

(
g(χ )

2
− γ

γ + 1

)
[β × E]

]
,

(4)

where g(χ ) = 2 + 2μ(χ ) and the second term represents
anomalous magnetic momentum of the electron [57]. Terms
proportional to μ(χ ) arise from OLSE [54]. The function
μ(χ ) is as follows:

μ(χ ) = α

πχ

∫ ∞

0

y

(1 + y)3
L1/3

(
2y

3χ

)
dy, (5)

where

L1/3(z) =
∫ ∞

0
sin

(
3

2
z

(
x + x3

3

))
dx. (6)

In the classical limit χ � 1, μ(χ ) ≈ α/2π . Note that Eq. (4)
provides the conservation of S length and does not lead to the
change in the polarization of an electron beam moving in an
external electromagnetic field [54]. What affects the electron
beam polarization is the spin flip, which occurs either because
of photon emission, radiative polarization, or when an elec-
tron emits a virtual photon and absorbs it back, nonradiative
polarization. When an ultrarelativistic electron is moving in
an electromagnetic field, it emits photons. Photon emission is
a stochastic process and can be described by the probabilities
derived by SFQED approach [26,46,58]. For an electron with
the Lorentz factor γ , the quantum parameter χ , the spin Si,
the probability rate of radiating a photon with an energy h̄ω is
[26,46]

dW

dξ
= 1

2
C0[w0 + wi · Si + w f · S f ], (7)

where S f id the electron spin after the photon emission,
C0 = α/(π

√
3γ τc), τc = h̄/mc2. The coefficients in Eq. (7)

are as follows:

w0 = ξ 2 − 2ξ + 2

1 − ξ
K2/3

(
2u

3χ

)
− IntK1/3

(
2u

3χ

)
, (8)

wi = −e2ξK1/3

(
2u

3χ

)
, (9)

w f = − uK1/3

(
2u

3χ

)
e2

+
[

2K2/3

(
2u

3χ

)
− IntK1/3

(
2u

3χ

)]
Si

+ ξu

[
K1/3

(
2u

3χ

)
− IntK1/3

(
2u

3χ

)]
(e0 · Si )e0, (10)
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where ξ = h̄ω/ε, u = ξ/(1 − ξ ), ε = mc2γ is the elec-
tron energy before the photon emission and IntK1/3(x) =∫ ∞

x K1/3(t )dt . Here the basis vectors (e0, e1, e2) are used,
where e0 is the unit vector along the electron velocity, e1 is
the unit vector along the electron transverse acceleration and
e2 = [e0 × e1]. For an electron moving in a constant magnetic
field, e2 coincides with the field direction. In virtue of Eqs. (9)
and (10) one can write down the expression for the final
average spin after photon emission [46]:

SRP
f = w f

w0 + Si · wi
. (11)

Note that according to Eq. (11) the length of SRP
f can be less

than 1 and the electron can be in a mixed spin state. Summing
Eq. (7) over final spins one gets:

dW

dξ
= C0[w0 + wi · Si]. (12)

Integrating Eq. (12) over ξ one gets the probability to emit a
photon per unit time. Since this probability depends on the
initial spin, NRP is also depends on the initial spin. Thus,
even in the case when no radiation occurs, electron spin can
still be changed [54,55,59]. This effect arises from OSLE
interaction (emission and absorption of a virtual photon) [3].
The expression of the spin in NRP is as follows [54,55,60]:

SNR
f = Si

(
1 − C0
t

∫ 1
0 dξw0

) − C0
t
∫ 1

0 dξwi

1 − C0
t
∫ 1

0 dξ (w0 + wi · Si )
. (13)

Note that Eq. (13) can also represent the mixed electron states,
|SNR

f | < 1.

III. SPIN DYNAMICS IN THE CRL MODEL

Consider an ultrarelativistic electron moving in the
constant homogeneous magnetic field B = Bz0. Averaging
Eq. (12) over the initial spins and integrating over ξ we get
for the photon emission probability per unit time [26,58]

W = C0

3

∫ ∞

0

5u2 + 7u + 5

(1 + u)3
K2/3

(
2u

3χ

)
, (14)

where in the constant magnetic field χ = γ B/Bcr . Multiply-
ing Eq. (12) on h̄ω and integrating over all photon energies,
one can write an expression for the power radiated by the
electron

P = C0

∫ 1

0
dξ h̄ω[w0 − wiSz]. (15)

Thus the evolution of the electron energy because of the ra-
diative losses can be described by the equation [26,61]

dε

dt
= −P(ε) = −C0 mc2

3

∫ ∞

0

u
(
4u2 + 5u + 4

)
(1 + u)4

K2/3

(
2u

3χ

)
.

