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Dynamics in non-Hermitian systems with nonreciprocal coupling
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Non-Hermitian Hamiltonians with nonreciprocal coupling can achieve amplification of initial states without
external gain due to a kind of inherent source. We discuss the source and its effect on time evolution in terms
of complex eigenenergies and nonorthogonal eigenstates. Demonstrating two extreme cases of Hamiltonians,
namely one having complex eigenenergies with orthogonal eigenstates and one having real eigenenergies with
nonorthogonal eigenstates, we elucidate the differences between the amplifications from complex eigenenergies

and from nonorthogonal eigenstates.
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I. INTRODUCTION

A nonreciprocal system is one in which the transmission
of a state between any two positions depends on the direc-
tion of propagation, i.e., source and measure points are not
interchangeable. In nonreciprocal systems, the off-diagonal
scattering parameters of the S matrix, which relates the initial
and final states in source and measure points of a phys-
ical system, are not equivalent, or in other words Sy, #
S>1. Nonreciprocal systems have been realized in various
fields of physics such as electromagnetics [1-5], acoustics
[6,7], electronics [8], quantum systems [9,10], and mechan-
ics [11-13]. Recently, non-Hermitian topological models
with nonreciprocal coupling terms have also attracted a
lot of attention since nonreciprocity induces all the eigen-
states to localize at the system boundary, a feature called
the non-Hermitian skin effect [14-23]. Directional ampli-
fications in nonreciprocal systems have also been studied
based on Green’s function formulas from the non-Bloch band
theory [24].

Dynamics in non-Hermitian systems can be very different
from that in Hermitian systems because of non-normality as
well as complex eigenvalues. In non-normal systems with
nonorthogonal eigenstates, one of the most interesting behav-
iors is that initial states amplify with time in the transient
regime, which is called transient growth [25], and finally
amplify or decay exponentially with time in the long-time
regime. Such transient growth and non-normality have been
previously considered in different fields, e.g., fluid mechanics
[26,27], spatial pattern formations [28,29], stochastic dy-
namics [30], photonic media [31,32], and complex networks
[33-37].

In this work, we study time evolution in nonreciprocal
systems. We discuss the inherent source in nonreciprocal
systems by regarding them as coupled systems with unidirec-
tional coupling, i.e., master and slave systems. The inherent
source creates amplifications of initial states in time that
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are associated with complex eigenvalues and nonorthogonal
eigenvectors in nonreciprocal systems without external gain.
To elucidate the temporal behaviors, we demonstrate various
time evolutions of specific initial states in nonreciprocal sys-
tems with unidirectional coupling under different boundary
conditions. Finally, we show that non-Hermitian Hamiltoni-
ans with nonreciprocal coupling can achieve amplification of
initial states without external gain due to the inherent source.
Additionally, we confirm that the transient amplifications are
related to nonorthogonal eigenstates, while long-time decay
or amplification is related to the maximal imaginary parts of
complex eigenenergies in non-Hermitian systems with nonre-
ciprocal coupling.

The paper is structured as follows. In Sec. II, we study
the reason for the existence of an inherent source in non-
reciprocal systems and introduce models with unidirectional
coupling under a periodic boundary condition (PBC) and
open boundary condition (OBC). Section III shows the re-
sults of time evolutions in the models. We demonstrate
transient growth and long-time exponential behavior using
different measures defined by right eigenstates, left eigen-
states, and biorthogonal states. In Sec. IV, we summarize
our results.

II. NONRECIPROCAL SYSTEMS

Inherent source in nonreciprocal systems. To provide an
example of a nonreciprocal system, we first consider an os-
cillator driven by an external force. If the external force is
generated by another oscillator, the overall system can be
considered as master and slave oscillators with unidirectional
coupling (see Fig. 1). The master oscillator affects the slave
oscillator, but the former is not affected by the latter. As a
result, such nonreciprocal systems contain a kind of inherent
source, which is the master oscillator. Mathematically, nonre-
ciprocal models without gain and loss can be transformed to
reciprocal models with gain and loss by similarity transforma-
tions with proper transform matrices.

