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Filling an empty lattice by local injection of quantum particles
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We study the quantum dynamics of filling an empty lattice of size L by connecting it locally with an
equilibrium thermal bath that injects noninteracting bosons or fermions. We adopt four different approaches,
namely, (i) direct exact numerics, (ii) Redfield equation, (iii) Lindblad equation, and (iv) quantum Langevin
equation, which are unique in their ways for solving the time dynamics and the steady state. In this simple setup
we investigate open quantum dynamics and subsequent approach to thermalization. The quantities of interest that
we consider are the spatial density profile and the total number of bosons and fermions in the lattice. The spatial
spread is ballistic in nature and the local occupation eventually settles down owing to equilibration. The ballistic
spread of local density admits a universal scaling form. We show that this universality is only seen when the
condition of detailed balance is satisfied by the baths. The difference between bosons and fermions shows up in
the early time growth rate and the saturation values of the profile. The techniques developed here are applicable
to systems in arbitrary dimensions and for arbitrary geometries.
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I. INTRODUCTION

Understanding quantum dynamics and subsequent ther-
malization of a system in the presence of a bath is an
interesting question in open quantum systems both from a
fundamental and an applied perspective [1-6]. In this regard,
a plethora of studies have emerged in successfully addressing
some of the pressing issues [7,8]. A good starting point for
such an investigation is to understand the quantum dynam-
ics and subsequent equilibration that an empty lattice would
undergo when attached to a reservoir. An intricate interplay
between Hermitian, non-Hermitian dynamics (arising due to
finite system-reservoir coupling), and quantum statistics can
lead to highly nontrivial dynamics and steady state.

In this direction, there have been several works on the
quantum dynamics of open systems. A specific class of such
investigations includes studies of systems attached to local-
ized sources or sink. In particular, Refs. [9-17] focused on
understanding the dynamics of various classes of quantum
systems subject to localized losses. Another complementary
set of works studied localized injection in initially empty
lattices [18-21]. Given the complexity of such setups, one
is often compelled to resort to approximations such as weak
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system-reservoir coupling and separation of timescales be-
tween system and reservoir dynamics. Albeit quite successful
[18,19], these approximations might miss certain key aspects
of quantum dynamics and thermalization. For example, a non-
monotonic behavior of out-of-equilibrium transport properties
when one tunes the system-reservoir coupling from weak to
strong may be missed in traditional perturbative approaches.
Furthermore, the assumption of well-separated reservoir and
system timescales can become invalid for a wide class of baths
with spectral functions of nonanalytical type [22]. Therefore,
it is crucial to employ exact approaches to investigate such
setups.

In this work, we consider a one-dimensional empty lattice
(system) of size L coupled to a boson and fermion reservoir at
a particular site. Some natural questions that come to mind are
as follows: How many particles are there in the lattice at a par-
ticular time? What is the space resolved density profile at any
given time snapshot? How does the density profile spread with
time? In our work, we study quantum dynamics of (i) the local
density profile on the lattice n;(#) and (ii) the total number
of bosons and fermions on the lattice N(¢) = ZiL:l n;(t), and
their subsequent thermalization (or lack thereof) properties.
A schematic of our setup is given in Fig. 1. We employ four
methods which are unique in their own ways and offer com-
plementary benefits: (i) direct exact numerics for correlation
matrix, (ii) Redfield equation (perturbative and Markovian),
(iii) local Lindblad equation (perturbative, Markovian, and
weak intersite hopping), and (iv) exact quantum Langevin
equation. The summary of our work is as follows:

(1) The initial growth for the total occupation N(¢) for
bosons and fermions is linear in time and it subsequently
saturates (for a finite lattice size) to a constant value in an

©2023 American Physical Society
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FIG. 1. Schematic of our setup: an empty (blue) one-dimensional
lattice of size L is connected to a reservoir (red) at a particular site.
The reservoir is coupled to the lattice at a particular site, represented
by m. The intersite hopping parameter within the lattice (within the
reservoir) is g (z). The coupling between the lattice and the reservoir
is denoted by y. The reservoir is maintained in equilibrium at an
inverse temperature 8 and chemical potential w.

exponential fashion (Fig. 2). For infinite lattice there is no
saturation and N(¢) oc ¢ V t (Fig. 3).

(2) The local spatial density profile n;(¢) exhibits a bal-
listic spread for both bosons (Figs. 5 and 6) and fermions
(Figs. 19 and 20). For finite lattice, at a given site, n;(t)
initially grows in time and eventually saturates owing to
equilibration with the bath for bosons (Fig. 4) and fermions
(Fig. 18).

(3) We observe a much slower accumulation of fermions
in comparison to bosons (Fig. 17) which is rooted in quantum
statistics (Pauli exclusion principle). Albeit there is an analogy
between fermions and classical exclusion processes, there are
interesting differences [23,24] for the case of fermions which
are intrinsically quantum in nature. For example, the spread of
the density profile in the classical exclusion case is diffusive
in contrast to the ballistic spread for the quantum case.

(4) Our microscopic starting point is drastically different
from the phenomenological approaches such as unidirectional
filling [18,19] and therefore lacking the detailed balance
condition. In our work, we argue that this detailed bal-
ance condition plays a paramount role in deciding the fate
of the dynamics. Nonetheless, the techniques developed in
Refs. [18,19] can be adapted to obtain analytical forms for
spatial density profile (Figs. 15 and 16).

(5) In a suitable parameter regime, we find that the spatial
density profile in the ballistic regime possesses a universal
scaling form [Egs. (60) and (61)], valid for both bosons and
fermions.

The plan of the paper is as follows: In Sec. II, we first
introduce the setup and discuss the four methods. In Sec. II1,
we present our findings for bosons using all four methods. In
Sec. IV, we briefly discuss our findings for fermions obtained
from exact numerics. In Sec. V, we place our work in the
context of recent works and provide a detailed comparison.

(t)
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FIG. 2. Behavior of total occupation N(¢) [Eq. (7)] versus ¢ for
system size L = 40 for the bosonic case, using direct exact numerics
as described in Sec. II A. The bath is connected at site number
m = 21. The linear early-time growth and exponential late-time sat-
uration can be clearly seen. Red dashed line shows the steady-state
value NSQSLE obtained from exact quantum Langevin equation ap-
proach, described in Sec. IID. The parameters are g = 0.5, y =1,
tg=1, =1, and © = —2.01. Note that the fitting parameters
for the early-time linear growth ar 4 b are @ = 0.058, b = 1.082.
For the late-time behavior, the fitting parameters for the exponen-
tial relaxation Ny~ — e~ are ¢ = 1.359, d = 4.95 x 10~* with
NSQSLE chosen to be same as the steady-state value obtained from
QLE (NJ* =9.731). This implies that for L = 40, the timescale
to reach steady state is fss = 1/d ~ 2000. The inset shows the plot
for [In (NSQSLE — N(2))] vs t (green dots) and it clearly demonstrates
the long-time exponential relaxation in time towards the steady state.
We choose y = 1 (nonperturbative regime in system-bath coupling)
to ensure that the system relaxes towards steady state relatively fast.
For this figure, the system size L = 40 is chosen such that both the
early-time linear behavior and long-time exponential behavior are
clearly visible.

Finally, we summarize our results along with an outlook in
Sec. VI. We delegate some details to the Appendix.