(16)

Strictly speaking Eq. (16) is derived in the CRL approxi-
mation when the radiative losses are treated as continuous.
Moreover the quantity ε in Eq. (16) represents an electron
energy averaged over the photon spectrum. The averaging can
be also formulated in the quantum mechanical sense. The de-
tailed description of the CRL model, the discussion of both its

validity conditions and the averaging procedure are presented
in the Appendixes A–B. In the limit χ � 1 Eqs. (14) and (16)
can be reduced to the form

Wcl = 5πC0

2
χ = 5α

2
√

3τc

B

Bcr
, (17)

dχ

dτ
= − 4

5
√

3
χ2

(
1 − Szχ − 55

√
3

16
χ

)
, (18)

where τ = t/τph = Wclt and τph = 1/Wcl is the characteristic
time of the photon emission. Neglecting χ3 terms in Eq. (18)
we can define the characteristic radiation time as

τr = 5
√

3

4

τph

χ
. (19)

Integrating Eq. (7) over all photon energies, i.e., over ξ from
0–1, taking final spin as S f = −Si and considering the clas-
sical limit χ � 1 one can get the expression for radiation
probability rate with spin flip

Ws− f = χ2

8τph

(
1 − 8

5
√

3
Sz

)
, (20)

where Sz is the projection of a spin vector on the magnetic
field. The second term in Eq. (20) is what gives rise to the
Sokolov-Ternov effect [24] and it can be seen that the char-
acteristic time of a spin-flip event is ∝ B−1χ−2. Similarly to
Ref. [27] we can write a differential equation describing the
evolution of the spin

dSz

dτ
= − 4

τphχ2

(
Sz + 8

√
3

15

)
. (21)

The characteristic time of a photon emission with a spin flip
can be introduced as follows:

τsp = 4τph

χ2
(22)

is the characteristic time of a photon emission with a spin
flip. Here the oscillating terms from T-BMT were omitted
and since we are considering the case χ � 1, Eq. (13) leads
to SNR

f = Si. Also we consider the case S ⊥ v and elimi-
nate the term ∝ (S · v)2 from Eq. (20). The ratio τsp/τr =
16/(15

√
3χ ) 
 1, which means that the emission events oc-

cur more often than the spin-flip events. When moving, the
electron radiates most of the time without the spin flip and
this is why, in order to observe the Sokolov-Ternov effect,
the electron energy must be constant, which can be achieved
in storage rings [62]. Equations (18) and (21) form a system
describing the electron spin and energy evolution. Neglecting
the χ3 term and rewriting the Eq. (18) for χ (τ ) we get the
solution [61]

χ (τ ) = χ0

1 + (4/5
√

3)τχ0

, (23)

where χ (0) = χ0. Substituting Eq. (23) into Eq. (21) one can
solve Eq. (21)

Sz(τ ) = − 8

5
√

3
[1 − e−φ(τ )], (24)

where

φ(τ ) = − 1
4χ0χ (t )τ. (25)
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Note that if we neglect the dependence of the electron energy
on time [χ (t ) = χ0] then Sz(t → ∞) � −0.924 in accor-
dance with the Sokolov-Ternov effect. This is the case for
electron dynamics in the storage rings where the radiative
losses are compensated by acceleration in the accelerating
sections. Without compensating acceleration one has to take
into account and it follows from Eqs. (24) and (25) that
Sz(t → ∞) � −1.5χ0. Equations (24) and (25) can serve as
another benchmark for testing algorithms aimed to simulate
spin dynamics in laser-plasma codes.

IV. NUMERICAL MODEL

We developed a numerical algorithm simulating the inter-
action of a relativistic electron with electromagnetic fields,
taking the spin degrees of freedom into account. The Monte
Carlo method for deciding if a photon is radiated or not is
based on Refs. [47,63–65]. At the beginning of the simula-
tion, each particle is assigned an optical depth τ = − log r1,
where r1 is a random number uniformly distributed from 0–1
(UDRN). After each time step 
t the value 
t W is subtracted
from τ , where

W (χ ) = C0

∫ 1

0
dξw0(ξ, χ ) (26)

is the probability rate for the photon emission. For the con-
stant magnetic field W is given by Eq. (14). It is tabulated
to increase the computation efficiency. When the value of
τ reaches zero (or <0), a photon is emitted and the new

value τ is assigned to the electron. The photon energy h̄ω is
determined by solving

r2 =
∫ h̄ω/ε

0 dξw0(ξ, χ )∫ 1
0 dξw0(ξ, χ )

, (27)

where r2 is another UDRN. The electron energy is changed
ε f = εi − h̄ω and the electron momentum is recalculated

p f = pi

|pi|

√
ε2

f

mc2
− 1. (28)

Note that (28) does not conserve momentum, however, for an
ultrarelativistic electron the error is of the order of 1/γ 2 and
can be neglected. To account for the spin flip after radiation,
the following method is employed [8,37,54,66,67]. When con-
sidering mixed states, the electron spin after radiation is set to
be equal to Ref. [46] (11), however, it is possible to consider
pure states and keep |S| = 1. In this case, the electron spin
state is collapsed into one of the two: either along or the
opposite to the special quantization axis (SQA). This axis
is chosen to be along SRP

f defined in (11). After the photon
is emitted and its energy is defined, the third UDRN r3 is
generated and the following probability is calculated [6]:

P↑ = 1

2

w0 + wi · Si + |wi|
w0 + wi · Si

. (29)

If P↑ > r3, the electron spin after radiation is set to be S f =
wi/|wi|, otherwise S f = −wi/|wi|. If no photon is emitted
and mixed states are used, the electron spin is set to be equal to
(13). In the case of pure states, another UDRN r4 is generated
and the following probability is calculated [6]:

P̃↑ = 1

2

1 − 
tC0
( ∫ 1

0 dξw0 + ∫ 1
0 dξ (wi · Si )

) + ∣∣Si
[
1 − 
tC0

∫ 1
0 dξw0

] − 
tC0
∫ 1

0 dξwi

∣∣
1 − 
tC0

( ∫ 1
0 dξw0 + ∫ 1

0 dξ (wi · Si )
) . (30)

If P̃↑ > r4 the electron spin is chosen to be along SNR
f ,mixed,

otherwise the opposite direction is chosen. Consider the case
of the constant magnetic field and when pure states are used
to describe the electron spin state. Let the electron spin be
along e2 before radiation (for the electron this vector points
to the opposite direction of the external magnetic field) and
no radiation occurs. The probability (30) is equal to 1 in this
case. Alternatively, if the electron spin was along −e2, after
no radiation the probability (30) is equal to 0. This means
that if pure states are used to describe the spin and initially,
the electron spin was either along or opposite to the magnetic
field, NRP does not affect spin dynamics. This is not the case
if one uses mixed states because, as can be seen from Eq. (11),
the spin vector can be |S f ,mixed| < 1.

V. RESULTS OF NUMERICAL SIMULATIONS

The developed numerical model is verified. First, we
consider an electron beam moving perpendicular to the con-
stant homogeneous magnetic field B = Bz0. To model the
Sokolov-Ternov effect, we ignore the energy and momentum
changes as a result of photon emission so that the electron

energy remains constant. The result of the simulation is shown
in Fig. 1 where the initial electron energy is ε = 1 GeV and
χ = 10−3. The time step 
t in this simulation is taken to
be 0.1/W , where W is given by Eq. (14). We used pure
states and the results were averaged over 1000 particles. For
a more thorough test of our numerical algorithm, we run a
simulation of the electron beam head on collision with an
ultraintense elliptically polarized laser pulse. This laser-beam
interaction was discussed in Refs. [35,59]. In our simulations
we use the same parameters as in Ref. [59]. The electron beam
with the energy εk = 5 GeV moves to the −z direction with
the longitudinal polarization along the z axis while the laser
pulse counterpropagates to the beam. The laser pulse has the
Gaussian envelope, the peak intensity I0 = 5.34 1021 W/cm2,
the wavelength λ = 800 nm, the pulse duration τl = 30 fs, the
waist radius r⊥ = 5 μm, and the ellipticity ε = |Ey|/|Ex| =
0.05. The beam radius is assumed to be much less than the
laser waist radius. To simulate the laser-beam interaction the
Monte Carlo polarization vector model (MCPV) has been
developed in Ref. [59]. The model is based on the Monte
Carlo method for photon emission and on numerical solv-
ing of the differential equation, which takes into account the
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FIG. 1. Polarization buildup over time as given by (21) is shown
by the blue (dark gray) dotted line and the result of the simulation is
shown by the solid pink (light gray) line. The gray dash-dotted line
shows the spin value at infinity.

radiative and nonradiative spin dynamics. The MCPV implies
that the stochastic spin dynamics can be approximated by
the continuous evolution. The authors verified the model by
the three-dimensional (3D) code exploiting the Monte Carlo
method for spin dynamics. Note that the Monte Carlo method
for spin dynamics is also used in our numerical model. It
follows from Fig. 2 that the our results are in a fairly good
agreement with results obtained Ref. [59]. The numerical
model described in the previous section is compared with
the CRL models given by Eqs. (16)–(24). The simulation
was performed for different initial χ0 and ε0 values: (i) χ0 =
0.01, ε0 = 1 GeV; (ii) χ0 = 0.1, ε0 = 10 GeV; (iii) χ0 = 0.1,
ε0 = 50 GeV with 105 particles used in all cases. Similarly to
the Sokolov-Ternov case, in this simulation the electrons are
moving along x axis in the constant homogeneous magnetic
field B = Bz0. Initially, the electron beam is unpolarized, i.e.,
each electron either has spin up Sz = 1 or down Sz = −1 with