Nonreciprocal Hamiltonians. While Hermitian Hamilto-
nians have real eigenenergies and orthogonal eigenstates,
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FIG. 1. Schematic figures of (a) an oscillator driven by an
external driving force and (b) coupled oscillators with unidirec-
tional coupling. The dashed boxes represent the systems under
consideration.

non-Hermitian Hamiltonians including nonreciprocal models
can have real or complex eigenenergies and orthogonal or
nonorthogonal eigenstates. Non-Hermitian Hamiltonians sat-
isfy the condition

H+#H'. (1)

If the Hamiltonians have real eigenenergies, then they satisfy
the pseudo-Hermiticity condition [38,39]

nHn™' = H', )

where 7 is a proper transformation matrix. This is the nec-
essary condition to have real eigenenergies, not sufficient
condition. On the other hand, the condition for normal Hamil-
tonians with orthogonal eigenstates is

HH' =H'H. 3)

Hermitian Hamiltonians have real eigenenergies and orthog-
onal eigenstates because they satisfy the two conditions in
Egs. (2) and (3). Since the conditions for real eigenenergies
and orthogonal eigenstates are independent, non-Hermitian
Hamiltonians can have (i) complex eigenenergies and orthog-
onal eigenstates, (ii) real eigenenergies and nonorthogonal
eigenstates, and (iii) complex eigenenergies and nonorthog-
onal eigenstates. In this work, we focus on the first two cases
using one-dimensional (1D) chain models with unidirectional
coupling, representing extreme cases of nonreciprocity under
PBC and OBC, respectively.

1D chain models with unidirectional coupling under PBC
and OBC. We can expect that the initial states of nonreciprocal
systems can be amplified as time goes by since the systems
have a kind of inherent source. To demonstrate such amplifica-
tions in nonreciprocal systems, we consider simple 1D chain
models with unidirectional coupling under PBC and OBC.

The N x N Hamiltonian is given by

—iy 4 0 0 0 Bt
t, —iy 1 0 0 0
0 t, —iy 0 0 0
H= : : : : : B
0 0 0 —iy 1 0
0 0 0 t, —iy 4
Bt 0 0 0 t, —iy

“4)

where #, =1, t, =0, y is net loss, and S represents the
boundary condition. The PBC is when 8 = 1 [see the inset
in Fig. 2(a)] and the OBC is when 8 = 0 [see the inset in
Fig. 2(b)]. Hamiltonians under PBC have complex eigenen-
ergies and orthogonal eigenstates, while Hamiltonians under
OBC have real eigenenergies and nonorthogonal eigenstates.

III. DYNAMICS IN NONRECIPROCAL SYSTEMS

A. Time evolution

We consider quantum and wave systems described by the
state |). The system dynamics is determined by the time-
dependent Schrodinger equation

od
i1V (0) = HIw o), 5)

where time is scaled such that /i = 1 throughout this paper.
The time evolution of the state |y (¢)), which is a superpo-
sition of eigenstates or associated eigenstates in the case of
defective Hamiltonians, can be described by a differential
equation given by

[ (1)) = —iH Y (1)), (6)
where the state and its derivative are
x1(2) x1(1)
x2(1) xj(t)
|1/f(t)> = .Xj(l) 9 hb(t)) = Xj.([) (7)
xn () xn (1)

For simplicity, we assume the initial state is localized on
a site. First we consider that the initial state is localized
on the Nth site [see the insets in Figs. 2(a) and 2(b)] and
then solve the differential equation, Eq. (6), for N = 10. The
time evolutions of the amplitudes of the elements, x;, in the
states may not represent physically observable quantities in
quantum mechanics. Schrodinger equations, however, can de-
scribe various fields of wave dynamics as well as quantum
mechanics due to the formal equivalence between the paraxial
Helmholtz equation of electromagnetism for the electric field
amplitude and Schrodinger equations of quantum mechanics
for the probability amplitude. For example, in photonic lattice
experiments, the amplitudes of the states on each site are
physically measurable quantities [40—43].

We first consider the Hamiltonian without net loss, y = 0.
The Hamiltonians under PBC, i.e., Eq. (4) with 8 = 1, have

052205-2



DYNAMICS IN NON-HERMITIAN SYSTEMS WITH ...