II. SETUP AND METHODOLOGY

In this section, we discuss our microscopic model for
the injection of identical bosons and fermions in a one-
dimensional lattice. The lattice initially is an empty tight-
binding chain of L sites. The Hamiltonian of the lattice is
given by (setting /i = 1 throughout the paper),

L-1
Hs = gZ(aZai-&-l +a,a), (D

i=1

where a; (a:f) is the annihilation (creation) operator of the ith
site of the lattice. The hopping parameter is denoted by g. We
inject the particles at a particular site (for example, near the
middle) of the lattice by putting it in contact with a reservoir
which is represented by a semi-infinite tight-binding chain
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FIG. 5. Local density profile n;(t) [Eq. (6)] for bosons with L =
100 sites with bath attached at m = 51 from direct exact numerics,
described in Sec. I A. We choose relatively short times to clearly
demonstrate the ballistic growth of the density profile. We truncate
the y axis to highlight the propagation of the density front. Note
that this front of the density profiles spreads with velocity ¢ =2 g,

FIG. 3. Total occupation N(t) [Eq. (7)] versus ¢ for different
system sizes using direct numerics as described in Sec. Il A. The
parameters used are g =05, =1, 8 =1, u = —-201l,and y =1
are exactly the same as in Fig. 2 except the system size. It can be seen
that the deviation from the linear growth starts at a timescale that
scales with the system size L. The fitting parameters are a = 0.058,

b =1.082.

whose Hamiltonian is given by

o0
Hg =15 ) _(blbis1 + b, by). )
i=1
Here b; (blT) is the annihilation (creation) operator of the
ith site of the bath and fz is the nearest-neighbor hopping

Site number ()

FIG. 4. Local density profile n;() [Eq. (6)] for bosons with
L = 20 lattice sites with bath attached at a particular site (m = 11)
for various time snapshots, using direct numerics (empty circles),
as discussed in Sec. Il A. The long-time limit of this density profile
agrees perfectly with that obtained from QLE (cross), as discussed in
Sec. IID. The parameters are 1z =1, g=0.5, B =1, u = —-2.01,
and y = 1. Note that apart from the system size the parameters
chosen here are exactly the same as in Figs. 2 and 3. The system
size L = 20 is chosen keeping in mind computational feasibility and
to ensure a relatively quick approach to steady state.

where g is the intersite hopping within the lattice. This figure clearly
indicates the presence of scaling which is demonstrated in Fig. 6.
The parametersaret = 1,g =025, =1, u = —2.0l,and y = 1.
Note that the parameters chosen here are exactly the same as in
Figs. 2—4 except the value of g. g = 0.25 is chosen here to in order to
illustrate ballistic spreading over a computationally feasible system

size L.

between the bath sites. Note that a; and b; operators satisfy
either commutation or anticommutation algebra for bosons or
fermions, respectively. At r = 0, we switch on the coupling
between the lattice and the bath which can be described by

the following Hamiltonian:

Hsg = y(a),b) + blay), 3)

log(ni(1))

0.5 1.0

0.0
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FIG. 6. A scaled plot of In (n;(¢)) [Eq. (6)] for L = 100 bosonic
sites with bath attached at m = 51 from direct exact numerics
to demonstrate the ballistic spread of spatial density profile n;(t)
[Eqg. (6)]. The parameters are 13 = 1, g =0.25, g =1, u = —2.01,
and y = 1. The logarithm mentioned in this plot is with base 10.
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where y is the coupling strength and the mth site of the lattice
is coupled to the first site of the bath. In this work we choose
m= (N +1)/2 for odd N and m = N/2 + 1 for even N. The
initial density operator p(+ = 0) for the setup is taken as a
product state

p(0) = ps(0) ® py'(0) “4)

with the lattice initially being empty, i.e., ps(t = 0) = |0)(0|
where |0) denotes a state with all sites empty. In other
words, the lattice is in vacuum. The bath density operator
is in equilibrium at temperature T = (kgB)~' where kg is
the Boltzmann constant henceforth set to 1 and chemical
potential u,

e P(Hp—11Np)

th
= 5
Pp 7 ( )

where Njp is the number operator for the bath and Z is the
grand partition function for the bath. The superscript “th” in
Egs. (4) and (5) stands for thermal equilibrium.

With this generic setup in hand, our interest here is to study
the quantum dynamics of the spatial density profile of bosons
and fermions

ni(t) = (aj (H)ai (1)), (6)

where we use the Heisenberg representation for the operators
and (...) denotes an average over the initial density matrix
0(0). We also look at the total number of particles in the lattice

L
N@) = mi(o). (7)

In order to have a detailed understanding of the quantities
given in Egs. (6) and (7), we use four different approaches
which we elaborate below.

A. Method 1: Exact quantum dynamics for correlation matrix

In this subsection, we discuss direct exact numerical cal-
culations for computing the observables of interest. As the
entire setup here is quadratic, the equations of motion for the
two-point correlation functions involving both the system and
bath degrees of freedom closes. Thus, the central idea here
is to numerically evolve the two-point correlation function
consisting of all the degrees of freedom via the single-particle
Hamiltonian of the setup. Once this unitary propagation is
performed, the quantities mentioned in Egs. (6) and (7) can
be suitably extracted. This procedure, of course, involves one
to consider a large but finite bath.

Let L be the number of bath sites such that Lz > L. We
write the full Hamiltonian for the setup as

L+Lp
H = Hg + Hg + Hsg = Z hijd d;=D'hD. (8)
i,j=1

Here, D = {d;} is a column vector containing all the anni-
hilation operators of the system and the bath. Specifically,
D={aj,ay,...,a., by, by, ..., by} Naturally, D' = {d} is
the row vector consisting of all the creation operators of the
system and the bath. & is the single-particle Hamiltonian of
the full setup and has dimension (L 4+ Lg) x (L + Lg). Since
our central focus here is to study the filling of lattice system,

we will not require the information of the full density matrix.
Instead, we will just need to focus on the correlation matrix

S(t) = (D' O D" @)1, ©)

where the superscript 7' stands for the transpose of a matrix.
The matrix element of S is given as

Sij(t) = (d] ()d;(1)). (10

Following the Heisenberg equation of motion i 7- 40 =10, H],
for any operator O(t), one can write
L+Lp

(de )=ilH,d[d) =i hyld}d.dd;).  (11)
r,s=1

Using the commutation and anticommutation relations for
bosons and fermions, respectively, Eq. (11) can be simplified
to
d L+Lp
E(djdj) =iy (hid/d;

r=1

— hj,dd,). (12)

Equation (12) holds for both bosons and fermions. Using
Eq. (12), and the fact that the single-particle Hamiltonian &
is symmetric, we can obtain the evolution for the correlation
matrix element of S(¢), which is given by [25-27]

L+Lg

Sii(t) =i Z(hir S,j@) = Sir(t) hej) = i[h, S@)];j,  (13)

r=1
the solution of which is given by
S(t) = ™Sy, (14)

where we recall that 4 is the single-particle Hamiltonian
for the full setup. Equation (14) holds for both bosons and
fermions. We can easily construct the initial correlation ma-
trix S(0) from the initial density operator p(0). Since the
lattice chain is initially in vacuum and is decoupled from the
bath, all the two-point correlations of the form (aj'(O)a i (0)),
(@ (0)b;(0)), and (b (0)a;(0)) will be zero. The nonzero en-
tries in S(0) are the two-point correlations of the bath degrees
of freedom and of the form (bj (0)b;(0)). These entries can be
obtained as follows. We recall that the bath Hamiltonian given
in Eq. (2) can be expressed as