an average spin for the whole beam 〈Sz〉 = 0. Figure 3 shows
the comparison between predictions of the CRL model and
the results of the numerical simulations. As was discussed in
the end of Sec. III, the polarization buildup is significantly
suppressed when radiative losses are taken into account. Us-
ing Eq. (17) we can estimate the one photon emission time
τph = 1/W and compare it to the polarization buildup time
for the Sokolov-Ternov case. For the case Fig. 3(a) we can
estimate τsp/τph ≈ 7 105, for the case Fig. 3(b) the ratio is
τsp/τph ≈ 7 102, and for Fig. 3(c) τsp/τph ≈ 5.8. Note that
the time used to estimate spin buildup was derived under the
assumption that χ remains constant. Plots on the second and
the fourth rows show the relative error between the numerical
results and the CRL model. The pikes near t � 0 on Fig. 3
can be attributed to the fact that in the beginning there are
not enough spin-flip acts or radiation acts to get a statisti-
cally significant result. These pikes become narrower as one
increases the number of particles in the simulation. During
the simulation we retrieve the information about χ parameter
and the spin of each electron and average it over all particles.
With the increase of the parameter χ0 the analytical and the
numerical results for both χ (t ) and S(t ) begin to deviate from
each other. For χ this can be attributed to the fact that as it
gets bigger, the approximation given by Eq. (21) becomes
less accurate. For the spin evolution, the deviation between
the numerical and the analytical curves becomes even bigger
because the error for χ gets exponentially bigger for the spin
according to Eqs. (24) and (25). It should be noted that,
strictly speaking, using differential equations like Eq. (21) is
incorrect in the χ � 1 case. The left-hand side of Eq. (21) is
averaged over particles, however, the right-hand side is not
accurately averaged, even though it depends on the averaged
χ . Nevertheless, from Fig. 3 it is seen that using differential
equations like Eq. (21) in the χ � 1 limit gives a fairly
good understanding of system dynamics. We also explore the
quantum limit χ 
 1 using an algorithm in Sec. IV. Although
in this limit the use of the differential equations (21) and (16)
is invalid, we can still compare the results given by the code

FIG. 2. Comparison of our simulation results with the MCPV model developed in Ref. [59]. On the left plot, the electron distribution
obtained in our simulations is shown with the green (gray) line and the blue (dark gray) dots represent the result of the MCPV model. On the
right plot the averaged spin distribution for spin along x axis is shown with the red (gray) line and the blue (dark gray) dots show the results of
the MCPV mode.
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FIG. 3. The comparison between the numerical results with the solution for the averaged spin evolution for different parameters: [(a1)–(a4)]
χ = 0.01, ε = 1 GeV, [(b1)–(b4)] χ = 0.1, ε = 10 GeV, and [(c1)–(c4)] χ = 0.5, ε = 50GeV. Magnetic field is B/Bcr = 0.511 10−6 for all
cases. The solid red (light gray) line on plots in the first and fourth rows represents the average spin component along z axis (coincides with
direction of the magnetic field) obtained in numerical simulation. The dashed blue (dark gray) line is the analytical solution of Eqs. (24) and
(25). The violet (gray) lines on plots (a2), (b2), (c2) show the difference between the numerical solution and the analytical result for the spin.
On plots (a4), (b4), (c4) the violet (gray) lines represent the difference between the numerical results for χ and the analytical ones given by
Eq. (23).

with equations. The evolution of the electron energy is given by Eq. (16) and for vector spin projection on the magnetic field the
following equation is used [59]:

dSz

dt
= −SzF2(χ ) − F1(χ ), (31)

where the coefficients are as follows:

F1(χ ) = C0

∫ 1

0
dξ

ξ 2

1 − ξ
K1/3

(
2

3χ

ξ

1 − ξ

)
, (32)

F2(χ ) = C0

∫ 1

0
dξ

ξ 2

1 − ξ
K2/3

(
2

3χ

ξ

1 − ξ

)
. (33)

The comparison between the solution of (16) and (31) and the results of the algorithm is presented in Fig. 4. For different χ

values, Eqs. (16) and (31) are solved and one can see a good agreement despite the fact that, strictly speaking, the averaging
used to derive differential equations above is not valid in χ � 1 regime. Note that the known approximation for power radiated
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FIG. 4. On the plots solid blue (dark gray) lines (a1), (a3), (b1), (b3), (c1), (c3) show the results of the numerical simulations, dotted green
(gray) lines show the exact solution of Eqs. (16) and (31), and the case of four terms expansion of the right-hand side of Eq. (16) is shown with
the red (gray) dash-dotted line. Plots represent the time evolution of 〈χ〉 and 〈Sz〉 averaged over 105 particles. For all calculations the magnetic
field strength was taken to be B/Bcr = 0.511 10−4 with the initial χ0 being 10 for [(a1)–(a4)], 50 for [(b1)–b(4)], and 100 for [(c1)–(c4)]. In
all cases the initial average spin equals zero. Plots (a2), (a4), (b2), (b4), (c2), (c4) depict the difference between the numerical results and the
solution of the Eq. (16) and Eq. (31) with solid violet (gray) lines.

at χ 
 1 (C1) works only on small times. The four-term approximation given in Ref. [26]

P = 25�(2/3)

35
αmc2 mc2

h̄
(3χ )2/3

(
1 − 81

16�(2/3)
(3χ )−2/3 + 165�(1/3)

16�(2/3)
(3χ )−4/3 − 11 36

80
√

3�(2/3)
(3χ )−5/3

)
(34)

works better as can be seen from the Fig. 4.