PHYSICAL REVIEW A 108, 052205 (2023)

-4l
1012

5 10 20 50

0 10 20 30 40 50

— x4l — Ixs| — Ixgl

106! (f) Ixal — Xl — Ix1ol
Paal — x| — lIxII
108} — |xal — Ixal
|Xj| N |
100"/,;?7 2
10_8 | 0
0 10 20 ¢ 30 40 50 0 10 20 ¢ 30 40 50

FIG. 2. Time evolutions of the amplitudes of the elements x;(¢) of | (¢)) when the initial states are localized on the tenth site under (a) PBC
and (b) OBC. Solid red lines represent the Euclidean norms of the states and different colors represent different sites. The inset is a log-log
scaled plot, |x;(t)| o ¢°. (c), (d) The same conditions with additional net loss. (e), (f) The same conditions with different initial states localized

on the first site. In (f), x; =0 (j = 2,3, ..., 10).

complex eigenenergies and orthogonal eigenstates. If an initial
state is localized on the tenth site, the Euclidean norm of the
state defined as

®)

increases exponentially with time because the largest imag-
inary parts of the complex eigenenergies of H are positive
[Fig. 2(a)]. The exponents are directly related to the imaginary
part of the complex eigenenergy with the largest imaginary
part, Max[Im(A)], as follows:

| |x(t)| | — eMax[Im()»)]t'

©))
On the other hand, the Hamiltonians under OBC, Eq. (4)
with 8 = 0, have real eigenenergies and nonorthogonal eigen-
states. If an initial state is localized on the tenth site, the
Euclidean norm increases algebraically with time, although
all eigenenergies are real [Fig. 2(b)]. Amplifications origi-
nate from the non-normality of the systems, and as a result,
the source effects of nonreciprocal systems result in the am-
plifications being associated with complex eigenenergies or
nonorthogonal eigenstates.

To elucidate the amplification due to non-normality, we
consider a simple 2 x 2 nonreciprocal effective Hamiltonian,

)

The time evolution of the state | (¢)) according to Eq. (6) is
given by

(10)

[ @) = e My (0))

x1(t) 1 =it (x1(0)
x(t) 0 1 J\x(0)

from the matrix exponential eM = Y72 M*/k!. While x,(t)
does not change from the initial value x,(0), the x;(¢) term
changes with time by —itx,(0). The x;(t) and x,(¢) terms
are slave and master elements, respectively. Considering an
N x N effective Hamiltonian, |x;(r)| o< tN/xy(0) [see the
inset in Fig. 2(b)]. The larger the system size, the higher
the exponent and the greater the amplification. We note that
infinite amplification without saturation indicates the max-
imal limitation of the amplifications in the extreme cases
with unidirectional coupling. If we consider partially directed
coupling, |x;(z)| increases algebraically up to a finite value,
saturates, and finally oscillates without decay because of the
lack of loss.

an

(12)
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Next, we consider a Hamiltonian with net loss, y = 0.5.
In the case of PBC, the amplifying rates decrease since the
largest imaginary values of the complex eigenenergies be-
come smaller due to the net loss [Fig. 2(c)]. In the case
of OBC, the net loss does not change the nonorthogonal
eigenstates, while the net loss changes real eigenenergies
into complex eigenenergies. As a result, the time evolutions
show combined phenomena originating from both complex
eigenenergies and nonorthogonal eigenstates. The amplitudes
temporarily increase due to non-normality but finally de-
crease with time after a transient since the imaginary parts
of all eigenenergies are —0.5 [Fig. 2(d)]. Considering general
cases with localized or inhomogeneous losses, the long-
time dynamics are determined by the largest imaginary parts
of complex eigenenergies. In summary, transient amplitude
growth originates from the nonorthogonality of the eigen-
states, but the long-time exponential decay or amplification
is governed by the nonzero imaginary parts of the complex
eigenenergies. We note that the long-time dynamics is also
governed by non-normality if all eigenenergies are real since
there is no long-time exponential decay or amplification re-
sulting from the complex eigenenergies [see Fig. 2(b)].

To reconsider the amplifications, we introduce a simple
2 x 2 nonreciprocal effective Hamiltonian with net loss,

Y 4 1
H = ( 0 —iy)' (13)

The time evolution of the state |1/ (¢)) is given by

xi@®)\ _ (e —ite7""\ (x1(0)
<x2(1)>_< 0 e )<x2<0))' (1

While x,(#) decays exponentially with exponent —y ¢ from the
initial value x,(0), x;(¢) decays exponentially with exponent
—yt with transient growth by the term —ire™""x,(0).