Ly
Hy =Y hiblb;, (15)

i,j=1

where /? is the single-particle Hamiltonian of the bath. This
Hamiltonian can be easily diagonalized by a unitary transfor-
mation U, i.e., h% = UAgUT with Ag being a diagonal matrix
with single-particle eigenvalues as its entries. The Hamilto-
nian in the diagonal form can be written as

Hp = Z M bl b, (16)
where
Lp
bi= Ugby (17)
q=1
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with b, being the annihilation operator of gth normal mode of
the bath with eigenvalues AB . One can then easily find that

(b!(0)b;(0))™ ZU* Ujgi(A5), (18)

where we have used the fact that (b;bq/) = ﬁ(kg ) 844 - Here
fi(w) can either be Bose or Fermi function and is given by

1
ePw—w) L1’

where — and + stand for bosons and fermions, respectively.
With S(t =0) constructed from all these initial correla-
tions, we can now propagate the correlation matrix following
Eq. (14) and suitably extract the required entries from S(t)
to compute n;(¢) and thereby N (¢), as defined in Egs. (6) and
(7), respectively. It should be noted that if Lz > L, then the
system dynamics is almost equivalent to that when subjected
to a true bath with infinite degrees of freedom.

Since this exact numerical recipe involves unitary evolu-
tion with respect to the Hamiltonian of the entire setup [see
Eq. (8)], it can become computationally difficult if the total
size L + Lg is large. Therefore, it is useful to study time
dynamics for this setup following complementary approaches,
namely, the Redfield and Lindblad master equations which are
perturbative and Markovian in nature. This procedure involves
integrating out infinite degrees of freedom of the bath and
thereby providing an effective dynamical description for the
reduced density matrix of the lattice system which can then
be used to study lattices with a large number of sites.

ii(w) = (19)

B. Method 2: Redfield quantum master-equation approach

In this subsection, we discuss the Redfield equation and
provide the key steps that are involved to obtain the spatial

J

density profile and total number of particles. We start by writ-
ing the system-bath interaction Hamiltonian, given in Eq. (3),
in the interaction picture as

Hig(t) = ™ Hyge ™" = y(al (t)b1(t) + b} (t)an(t)),
(20)

where Hy = Hg + Hp and

am(t) = €M aue™ ™' by(t) = M8 e, 21)
Starting from the exact von Neumann equation, one can write
an exact equation governing the dynamics of the reduced

density matrix for the system in the interaction picture as

d t
Epg(t):—/o drTrp[Hig (1), [Hég (), pr(D)]],  (22)

where p;(t) is the full density operator in the interaction
picture. The subscript “SI” in Eq. (22) stands for system and
interaction picture, respectively. Now to arrive at the Redfield
equation, one assumes (i) weak system-bath coupling limit
(Born approximation) and (ii) Markovian limit [1,2,28]. The
Born approximation implies writing po;(r) in Eq. (22) as a
direct product state of the system and the bath density matrix,
i.e., pr(t) = psi(t) ® ,og* where pg’ is defined in Eq. (5). The
Markov approximation involves changing psi(7) to psi(#) and
further extending the upper limit of the integral ¢ to oo, in
Eq. (22). The Markovian approximation used here can be
justified under a separation of bath and system timescales. In
particular, the Markovian approximation is valid for system
timescales much larger than the decay timescale of the bath.
After some algebraic manipulations, we obtain the Redfield
equation as [27]

d o0 + ;
—psit) = —y / dr[(by ()b} (T)[a), (1), an(T)psi(t)] + (b} (1)1 (1)) [psi(t)an(T), a,(1)] + H.e]. (23)

dt 0

In the Schrodinger picture, we receive

d
E,Oss(f) = i[pss(t), Hs] —

where the subscript “SS” in Eq. (24) stands for system and
Schrodinger picture, respectively. Since the bath operators are
defined in the interaction picture, the corresponding two-point
correlation functions are known exactly and as before [see
Eq. (18)] can be written in terms of the normal modes of the
bath as

(BH(T)b1(1)) =

Z|U1 I e l)\. (l ‘L’)—( )

(b1 ()b} (7)) = Z Uil e ™ [1£a(A8)],  29)
q

where recall that Ag is the eigenvalue of the gth mode of the
bath and 7(w) is defined in Eq. (19). In Eq. (25), the &£ stands
for bosons and fermions, respectively. We now express the

J/Z/ d[{b ()b} (D))}, an(T — Dpss(O)] + (B (D)b1 (1) [pss(Dan(t —1), af ] +Hel, (24)
0

(

above Redfield equation in Eq. (24) in terms of the eigenop-
erators of the system Hamiltonian. In other words, we first
diagonalize the lattice Hamiltonian Hg and write

Zhuz

i,j=1

Zkkakak, (26)

where
n=WAsW? (27)
and therefore the matrix W is responsible for diagonalizing

the single-particle system Hamiltonian Hg and Ay is the diag-
onal matrix containing the single-particle eigenvalues of the
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system. Here

L
a; ="y Wia. (28)
k=1

Following this diagonalization procedure and using Eqs. (24)
and (25), we can rewrite the Redfield equation as [27]

L ~ g
pss(t) = i[pss(t), Hs] — kkzzjl /_oo ﬁ[l(w)ﬁ(pss) +H.cl],

| (29)
where

e8] ) s
[(w) = / dr e @)1 (30)
0

and
L(pss) = Lfiw (@) £ Foe(@)]lay, a pss()]
+ Fe (@) pss (Dap, - 31
The functions fi (w) and Fy (w) in Eq. (31) are defined as
S (@) = W Wi J(w), 32)
Fo (0) = W, W J (@) (),

where recall that the index m in W, refers to the mth site of
the lattice system that is connected with the bath [see Eq. (3)].
Note that the =+ sign in Eq. (31) again refers to the boson and
fermion cases. Here, J(w) is the spectral density of the bath,
defined as

J() =21 y? Y " |Uyg|*8(w — 15). (33)
q

Note that the two-point correlation functions of the system are
given as

Crw(t) = (a](Dap (1)) = Tr[a] (D)ap (0)pss()].  (34)

From the Redfield equation [Eq. (29)], one can write a differ-
ential equation for the two-point correlation function defined
in Eq. (34) as [29-31]

dCrp () . 1] - Lo
e = MG (t) + 5 | Fiee = ;fk,,; Cex®)

+(k <= k)T, (35)

where (k <= k') is a short form for the right-hand side of
Eq. (35) when k and k' are interchanged and the terms are sub-
jected to complex conjugation. The new functions (denoted by
the symbol tilde) in Eq. (35) are defined as

x . o da)fk/,;(a))

= for(A3) —iP _— 36
for = fur(A3) —i [m - w—kg (36)
. ) * dow Fer(w)
For = F(A3) —iP — ) 37
vk = Fo(A) — i /;oonw_)‘i (37