VI. CONCLUSIONS

The motion of a relativistic electron beam in the pres-
ence of a constant homogeneous magnetic field was explored,
while taking spin-resolved radiation effects and radiation
reaction into consideration. The analytical expressions for
evolution both of the beam energy and the beam polarization
are derived in the quasiclassical limit χ � 1. The derivation
is based on the CRL model. To verify the obtained results the
numerical model, which uses Monte Carlo method for photon
emission including spin effects, is developed. The predictions

of the CRL model are compared with the results obtained
from numerical simulations for different values of the initial
parameter χ from the quasiclassical regime χ � 1 to the
strong quantum regime χ 
 1. As anticipated from the CRL
model, the radiation reaction significantly hinders the buildup
of polarization, as the energy of the leptons is rapidly lost even
when the χ parameter is small. The numerical simulations
and the analytical results demonstrate a fairly good agreement
when χ is small, but deviations increase as χ grows. Nonethe-
less, the analytical solution for χ can still serve as a useful
estimation tool for researchers exploring this phenomenon.
This is consistent with the results from Ref. [68] where au-
thors investigated the plausibility of describing the dynamics
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of a laser-electron collision using a radiation reaction force
approach. Also the validity of the CRL model is discussed.
The model operates with the averaged quantities where the av-
eraging is performed over the beam electrons. From quantum
mechanical point of view one can also interpret the averaging
procedure as a set of the parameters measurements for one
electron. The radiative losses because of multiple emissions
of the photons are treated both by the CRL model and by
the stochastic model in the classical limit χ � 1 and in the
strong quantum limit χ 
 1. The validity condition of the
CRL model is derived in the classical limit. It is also shown
that the model can be used for estimations even in the quantum
regime. Moreover the strong radiative losses in the quan-
tum regime leads to rapid relaxation to the classical regime
where the CRL model works properly. Nevertheless further
investigations of the model are needed. These results could
prove important for future studies aimed at investigating the
strong-field QED properties and the behavior of spin degrees
of freedom for particles in different experimental conditions.
The obtained solution can also serve as a benchmark for future
numerical algorithms.
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APPENDIX A: CRL MODEL

Consideration of the radiation process from the quantum
physics point of view requires us to treat it as a random
event. Each time an electron emits a photon, its energy is
changed by a random number because of the recoil effect,
obeying the probability distribution given by Eq. (7). Radi-
ation does not occur instantly, but is formed over a certain
length called the radiation formation length (or time if we
divide the length by the speed of light) [69]. If this time is less
than the characteristic times in the system then it is possible
to separate the electron dynamics description during photon
emission from that between the photon emission events [47].
For the relativistic electron moving in the electromagnetic
field available in typical experimental conditions its dynamics
between photon emission events can be treated using classical
approach. At the same time the parameters of the electron
during photon emission changes according to the quantum
probability rate. However, in the classical regime χ � 1 the
probabilistic nature of the radiation process disappears, which
makes it possible to use deterministic differential equations.
For the classical regime the energy evolution of the radiating
electron can be presented as follows:

dε

dt
= −Pcl (ε), (A1)

where Pcl is power radiated per unit time in the classical limit.
However, Eq. (A1) overestimates radiative losses beyond the
classical regime. Equation (A1) can be extended to take into

account the quantum corrections [48–51]. To do that one may
take the radiated power calculated in QED approach, P instead
of Pcl . This corresponds to the CRL model, which does not
overestimate the radiative losses but neglects the stochastic
nature of photon emission. Now we start to discuss the validity
of this model because this was not analyzed yet in literature.
One can formally generalize Eq. (A1) beyond of the classical
limit using Eqs. (12) multiplied by the photon energy h̄ω and
integrated over ξ

d〈ε〉
dt

� −C0ε0

∫ 1

0
dξ ξ w0(ξ, 〈χ〉) (A2)

� −C0

ε0

∫ ε0

0
dκ κ w0(κ, 〈ε〉) = −P(〈ε〉), (A3)

where 〈ε〉 is the averaged electron energy, κ = h̄ω, and
〈χ〉 = B〈ε〉/(Bcrmc2). For simplicity, from here and below,
the spin-averaged probability is used. Integration over pho-
ton spectrum means the averaging over all possible changes
in the electron energy because of the photon emission. The
averaging in Eq. (A2) can be interpreted as the averaging over
the beam electrons, which have the equal initial conditions.
In the classical limit all electrons with the same initial con-
ditions have the same trajectory and the equal energy at each
moment of time. This is not the case for the quantum regime.
In the quantum regime one has to treat the photon emission
as stochastic process. Therefore the electrons with the same
initial conditions have different dependencies of the energy
on time and suffer stochastic diffusion in the energy space.
To understand the averaging procedure discussed above one
can introduce the distribution function of the beam electrons,
f (ε,Y , t ), where Y is the other parameters of the beam elec-
trons. The distribution function of the electron beam is a δ

function at the initial moment of time

f (ε,Y , t = 0) = δ(ε − ε0)δ(Y − Y 0). (A4)