The transient growth depends on the initial states, while
the long-time exponential behavior is irrespective of the initial
states. This is natural since the transient growth and long-
time exponential behavior are related to the eigenstates and
eigenenergies, respectively. If the initial states are localized on
the first site, the results from the Hamiltonian under PBC are
not different from those when the initial states are localized
on the tenth site [see Fig. 2(e)]. Under OBC, however, if the
initial states are localized on the first site, then the initial states
do not change with time since there is no influence from the
states localized on the first site to other sites. This coincides
with the fact that the initial states are the right eigenstates of
the Hamiltonian and the corresponding eigenenergies are real.
If there is net loss, the initial states localized on the first site
exponentially decay without abnormal transient behavior. As
a result, the initial states leading to the maximum transient
growth correspond to left eigenstates (states localized on the
tenth site), while right eigenstates as the initial states cannot
achieve transient growth but always follow the imaginary
part of the associated complex eigenenergy. For example, if
we consider initial states leading to the maximum transient
growth in a 2 x 2 passive PT-symmetric Hamiltonian with net
loss, while the initial right eigenstates exponentially decay, the
initial left eigenstates temporarily amplify and finally decay at
the same rate (see Appendix).

B. Time evolution in terms of left eigenstates

Many physical measures such as the amplitudes of os-
cillators [44,45] and waves [46,47] described by coupled
differential equations analogous to Eq. (6) can be well rep-
resented by Eq. (7) associated with right eigenstates. For
instance, linearized Jacobian matrix J in a coupled nonlin-
ear oscillator model is mathematically equivalent to —iH in
Eq. (6), while their physical meanings are different. However,
the biorthogonality associated with the left as well as the right
eigenstates is required to understand non-Hermitian quantum
systems [48]. We consider the time-dependent Schrodinger
equation

L d o
ih—1¢@) = Hl|p (@), (15)

where |¢(t)) is a superposition of the right eigenstates of H',
which are the same as the left eigenstates of H, while [y (¢))
is a superposition of the right eigenstates of H. The time
evolution of the state |¢(¢)) can be described by a differential
equation given by

9()) = —iH |$(1)), (16)
where the state and its derivative are
yi(t) (1)
ya(t) ¥a(t)
lp(2)) = v | lp(2)) = ¥,(0) (17)
yn(t) yn (1)

The amplitudes of the state |¢(¢)) evolving from the initial
states localized on the tenth (first) site are the same as the
amplitudes of the state |y (¢)) evolving from the initial states
localized on the first (tenth) site, irrespective of the boundary
conditions [see Figs. 3(a) and 3(b)]. If we add net loss (gain) to
the Hamiltonian H (H), the amplification rate becomes larger
since the corresponding eigenenergy of the left eigenstates is
a complex conjugate of that of the right eigenstates. The Eu-
clidean norm of the state |¢(¢)) increases with time, contrary
to the case of the state |1 (¢)) [see Figs. 3(c) and 3(d)].

C. Time evolution in terms of biorthogonality

The Euclidean norms of |y (¢)) associated with the right
eigenstates and of |¢(#)) associated with the left eigenstates
are no longer equal to 1 in nonreciprocal systems since they
have complex eigenenergies or nonorthogonal eigenstates.
However, biorthogonal norms always satisfy

> v =1 (18)
J

because of biorthogonality in non-Hermitian systems. Addi-
tionally, y7x; is real. The y7x; term can be larger than 1 and
negative if eigenenergies are complex, while 0 < yix; < 1 if
eigenenergies are real (see Fig. 4). In the case of OBC with
unidirectional coupling #; = 1.0 and ¢, = 0.0 with the initial
states localized on the tenth site, y;‘-xj =0(=12,...,9)
and yj,xio = I sincey; =0 (j =1,2,...,9) [see Fig. 4(b)].
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FIG. 3. Time evolutions of the amplitudes of the elements y;(¢) of |¢) when the initial states are localized on the tenth site under (a) PBC
and (b) OBC. Solid red lines represent the Euclidean norms of the states and different colors represent different sites, the same as in Fig. 2. (c),
(d) The same conditions with additional net loss. In (b) and (d),y; =0 (j =1,2,...,9).