Here P refers to the Cauchy principal value. This particular
form in Eqs. (36) and (37) is obtained by writing /() in
Eq. (30) using the Sokhotski-Plemelj theorem. Equation (35)
forms a closed set of differential equations for the two-
point correlation function which can be solved numerically

by grouping the equations in a matrix equation form. We
therefore write the components of Ci  (¢) as a column vector
with elements C,, r = 1,2, ..., L2, and denote it by é(t), and
write Eq. (35) as

dC 5 o

o = MC+Q, (38)
where M is the homogeneous part and is a L? x L* matrix
and Q is a L? x 1 column vector. Note that the information
about the quantum statistics is encoded only in the column
vector Q as a consequence of which the quantum dynamics of
fermions and bosons differ. The formal solution to Eq. (38)
with the initial condition é(O) = 0 (note that the lattice is
initially empty) is given by

Cu) = f dt MQ. (39)
0

We now write the solution in Eq. (39) more explicitly. To do
so, we first diagonalize M as M = V Ay VL, and obtain

t L
C0= [ ar Y v le,

a,s=1

L et — 1
-1
=y ( W )vmvw Q.. (40)

a,s=1

The real part of the eigenvalues {AY} of M matrix are in
general expected to be all negative which would ensure a
well-defined steady state in the long-time limit. When this gets
violated, Redfield description is rendered unphysical and can
happen for some set of parameters (e.g., large system-bath
coupling). We now study the short- and long-time limits of
C,(t). Let us denote the eigenvalue with the largest magnitude
as Az and the one with the smallest real part magnitude as Ag.
In the short-time limit (r < 1/|A.|), we can do a Taylor ex-
pansion and find that all two-point correlations grow linearly
with time, thus,

C.(t < 1)=xt+0(?), (41)

with a slope

12
Xr = ( > VWVMIQS) =Q,. (42)

o,s=1
We now discuss the long-time limit, i.e., t — oo. Note that
Eq. (40) can be recasted as
L oMl
Co=CP+ ) V' Qs 43)
a,s=1 «

where the steady-state correlation elements (r — co) are
given by

L2
Vrava;IQs 1A
CP==-) —5—=-M"'Q.
o,s=1 L

and the second term in Eq. (43) indicates a long-time expo-
nential approach to the steady state. The eigenvalue Ag, with
the smallest magnitude for the real part, will determine the
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timescale 1/|Re[)g]|, for convergence to the steady state. As
the correlation functions are obtained in the diagonalized basis
to determine the spatial density profile, the final step is to
come back to the local site basis which gives

L

nit) = (@} Oai0) = Y WaWiCep(t), (45
k,k'=1

where recall that Cy i is defined in Eq. (34). The total particle
number is given by summing over all lattice sites

L
N(t) =Y Ceilt), (46)
k=1
which at early times (t < 1) gives
L L
NOY~tY OQui=tY  F (47)
k=1 k=1
L
=1 Wul>J(23) A (2]). (48)

k=1

Equation (47) clearly demonstrates an early-time linear
growth with different slopes for fermions and bosons. In the
limiting case with very small intersite hopping g, one can set
A3 A 0 (the eigenvalues of uncoupled lattice sites), as a result
of which we get

N(t) ~tJ(0)7(0). (49)

We will later see that this is exactly what one receives from
the local Lindblad equation. Note that in a suitable parameter
regime, the Redfield approach can be simplified to a local
Lindblad equation. As we will show in the next subsection
(Sec. IIC), this allows for elegant analytical expressions for
the local density n;(¢) in Eq. (6) and the total occupation N ()
in Eq. (7).

C. Method 3: Lindblad approach

In this subsection, we outline the Lindblad approach and
present our results for local density #;(¢) in Eq. (6) and total
occupation N(¢) in Eq. (7). A common way to model open
quantum systems that mimics incoherent processes is via the
local Lindblad formalism [27,32-35] which is of the form

pss(t) = ilpss, Hs] + Dlpss(t)], (50
where D is the Lindbladian and is given by
Dlpss(1)] =2 OpssO" —{OTO, pss}. (51)

where we recall that pgg(f) is the reduced system density
matrix in the Schrodinger picture and Hs is the system Hamil-
tonian, given in Eq. (1). Here O represents different channels
of openness of the lattice system. For our setup, if we derive
a local Lindblad equation starting from the fully microscopic
system-reservoir Hamiltonian [Egs. (1)-(3)], both incoherent
pump and loss terms naturally arise in the Lindbladian given
in Eq. (50). More explicitly, the systematically derived local
Lindblad equation [27,32-35] is given as

pss = ilpss, Hs] + T'gl2a}, pssam — {ama,, pss}]
+ T [2ampssa, — {aham. pss}. (52)

where the gain I'g and the loss I';, coefficients are given by

J(©O
I'g = % n(0), (53)
J(©O
I, = % [1 £ 7(0)]. (54)

Recall that J(w) is the spectral density of the bath, defined in
Eq. (33). Note that the zeros in the argument of J(0) and 7(0)
in Egs. (53) and (54) are due to the fact that there is no onsite
term in the system Hamiltonian given in Eq. (1). The + sign
in Eq. (54) stands for bosons and fermions, respectively. It is
important to highlight that the validity of the local Lindblad
equation in Eq. (52) relies on weak system bath coupling y as
well as weak intersite hopping parameter g within the lattice
system [27].

Following Eq. (52) one can write the equations of motion
for the two-point correlation functions of the system which is
defined as

Ci; = (a]aj). (55)
The equations of motion are given by

dé; ; .
Y zg(C,-,l,j — Ci,j+1 + Ci+1,j - Ciyjfl)

dt
— (L FU6)Gim +8jm)Cij +2068midmj, (56)

where F stands for bosons and fermions, respectively. It is
crucial to note that ' [Eq. (53)] and ', [Eq. (54)] here are
related by detailed balance, i.e., they are not independent of
each other.

We now solve for correlation functions in Eq. (56) and
subsequently extract the local population and total occupation.
Without loss of generality, in this subsection, we consider the
bath to be attached to the lattice at site m = 0. Furthermore,
we take the lattice size L to be infinity, i.e., the lattice is now
extended from —oo to +o00. Since the system is expected to be
symmetric about the Oth site, for simplicity, we consider only
the positive side of the lattice chain in the analysis presented
below. The spatial density profile n;(¢) is given by (see the
Appendix for the details)

ni(t)=2Tg / dz |Si(0))?, (57)
0

where for large 7,

) e
Si(1) = ’li—flf) (58)

Here J; is the Bessel function of the first kind and

F/=FL:|:FG=](TO), (59)
where F stands for bosons and fermions, respectively, and we
recall that ' and I';, are given in Eqgs. (53) and (54), respec-
tively. Interestingly, I'” defined in Eq. (59) is independent of
the statistics and is always positive. As a consequence, the
quantum statistics is encoded as a prefactor (I') in the density
profile.
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Interestingly, in the limit i — oo, t — oo while keeping i/t as fixed, the analytical results in Eqgs. (57) and (58) admit an

ni(t) = @(ﬁ), (60)

interesting scaling form (see the Appendix for details)

where the scaling function ®(v) is exactly given by

D) = 4FGg

1

“VE—1 Qg

(61)

The integral representation in Eq. (61) is identical (after a suitable change of variables) to Eq. (31) in Ref. [17] in which the dual
problem of particle loss was studied. The integral in Eq. (61) can be performed exactly to yield

o) = 1O I'g 21 +v@ln(l+vg) —

In(g+v — (& — DA —v)] - (@ — DI —v?)

where the dimensionless parameters g are given by

s 28 _ 48
T T 50 (63)

and we recall that " is given by Eq. (59) and J(0) from
Eq. (89) is given by
2 2
10y =1L (64)
Ip
Note that the scaling function ®(v) in Eq. (62) admits the
following limiting forms near v — Oand v — 1 :

1 glnz— /2 —1) 2
Q(”)Zl—éz_gné—li/z )_v?+0(”3) (63)

when v <« 1. Therefore, the decay of ®(v) from the peak
at v = 0 is parabolic in nature. This particular limit of v =
0 represents the property of the density profile in the bulk
of the lattice. The two constant terms in Eq. (65) correspond
to the locally thermalized value of the density in the vicinity
of the injection site. On the other hand, the limit v — 1
represents the density profile in the vicinity of the edge and
we get

V20 =)

¢> =
=T

+O0[(1—v)*?] asv—1. (66)

From Eq. (60), it is interesting to note that the scaled density
@ (v) vanishes in a square-root form. It is worth noting that the
analytical scaling form in Eq. (61) is independent of quantum
statistics except the prefactor (I';).