The distribution function after some emission events is

f (ε,Y , t ) = 1

N

N∑
i=1

δ[ε − εi(ε0,Y 0, t )]

× δ[Y − Y i(ε0,Y 0, t )], (A5)

where (εi,Y i ) are the parameters of the ith electron, N is the
number of electrons in the beam. The averaged energy of the
electron is

〈ε〉 = 1

N

N∑
i=1

εi =
∫

dεdYε f (ε,Y , t ). (A6)

One can also interpret the averaging procedure given by
Eq. (A6) as a set of the measurements for one electron, where
N is the number of measurements. According to quantum
mechanics the measurement of the arbitrary parameter X rep-
resented by the operator X̂ corresponds to the procedure

〈X〉 =
∫

ψ†X̂ψ d3x, (A7)

where ψ is the wave function of the electron.
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APPENDIX B: CRL MODEL IN THE CLASSICAL LIMIT

In order to analyze the validity of the CRL model we first
consider the classical limit (χ � 1) where the model describe
the electron dynamics with high accuracy. Assume that each
electron of the beam emits one photon. According to Eqs. (12)
and (A2) the mean photon energy can be written as follows:

ε1(ε0) =
∫ ε0

0
κ w1(κ, ε0)dκ, (B1)

1 =
∫ ε0

0
w1(κ, ε0)dκ, (B2)

w1(κ, ε0) = C0w0(κ, ε0)

ε0W (ε0)
, (B3)

where W (ε0) = W (χ ) is the probability rate given also by
Eq. (26). The mean energy of the beam electron after one-
photon emission is

E1 = ε0 − ε1. (B4)

In the classical limit κ � ε0 so that the spectral density of the
probability rate, w1, and the mean photon energy take forms
[26,58,70]

w1(κ, ε0) = 3

5πκc

∫ ∞

κ/κc

K5/3(s) ds, (B5)

ε1(ε0) = P

W
= 8κc

15
√

3
= Cεε

2
0, (B6)

∫ ε0

0
w1(κ, ε0) dκ �

∫ ∞

0
w1(κ, ε0) dκ = 1, (B7)

where

P(ε0) = W ε1(ε0), (B8)

Wcl = 5α

2
√

3τc

B

Bcr
, (B9)

κc = h̄ωc = h̄
3eB

2mc

( ε0

mc2

)2
, (B10)

Cε = 4

5
√

3

B

Bcr

(
1

mc2

)2

, (B11)

is the critical photon energy. Now let us consider the case
when each electron of the beam emits two photons. The spec-
tral density of the probability rate for the second photon is
given by the expression

w2(κ, ε0) =
∫ ε0

0
w1(κ, ε0 − κ1)w1(κ1, ε0) dκ1, (B12)

1 =
∫ ε0

0
w2(κ, ε0)dκ. (B13)

The last equation can be obtained from Eq. (B3) by replacing
ε0 with ε0 − κ1. The mean energy of the first photon is given
by Eq. (B1) while the mean energy of the second photon
energy is

ε2 =
∫ ε0

0

∫ ε0

0
κ2w1(κ2, ε0 − κ1)w1(κ1, ε0)dκ2dκ1

=
∫ ε0

0
ε1(ε0 − κ1)w1(κ1, ε0)dκ1

= Cε

∫ ε0

0
(ε0 − κ1)2w1(κ1, ε0)dκ1

= ε1 − 2ε2
1

ε0
+ ε1

ε2
0

〈
ε2

1

〉
, (B14)

where〈
ε2

1

〉 =
∫ ε0

0
κ2 w1(κ, ε0) dκ = 11κ2

c

27
= 275

64
ε2

1 (B15)

and Eq. (B6) is used. The mean energy of the beam electron
after two-photon emission is

E2 = ε0 − ε1 − ε2

= ε0

[
1 − 2

ε1

ε0
+ 2

ε2
1

ε2
0

− ε1

ε3
0

〈
ε2

1

〉]
. (B16)

For three-photon one we have

ε3 =
∫∫∫ ε0

0
κ3w1(κ3, ε0 − κ2 − κ1)w1(κ2, ε0 − κ1)

×w1(κ1, ε0)dκ3dκ2dκ1

=
∫∫ ε0

0
ε1(ε0 − κ2 − κ1)w1(κ2, ε0 − κ1)

×w1(κ1, ε0)dκ2dκ1

= Cε

∫∫ ε0

0
(ε0 − κ2 − κ1)2w1(κ2, ε0 − κ1)