D. Time evolution with partially directed coupling

We now consider partially directed coupling, #; = 1 and
t, = 0.5. In the case of PBC, the amplitudes \/x;ij of the
elements of |y (¢)) rotate in the counterclockwise direction,
while the amplitudes v/ y;fy ; of the elements of |¢(#)) rotate in
the clockwise direction. Their amplitudes increase with time
since the largest imaginary value of complex eigenenergies is

positive (see Fig. 5). The amplitude v yjx; of the biorthogonal
elements combines the behaviors of x; and y;. They rotate
in both counterclockwise and clockwise directions, and their
spatial inhomogeneity also increases with time. It is noted
that biorthogonal norms always satisfy Eq. (18). In the case
of OBC, \/x;fx ; rotates in the counterclockwise direction and
bounces at the end of the chain (the first site). The states

T 2
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FIG. 4. Time evolutions of the amplitudes of the elements y%x; when the initial states are localized on the tenth site under (a) PBC and
(b) OBC. Solid red lines represent the biorthogonal norms of the states and different colors represent different sites, the same as in Fig. 2.
In(), yix;=00(=12,...,9)since y; =0(j =1,2,...,9). (¢), (d) The same conditions with partially directed coupling, #;, = 1.0 and
t, = 0.5, instead of unidirectional coupling.
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FIG. 5. Time evolutions of the amplitudes of the elements (a) log /XX, (b) log /Y:iYis and (c) sgn(y;fx i) log /|yjij| when the initial states
are localized on the tenth site under PBC with partially directed coupling, #;, = 1.0 and ¢, = 0.5. The brown colors when ¢ = 0 represent zero
initial amplitudes. Time evolutions of the amplitudes of the elements (d) /xixj, (€) \/YiV), and (f) /YiX; when the initial states are localized

on the tenth site under OBC with the same partially directed coupling.

repeat this as time goes by [see Fig. 5(d)]. Amplification of
the states in the partially directed coupling case is saturated,
while the states in the unidirectional coupling case increase
algebraically without saturation [see Fig. 2(b)]. Also, v y}y;
rotates in the clockwise direction and bounces at the opposite
end of the chain (the tenth site), and the states repeat this as
time goes by. Hence v/ y7x; combines the behaviors of x; and
y; but all amplitudes of y%x; satisfy 0 < yix; <1 since all
eigenenergies are real [see Figs. 4(d) and 5(f)]. We note that
these results are in line with recent experimental results with
nonreciprocal robotic metamaterials [13].

IV. SUMMARY

It is not easy to observe transient amplifications of states in
experiments since the phenomena require special conditions.
First, we need proper initial states to observe the significant
amplification of states, e.g., left eigenstates in our models.
Next, besides extreme cases, state amplifications are transient
phenomena and thus not easy to observe in experimental con-
ditions where the transient time is very short.

We have studied dynamics in nonreciprocal systems having
an inherent source due to directed coupling. We showed that
amplifications with time without net loss can appear due to
complex eigenvalues and nonorthogonal eigenvectors, while
transient amplifications with net loss can appear depend-
ing on the initial states. The abnormal time evolutions were
elaborated using different measures defined by the right eigen-
states, left eigenstates, and biorthogonal states. We also expect

more interesting phenomena to emerge if nonlinearity and
inhomogeneous external pumping are applied to our models.
Nonlinearity can make the transient dynamics predominant in
the systems, and inhomogeneous external pumping can make
the systems more efficient.
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APPENDIX: TRANSIENT GROWTHIN A 2 x 2
PASSIVE PT-SYMMETRIC HAMILTONIAN IN TERMS
OF INITIAL STATES

We consider the initial states leading to the maximum
transient growthina?2 x 2 passive PT-symmetric Hamiltonian
with a net loss of yy,

H=<i7/—i)/o o )
c -y =

where y = ¢ = 1 and the eigenenergies are —iy, at the ex-
ceptional point. The right and left eigenstates are (i, 1)7
and (—i, 1)", respectively. The initial right eigenstates ex-
ponentially decay, i.e., e~ ", but the initial left eigenstates
temporarily amplify and finally decay at the same rate (not
shown).

(AD)
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