The total particle number N(f) is given by (see
Appendix for details)

CATg#r [Tdz 1 I

NO=—1 /1 V21 Grop
__ﬂ = 2 -2, COS 1(8)
- n(l—g2)|:2g x(1—F)+2(1-28) _gz}

(67)

I & - D0g+ 1)

, O<v<l. (62)

(

Note that using the relation

os'® __In@+y2-1

it is easy to see that Eq. (67) is always real for all values of
g. From Eq. (67) it is clear that N(z) always exhibits a linear
growth in time. One can further simplify Eq. (67) in the limit
of small and large g. We get

(68)

1
N(@t)=1Tg [gz - —6;;73} + 0" (69)
3
when g < 1 and
N(t) =t Tg [2 pA41zn@ -2 ln(g)]} + 0(%)
g 8
(70)

when g > 1.

Note that although the Redfield (Sec. II B) and Lindblad
(Sec. II C) equations offer us the advantage of tracking both
time dynamics and steady state, it involves perturbative and
Markovian approximations. To get an analytical handle of the
steady state, via a fully nonperturbative approach, we now
discuss the exact steady state using the quantum Langevin
approach.

D. Method 4: Quantum Langevin equation approach

In this subsection, we discuss the quantum Langevin equa-
tion (QLE) approach [36—44]. Given the bilinear nature of the
entire setup, we can compute exactly the steady-state proper-
ties of the lattice chain following this approach. Let us start by
rewriting the Hamiltonian in Egs. (1)—(3) as

Hs = Zhu ala;, Hg= Zhgbj

i,j=1 i,j=1
L LB
Hsg = > hiPalb; + He. (71)

i=1 j=1

Let us denote A(t) = {a;(¢)} and B(t) = {b;(¢)} as the column
vectors consisting of system and bath annihilation operators,

052204-8



FILLING AN EMPTY LATTICE BY LOCAL INJECTION ...

PHYSICAL REVIEW A 108, 052204 (2023)

respectively. The Heisenberg equations of motion for the re-
spective components are given as

A(t) = —ihSA(r) — ihkSBB(®), (72)

B(t) = —ih®B(t) — in>BTA(r). (73)

We first solve the bath equations in Eq. (73) and then sub-
stitute the solution to the system’s equation of motion in
Eq. (72). The formal solution of Eq. (73) is given by

Lp

bi(t) =iy _[g"(t — 10))isby(t0)

r=1

[ 3N O,

fo r=1 s=1

wherei = 1, 2, ..., Lg denotes the indices for bath operators.
The Green’s function

is the solution of the homogeneous part of Eq. (73) and 6()
is the Heaviside step function. Substituting this solution in
Eq. (72), we obtain the quantum Langevin equation (QLE)
for the system operators as

ai(t) = —th as(t) — ini(t)

—i/ er T —t)a(x).  (76)

fo
Note that, in Eq. (76), the effect of the bath appears as a self-
energy and a noise term, which are given, respectively, as

>t — 1) =n%8 (gt — )] KSET, 77

n(t) = i h*® [g7(t — t9)] B(to). (78)

The statistical property of the noise operator gets determined
by the initial condition of the bath density operator, as given
in Eq. (5). As a result, (n;(t)) = 0. The noise correlation at
different times can be expressed in terms of the normal modes

gt(t) = —if@)e ™" (75)  of the bath as
J
Lp Ly
i @mie) = Y B S Uz U (hE)e i = | hE 0 — 10)0(" — 19), (79)
rr'=1 g=1

where recall that the matrix U is responsible for diagonalizing
the single-particle Hamiltonian 4% of the bath [see Eq. (18)].
Since we are interested in the steady-state limit, we first take
L — 00 and then let ) — —oo. As a result, 9(fr — ty) and
0’ —to) in Eq. (79) are always equal to unity. Let us now
define Fourier transformation of 7;(¢) as

Ni(w) = / dr e n;(t) (80)

o0

and the corresponding inverse is given as

Cdow _,,. .
ni(t) = / 5 € “ fii(w). (81)
oo 2T
Using Eqgs. (80) and (79), we get
(] (@) (@) = 477 T ji(@) i(w) §(0 — o), (82)
where
Tji(w) = Z 38 prr(@)h),
rr'=1
(@) = Z Uy Urg8(e — A5). (83)

We obtain the solution of Eq. (76) in the Fourier space as

L
(@) =Y _ Gh(@) (), (84)
s=1

where &;(w) is the Fourier transformation of a;(¢) with defini-

tion same as Eq. (80). The retarded Green’s function Gt (w)

(
that appears in Eq. (84) is given as

GHw) =[wl =1 — =H ()]}, (85)

where X1 (w) is now the self-energy matrix in the Fourier
space and is defined as

>t (w) = BBzt (w)hSPT. (86)

Here, g™ (w) is the Fourier transform of g (¢) [see Eq. (75)]
and is given as

) < U,U
[E @)y =) —— T (87)
q=1 4

where the small imaginary component appears to preserve the
causality of g*(¢). Finally, using Eq. (84) and the noise-noise
correlation in Eq. (82), we obtain the spatial local density in
the steady state as

ni(t) = {a (a;(0)) = /oo do[GT (o) (0)G™ (w)];i i),
(88)

where we recall that 7(w) is either the Bose or the Fermi
function as defined in Eq. (19). The integral in Eq. (88) can
be performed numerically and the steady-state occupation at
each site can be determined exactly. Note that the total occu-
pation in the steady state can be obtained by following Eq. (7).

Having described the four methods in Secs. IT A, II B, ITC,
and IID we now present our numerical findings using these
methods.
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III. NUMERICAL RESULTS FOR BOSONS

In this section, we present our numerical results for a
one-dimensional nearest-neighbor tight-binding lattice which
is coupled to an equilibrium bath at a particular site (recall
Fig. 1). The quantities of interest are (i) local occupation
number n;(t) versus i at fixed-time snapshots and (ii) the
total occupation N(¢) versus t. We will mainly focus on pre-
senting results for the bosonic case. We will briefly discuss
the fermionic case and highlight interesting similarities and
differences between the two in Sec. IV.