×w1(κ1, ε0)dκ2dκ1

= ε1

[
1 − 4

ε1

ε0
+ 6

ε2
1

ε2
0

+ 2

〈
ε2

1

〉
ε2

0

+ O

(
ε3

1

ε3
0

)]
. (B17)

The mean energy of the beam electron after three-photon
emission is

E3 = ε0 − ε1 − ε2 − ε3

= ε0

[
1 − 3

ε1

ε0
+ 6

ε2
1

ε2
0

− 6
ε3

1

ε3
0

− 3
ε1

〈
ε2

1

〉
ε3

0

+ O

(
ε4

1

ε4
0

)]
, (B18)

The generalization to the multiphoton regime is straightfor-
ward. The spectral density of the probability rate for the n
photon can be derived by the inductive way

wn(κn, ε0) =
∫ ε0

0
· · ·

∫ ε0

0
dκ1 . . . dκn w1(κ1, ε0)

×
n−1∏
i=1

w1(κi+1, ε0 −
i∑

j=1

κ j ), (B19)

1 =
∫ ε0

0
wn(κ, ε0)dκ. (B20)

The mean energy of the n photon takes a form

εn = ε1

[
1 − 2(n − 1)

ε1

ε0
+ 3(n − 1)(n − 2)

ε2
1

ε2
0

+ (n − 1)

〈
ε2

1

〉
ε2

0

+ O

(
ε3

1

ε3
0

)]
. (B21)
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The mean energy of the beam electron after n-photon emission
is

En = ε0 −
n∑

i=1

εi = ε0

[
1 − n

ε1

ε0
+ n(n − 1)

ε2
1

ε3
0

− n(n − 1)(n − 2)
ε3

1

ε3
0

− n(n − 1)

2

ε1
〈
ε2

1

〉
ε2

0

+ O

(
ε4

1

ε4
0

)]
. (B22)

Since Wcl does not depend on ε in the limit χ � 1 the distri-
bution of electrons over the number of emitted photons at the
time moment t is given by the Poisson distribution

P (n, τ ) = τ ne−τ

n!
, (B23)

where τ = Wclt . Therefore the mean energy of beam electron
is at the time moment t = τ/Wcl

〈ε〉 =
∞∑

n=0

P (n, τ )En

= ε0

[
1 − τ

ε1

ε0
+ τ 2 ε2

1

ε2
0

− τ 3 ε3
1

ε3
0

− τ 2

2

ε1
〈
ε2

1

〉
ε3

0

+ O

(
ε4

1

ε4
0

)]
, (B24)

where E0 = ε0. The averaged energy of the beam electron can
be also calculated using the CRL model. The solution of the
CRL model given by Eq. (23) can be rewritten as follows:

〈εCRL〉 = ε0

1 + τε1/ε0
(B25)

= ε0

[
1 − τ

ε1

ε0
+ τ 2 ε2

1

ε2
0

− τ 3 ε3
1

ε3
0

+ . . .

]
. (B26)

Compare the prediction of the CRL model given by Eq. (B26)
and the calculation results obtained in the stochastic model
beyond of CRL approximation and given by Eq. (B26). The
difference is because of the term proportional to 〈ε2

1〉. The
term determines the width of the photon spectrum, which
is the synchrotron radiation spectrum ∝ κw1(κ, ε) in the
classical limit [70]. The stochastic photon emission causes
the spreading of the electron energy distribution, which is
not taken into account in the CRL model. The difference

ε = 〈εCRL〉 − 〈ε〉 can be presented as follows:


ε = τ 2

2

ε1
〈
ε2

1

〉
ε3

0

= 5211

27
τ 2 ε3

1

ε2
0

+ O

(
ε4

1

ε3
0

)
, (B27)

where Eq. (B17) is used. They agree to each other when

ε 
 
ε = 5211

27
τ 2 ε3

1

ε2
0

. (B28)

By virtue of Eq.(B6) one can reformulate Eq. (B28) in term of
the parameter χ = (ε0/mc2)(B/Bcr ) ∝ ε1/ε0

τ �
√

30
√

3

11
χ−3/2 � 2.17χ−3/2. (B29)

It follows from this condition that the CRL model is valid
in the classical limit for long-term dynamics when the elec-
tron energy can change significantly τ 
 χ . Moreover, as
the parameter χ decreases in time because of the radiative
losses, the condition becomes fulfilled better and better with
time. This can be seen in Figs. 3(a4), 3(b4), 3(c4) where it
is demonstrated that the deviation between the CRL model
results and the numerical results reduces at long times.

APPENDIX C: CRL MODEL IN THE LIMIT χ � 1chi

One can formally extend our calculations to the strongly
quantum regime χ 
 1. The mean photon energy is in this
regime [26,58]

ε1 = P

W
= δε0, (C1)

P = 32�(2/3)αm2c4

243h̄
(3χ )2/3, (C2)

W = 14�(2/3)αm2c4

27h̄ε
(3χ )−1/3, (C3)

δ = 16

63
. (C4)

It follows from Eq. (C1) that even in the quantum regime the
mean photon energy is always much less than the electron
energy (ε1/ε0 = δ = 16/63 � 1). Note that the calculations
of the photon energy can be exact in the limit χ 
 1 as the
dependence of ε1 on ε0 is linear. The mean energy of the nth
photon is

εn =
∫ ε0

0
dκn κnwn(κn, ε0)

=
∫ ε0

0
· · ·

∫ ε0

0
dκ1 . . . dκn κnw1(κ1, ε0)

×
n−1∏
i=1

w1(κi+1, ε0 −
i∑

j=1

κ j )

=
∫ ε0

0
· · ·

∫ ε0

0
dκ1 . . . dκn−1 ε1

⎛
⎝ε0 −

i∑
j=1

κ j

⎞
⎠

×
n−2∏
i=1

w1(κi+1, ε0 −
i∑

j=1

κ j )

= ε1

⎛
⎝ε0 −

n−1∑
j=1

ε j

⎞
⎠ =

(
1 − ε1

ε0

)
εn−1

=
(

1 − ε1

ε0

)n−1

ε1. (C5)

The averaged energy of the beam electron after n-photon
emission is

En = ε0 −
n∑

i=1

εi = ε0

(
1 − ε1

ε0

)n

= ε0(1 − δ)n. (C6)
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The averaged energy of the beam electron after n-photon
emission can be also calculated using the CRL model

d〈ε〉
dt

= −P(〈ε〉) = −Cq〈ε〉2/3, (C7)

dτ

dt
= W (〈ε〉) = Cq

δ
〈ε〉−1/3, (C8)

Cq = 2532/3�(2/3)αm4/3c8/3B2/3

35B2/3
cr h̄

. (C9)

The solution of Eqs. (C7) and (C8) is [61]

〈εCRL〉 = ε0

(
1 − Cqt

3ε
1/3
0

)3

(C10)

= ε0e−δτ , (C11)

τ = −3

δ
ln

(
1 − Cqt

3ε
1/3
0

)
. (C12)

Since in the limit χ 
 1 the probability of the photon emis-
sion is a function of the electron energy (W ∝ ε−1/3) the
distribution of electrons over the number of emitted photons
at the time moment t is more complex than the simple Poisson
distribution. To derive this we can use the approach based on
the balance equations, which is used, for example, to describe
the dynamics of the multiple field ionization of atoms and
ions [71,72]. If N electrons in the beam emit no more than n
photons then the distribution of the electrons over the number
of emitted photons is given by the balance equations

dN0

dt
= −W0N0, (C13)

dN1

dt
= W0N0 − W1N1, (C14)

. . . , (C15)

dNn−1

dt
= Wn−2Nn−2 − Wn−1Nn−1, (C16)

dNn

dt
= Wn−1Nn−1, (C17)

where is the Ni is the number of the beam electrons emitted i
photons, Wi = W (Ei ) is the probability of the electron to emit
the photon after emission of i − 1 photons. It follows from
the balance equations the dN/dt = d (

∑n
i=0 Ni )/dt = 0. The

system can be solved analytically but the result has the cum-
bersome form (see Eq. (8) in Ref. [72]). Note that in the limit
W = const. the solution reduces to the Poisson distribution.
To make analytical advance one can use in Eqs. (C13)–(C17)
the new time τ defined by Eq. (C12) instead of t . The new
time τ can is proportional to the mean number of the emitted
photons by one beam electron. Wi are approximately constant
variables in the balance equations with τ if W changes slightly
during the emission time 1/W . Thus the Poisson distribution
(B25) can be used for the distribution of electrons over the
number of emitted photons at the time moment τ . Then the
mean energy of beam electron is at the time moment τ

〈ε〉 =
∞∑

n=0

P (n, τ )ε0(1 − δ)n = ε0e−δτ . (C18)

It follows from Eqs. (C11) and (C18) that the CRL model
provides the same result as the result obtained by stochastic
approach based on Eqs. (C5) with the Poisson distribution
approximation. The difference between the both approaches
probably can be observed if the exact distribution based on
the balance equations will be used when the dependence of
Wi on the number of the emitted photons by the electron is
not neglected. Yet the CRL model can be used for estimations
even in the quantum regime. Another reason for that is the
strong radiative losses in the quantum regime so that the
electron is rapidly losing energy thereby reaching the classical
regime where the CRL model works properly [73]. It follows
from Fig. 4 that the CRL model provides order-of-magnitude
accuracy even in the limit χ 
 1.

When considering the spin degrees of freedom, the distri-
bution function and the function A can also depend on the spin.
It is important to note that the radiation probability depends
linearly on the polarization and spin parameters [46]. In this
case the averaging over the spin is straightforward, which
makes it justified to use the CRL approach to describe the spin
dynamics.
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