Unless otherwise stated, we choose the following parame-
ters for the simulations. For the bath, we fix the parameters
as intersite hopping 7z = 1, chemical potential u = —2.01,
and inverse temperature 8 = 1. For the direct numerics, dis-
cussed in Sec. IT A, we always choose Lg = 4096. We connect
the bath at a particular site m of the lattice. For the Red-
field (Sec. II B), Lindblad (Sec. I1 C), and quantum Langevin
(Sec. IID) equation approaches, the bath is considered to
be a semi-infinite one-dimensional tight-binding chain, and
the corresponding form of the spectral density J(w) can be
obtained exactly, given as [27]

Sy =2 o2 (89)
w)=—1_11-——.
g 415

Before proceeding further, we note that depending on the
method employed and specific quantities of interests, the sys-
tem size L, hopping parameter g, and the system-bath coupling
y are chosen by taking into account computational feasibility
and better clarity of presentation.

A. Nonperturbative regime in system-bath coupling

In Fig. 2 we show the total occupation N(¢) as a func-
tion of time ¢ using the direct exact numerics, described
in Sec. IT A. The early-time linear behavior and long-time
exponential relaxation towards the steady state are clearly
seen. We also present the steady-state value obtained from the
quantum Langevin equation approach, described in Sec. 11D,
and observe that the long-time limit for N (¢) from direct exact
numerics approaches to the exact steady-state value. Notice
that we clearly observe an exponential relaxation of N(t)
towards the steady state (see inset of Fig. 2). This is consistent
with the relaxation dynamics of finite-size systems coupled
to a generic bath. This exponential relaxation can, in fact,
be rigorously established following the Redfield approach
(Sec. IIB). N(¢) reaching a steady-state value is a result of
finite system size which here is taken to be L = 40. Also, to
ensure that the steady-state value is reached relatively fast, we
choose y = 1 which falls into the nonperturbative regime of
the system-bath coupling. We expect that the time to reach
steady state fgg increases with system size L. By performing
direct exact numerics we find that the times to reach steady
state for L = 16, 20, and 40 are tss ~ 175, 330, and 2000,
respectively. Based on these numbers, we find that the depen-
dence of fsg on system size L is fsg ~ L% where § ~ 2.5. In the
large-L limit one would expect the scaling to go as tsg ~ L?
which is related to the fact that the adjacent energy gaps in a
tight-binding chain scale as 1/L.

One would expect N(z) to grow linearly for an infinite
lattice. To demonstrate this, using direct numerics (Sec. I1 A),
we show in Fig. 3 the behavior of N(¢) versus ¢ for different
system sizes. It can be noticed that the deviation from the
linear growth starts at a timescale that scales with the system
size L.

In Fig. 4, we show the spatial density profile n;(¢) [Eq. (6)]
as a function of lattice coordinate i for various time snapshots
t using direct numerics (Sec. IT A). The long-time limit of this
density profile agrees perfectly with that obtained using the
quantum Langevin equation approach, described in Sec. II D.
Note that here we choose the lattice size L =20 and the
bath is connected to the lattice at site m = 11. Therefore,
this particular site shows maximum average local occupation
and eventually thermalizes with the bath, thereby settling to
a finite value. The nearby sites gradually develop local oc-
cupation and finally settle down to a finite value, owing to
indirect thermalization with the bath. In the long-time limit,
an interesting pattern of local density profile is formed. At
very large times, the relatively flat pattern of the local density
profile, away from the center, is an interesting observation.
Note that apart from the system size the parameters chosen in
Fig. 4 are exactly the same as in Figs. 2 and 3 and therefore we
remain in the nonperturbative system-bath coupling regime.
We choose system size L = 20 keeping in mind computational
feasibility and to ensure a relatively quick approach to steady
state.

In Fig. 5 we present a zoomed view of the spread of local
density profiles n;(¢) for L = 100 sites with bath connected
at m = 51, for different time snapshots. The ballistic spread
of the density profile with velocity 2 g can be clearly seen,
where we recall that g is the intersite hopping within the lattice
system. This indicates a scaling form for the profile which is
presented in Fig. 6. Note that the parameters chosen in Figs. 5
and 6 are exactly the same as in Figs. 2—4 except the value
of g which is chosen to be 0.25 in order to illustrate ballistic
spreading over a computationally feasible system size L.

B. Perturbative regime in system-bath coupling

Next, we discuss the regime of weak system-bath coupling
which further allows us to employ the Redfield (Sec. II B) and
Lindblad (Sec. I C) approaches. Unlike Figs. 2—4 where we
had set y = 1, in Fig. 7 we choose y = 0.01 to ensure that we
remain in weak system-bath (perturbative) coupling regime.
We retain the value of g = 0.5 as before which therefore does
not fall in the validity of local Lindblad equation approach, as
was also mentioned in Sec. IIC. In Fig. 7 we first compare
the local density profile n;(¢) obtained following direct exact
numerics, discussed in Sec. Il A and the Redfield approach,
discussed in Sec. II B. We observe perfect agreement at vari-
ous time snapshots. Moreover, the inset in Fig. 7 also shows
excellent agreement between the two approaches for the total
occupation N(¢) [Eq. (7)]. The slope obtained from this inset
plot perfectly matches with the slope extracted following the
short-time (relative to the time to reach the steady state) dy-
namics described by Eq. (47). Note that as a consequence of
lower value of system-bath coupling y, the time required to
reach steady state is very long and much higher than the time
snapshots presented in Fig. 7. This further implies that the
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FIG. 7. Local density profile n;(¢) [Eq. (6)] for bosons with L =
21 lattice sites with bath attached at a particular site (m = 11) for
various time snapshots (r = 400, t = 4000) using direct exact nu-
merics (cross), as discussed in Sec. II A. We show good agreement of
these results with that obtained using the Redfield equation approach
(squares), discussed in Sec. II B. The inset shows total occupation
N(t) [Eq. (7)] for t = 1000, 2000, 3000, 4000 with both direct exact
numerics (Sec. II A) and Redfield (Sec. 11 B) approaches. The slope
obtained from this plot perfectly matches with the slope extracted
following Eq. (47). The parameters are t3 =1, g=0.5, B =1,
n = —2.01, and y = 0.01. Note that as y = 0.01 and g = 0.5, the
Redfield approach is well suited for comparison with the direct exact
numerics. Also, as a consequence of low value of y, the time to reach
steady state is very long and much higher than the times presented in
this figure. This further implies that the steady value of local density
is far from the values presented here.

steady value of local density is far from the values presented
in Fig. 7. For the same parameter values as in Fig. 7, we
show the results for total occupation N(¢) in Fig. 8 following
the direct exact numerics, Redfield, and Lindblad approaches.
We observe a perfect agreement between the exact numer-
ics and the Redfield approach, whereas the result obtained
from the Lindblad approach differs significantly due to the
chosen relatively large-g value. Note that, for both large g
and large y, the Redfield approach shows an exponential
growth in the total occupation number, as shown in Fig. 9,
further indicating a complete breakdown of the perturbative
approach. In Fig. 10 we show the results for N(¢) by reducing
both the g value and the y value and see an almost perfect
agreement between all the three complementary methods. Our
detailed analysis, therefore, provides guiding principles for
the appropriate choice of parameters. In Figs. 11 and 12, we
show the rate of early-time growth of the total occupation as
a function of g and y, respectively. In Figs. 13 and 14, we
show the behavior of total occupation at steady state Ngsg as
a function of g and y, respectively, for QLE, exact numer-
ics, Redfield, and Lindblad approaches. Interestingly, in the
regime when y ~ g (keeping both of them small), as seen
in the first data point in Fig. 13, local Lindblad approach
shows better agreement with exact and QLE than Redfield
approach. This could be rooted in the fact that when y 2 g
(still keeping both of them small), the resulting dynamics is

0.15
’//)‘o, ‘/“
0.101 e i
/D ’90 ‘/
S~— "()I; ‘/
Z (,}’ ‘/
s /
0.05 1 >
RV ==+ Exact
}/ Redfield
0.00- /”‘ == Lindblad
0 1000 2000 3000 4000
t

FIG. 8. Behavior of total occupation N(z) [Eq. (7)] versus ¢ for
system size L = 21 for the bosonic case, comparing direct exact nu-
merics, Redfield, and Lindblad approaches. The bath is connected at
site number m = 11. The parameters are g = 0.5, y = 0.01, 73 = 1,
B =1, and u = —2.01. This plot shows that the Redfield approach
agrees with exact numerics whereas the local Lindblad deviates. This
is due to relatively large intersite hopping g.

such that the lattice site connected to the bath gets occupied
while a small-g value disallows the spreading to other lat-
tice sites. In such a scenario a local description of the open
quantum system, such as the local Lindblad equation, could

10

8 .0
64— SN S U UUSS S
R =
= a
il .E‘_/ 104_
5102 ---- NI =9.731
21 éﬂ 0 Redfield o Bxact
§ 107 eane Redfield
i 0 2000 4000 = Lindblad
0 T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

t

FIG. 9. Behavior of total occupation N(z) [Eq. (7)] versus ¢ for
system size L = 40 for the bosonic case, comparing exact numerics,
Redfield, and Lindblad approaches. This figure is analogous to Fig. 2
in the main text. The bath is connected at site number m = 21.
The red dashed line shows the steady-state value NSSLE obtained
from the quantum Langevin equation approach. The parameters are
g=05y=1,t3=1,8=1,and u = —2.01. The inset shows the
plot for total occupation N(¢) versus ¢ for the Redfield approach
demonstrating exponential growth of total occupation number. This
plot shows that neither of the perturbative approaches agrees with
exact numerics, implying the invalidity of these approaches in this
parameter regime.
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FIG. 10. Behavior of total occupation N(¢) [Eq. (7)] versus ¢ for
system size L = 41 for the bosonic case, comparing exact numerics,
Redfield, and Lindblad approaches. The bath is connected at site
number m = 21. The parameters are g = 0.05, y =0.01, 75 =1,
B =1,and u = —2.01. This plot shows that both of the perturbative
approaches agree well with exact numerics, implying the validity of
these approaches in this parameter regime.

more appropriately describe the dynamics of the open system
than a global master equation such as the Redfield equation.
In Fig. 15 we plot the local density #;(¢) for two different time
snapshots and demonstrate excellent agreement between the
analytical results given by Egs. (57) and (58) with direct exact
numerics (Sec. II A). The inset in Fig. 15 shows a plot for
N(t) vs t in the same parameter regime which shows a perfect
linear growth with slope 2I' and therefore matches with the
prediction in Eq. (70) In Fig. 16 we use the same parameters
as in Fig. 15 and demonstrate excellent agreement between
the scaled version of data in Fig. 15, analytical scaling form
(Sec. IIC) given in Eq. (61).

—e— Exact

0.0014 1 Redfield
B —e— Lindblad
£ 0.0012
h
G
o
)
= 0.00101
=
E

0.0008

0.0006 T T T : .

0.0 0.1 0.2 0.3 0.4 0.5
g

FIG. 11. Initial rate of growth of total occupation as a function
of g, keeping y fixed for system size L = 5 with bosons, comparing
exact numerics, Redfield, and Lindblad approaches. The bath is con-
nected at site number m = 3. The parameters are y = 0.05, 15 = 1,
B =1,and u = —2.01.

FIG. 12. Initial rate of growth of total occupation as a function
of y, keeping g fixed for system size L = 5 with bosons, comparing
exact numerics, Redfield, and Lindblad approaches. The bath is
connected at site number m = 3. The parameters are g = 0.5, 153 = 1,
B =1,and u = —2.01.

IV. NUMERICAL RESULTS FOR FERMIONS

So far we presented results for bosons. We now briefly
make a few comments about fermions highlighting the sim-
ilarities and differences. We find that owing to the Pauli
exclusion principle, fermions experience blockade which
makes its quantum dynamics different from that of bosons.
The rate of growth of N(¢) at small times is higher for
bosons as they are not limited by the Pauli exclusion principle
obeyed by fermions. As a result of such slow growth for
fermions, in the long-time limit overall total occupation N (t)
within the lattice is significantly lower in comparison with
bosons. Similar to bosons, the fermions also exhibit overall

0.70
—e— QLE
—e— Exact
0.65 1 Redfield
—e— Lindblad
0.60 -
2
=,
0.55 1
0.50 1
0.45 .' .' SR
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 13. Behavior of total occupation at steady state Ngs as a
function of g, keeping y fixed for system size L = 5 with bosons,
comparing exact numerics, QLE, Redfield, and Lindblad approaches.
The bath is connected at site number m = 3. The parameters are
y =0.05,t3=1,8=1,and u = —2.01.
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FIG. 14. Behavior of total occupation at steady state Nss as a
function of y, keeping g fixed for system size L = 5 with bosons,
comparing exact numerics, QLE, Redfield, and Lindblad approaches.
The bath is connected at site number m = 3. The parameters are
g=05,1=1,8=1,and p = -2.01.

early-time linear growth and exponential relaxation at long
times. In Fig. 17 we demonstrate these trends following the
direct exact numerics described in Sec. ITA. In Fig. 18 we
plot the local density profile for fermions at different time

—B— Exact, t = 180

0.005 A
0.0005 A x  Analytical, t = 180
§ —8— Exact, t =90
X Analytical, ¢ = 90
0.0004 A

= 0.0003 1
0.0002

0.0001 ~

0.0000 1

1 11 21 31 41
1

FIG. 15. Spatial density profile n;(¢) [Eq. (6)] for bosons for
L = 41 sites with the bath attached at m = 21 for two different time
snapshots following direct exact numerics (Sec. Il A), and analytical
result based on Lindblad approach [Egs. (57) and (58)] discussed
in Sec. IIC. We notice excellent agreement between the two ap-
proaches. The parameters chosen are 1 =1, g =0.05, 8 =1, u =
—2.01, and y = 0.01. The plots are shown for time snapshot r = 90
and 180. Note that for the analytical case, no data are presented
at m = 21 as the analytical expression in Eq. (58) is expected to
only hold away from the lattice site where the bath is attached.
Recall that we have chosen weak intersite hopping g to ensure the
validity of local Lindblad approach. The inset shows the plot for total
occupation N(t) vs ¢ for the same parameter values. The slope in the
inset preciously turns out to be 2 I'g and therefore matches with the
prediction in Eq. (70) (Sec. I1 C).
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FIG. 16. Spatial scaled density profile n;(¢) [Eq. (6)] for bosons
for L = 41 sites with the bath attached at m = 21 for two different
time snapshots following analytical result based on Lindblad ap-
proach (57) and (58) and the scaling form (61) discussed in Sec. II C.
We notice excellent agreement between the two results. The param-
eters chosen are exactly the same as those of Fig. 15, ie., 13 = 1,
g=0.05 8=1, un =-2.01, and y = 0.01. The plots are shown
for time snapshot # = 90 and 180. Recall that we have chosen weak
intersite hopping g to ensure the validity of the Lindblad approach.

snapshots following direct exact numerics and a relatively
lower value in population compared to bosons is clearly ob-
served, owing to the Pauli exclusion principle. In Fig. 19 we

10
81+t
61
\Z/ : " P

4 501 .0
i ’0
| 259,

20 ... Bosons 1*

Fermions 0.0 T

0 0 100 200

0 1000 2000 3000 4000
t

FIG. 17. Comparison between fermions and bosons for total
occupation N(z) for L = 40 sites with bath attached at m = 21,
following direct exact numerics discussed in Sec. I A. Itis clear from
the plot that the eventual saturation value for fermions is smaller
than that of bosons. The inset denotes the zoomed version of the
dynamics at relatively short times and clearly shows that the rate
of growth for the fermionic case is smaller than that of the bosonic
case. The parameters chosenarefz = 1,g = 0.5, = 1, u = —2.01,
and y = 1. Note that although we have presented the results only
from direct exact numerics Sec. Il A, similar trends can be obtained
following other methods.
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FIG. 18. Local density profile n;(t) [Eq. (6)] for fermions for
L = 20 lattice sites with bath attached at a particular site (m = 11)
for various time snapshots, using direct numerics (empty circles),
as discussed in Sec. Il A. The long-time limit of this density profile
agrees perfectly with that obtained from QLE (cross), as discussed
in Sec. IID. The parameters are t = 1,g= 0.5, 8 = 1, u = —2.01,
and y = 1. Note that the parameters chosen here are exactly the same
as in Fig. 4.

show the ballistic growth of the density profile for fermions,
similar to the bosonic case, following direct exact numer-
ics. Interestingly, we observe a scaling trend for fermions in
Fig. 20 similar to that of bosons. In suitable parameter regimes
one can employ the other methods (Secs. II B, II C, II D) for
fermions and notice similar trends.
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0.020 1
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I

0.000 y T
15 31

39 43 5963 71 87
site number ()

FIG. 19. Local density profile n;(t) [Eq. (6)] for fermions for
L = 100 sites with bath attached at m = 51 from direct exact numer-
ics, described in Sec. II A. We choose relatively short times to clearly
demonstrate the ballistic growth of the density profile. We truncate
the y axis to highlight the propagation of the density front. Note
that this front of the density profiles spreads with velocity ¢ =2 g,
where g is the intersite hopping within the lattice. This figure clearly
indicates the presence of scaling which is demonstrated in Fig. 6. The
parameters aretg = 1,g =025, =1,u = —2.0l,and y = 1.

-3.0
-1.0

—0.5 0.0 05 1.0
i—51
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FIG. 20. A scaled plot of In (n;(¢)) [Eq. (6)] for fermions with
L = 100 sites with bath attached at m = 51 to demonstrate the bal-
listic spread of spatial density profile n;(¢) [Eq. (6)]. The parameters
aretp =1,¢g=0.25 =1, 0 = —-2.01, and y = 1. The logarithm
mentioned in this plot is with base 10.

V. DISCUSSIONS AND COMPARISONS
WITH PREVIOUS WORKS

As mentioned earlier, local gain or loss experienced by a
system owing to a connection to a reservoir is an actively
investigated area of research. Therefore, we place our work in
the context of certain recent works. Note that, in our setup, the
bath is responsible for simultaneous injection and/or removal
of bosons or fermions with rates that obey a detailed balance
condition. In other words, the rates of injection and removal
are not arbitrary but are related. This condition is respected
by all the methods (Sec. II) discussed in our work. If one
considers only pure injection process (thereby not obeying
detailed balance condition) both short- and long-time quan-
tum dynamics can be drastically different [18,19]. For the
case of bosons interesting dynamical transitions have been
reported [19] when the system is subjected to an incoherent
pump with no loss channels. More preciously, in the limit
of large system sizes, N(¢) in Eq. (7) exhibits exponential
or power-law growth depending on the incoherent pumping
strength. However, an analogous setup for fermions [18] does
not display such dynamical transitions and N(¢) grows lin-
early with ¢. This is an example where Pauli exclusion or lack
thereof can have remarkably different consequences.

It is easy to note that if only incoherent pumping at a
local site needs to be incorporated, then this amounts to ar-
tificially setting the loss coefficient I', = O (thereby allowing
the breakdown of detailed balance) in the Lindblad equation in
Eq. (52). This results in the following equation of motion for
the two-point correlation functions C; ; as defined in Eq. (55):

dC[qj X
el ig(Cis1,j —Cijy1 +Ciy1,; — Gijo1)

£ T68im +8jm) Cij + 2T 68idmj, (90)

where note the crucial sign difference in the second term with
+ sign indicates bosons and — sign indicates fermions. This
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=+ sign in Eq. (90) arising due to quantum statistics leads to
a crucial change in the dynamics for local density n;(¢) in
Eq. (6) and total occupation N(¢) in Eq. (7). More explicitly,
following the differential equation in Eq. (90), one can show
a linear growth for N(¢) versus ¢ for fermions [18], whereas
for bosons exponential and power-law growth in time can be
seen [19].

It is important to note that if one has to respect the de-
tailed balance condition, it is not possible to set I'y to O.
In fact, one can interestingly notice that from Eqs. (53) and
(54) that for bosons, I'y > I' is always true. As a conse-
quence, the term —(I'y, F I')(8im + &) in Eq. (56) is always
negative for bosons. The same is straightforward to notice
even for the case of fermions. Therefore, for both bosons and
fermions, Eq. (56) bares strong structural resemblance with
the equation obtained when a fermionic lattice [corresponding
to negative sign in the second term of Eq. (90)] is subjected
only to incoherent pump [18] yielding Eq. (90). This argument
explains why via the methods employed in this work we see
linear growth in N(z) irrespective of whether one considers
bosons or fermions.

VI. SUMMARY AND OUTLOOK

In this work, we demonstrate how a complex interplay
between unitary and nonunitary dynamics and quantum statis-
tics can lead to nontrivial quantum dynamics and subsequent
steady state. We considered the setup when an empty lat-
tice is locally connected to a reservoir (Fig. 1). The main
quantities of interest were local spatial density profile n;(t)
[Eq. (6)] and the total occupation N(¢) [Eq. (7)]. We employed
four methods: (i) direct exact numerics for correlation matrix
(Sec. IT A), (ii) Redfield equation (Sec. II B), (iii) Lindblad
equation (Sec. IIC), and (iv) exact quantum Langevin ap-
proach (Sec. II D).

We showed that the initial growth for the total occupa-
tion N(¢) for both bosons and fermions is linear in time
and it subsequently saturates (for a finite lattice size) to
a constant value in an exponential manner. For an infinite
lattice, there is no saturation and N(¢) grows linearly with
time. The local spatial density profile n;(¢) exhibits a ballistic
spatial spread for both bosons and fermions. At any fixed
lattice coordinate, n;(¢) initially grows in time and eventually
saturates owing to equilibration with the bath. Our simula-
tion results indicate that the equilibration time tss ~ L® with
8 =~ 2.5. However, we expect § = 2 in the large-L limit. Our
work unravels the universal features and the differences be-
tween bosons and fermions the cause of which is rooted in
quantum statistics. In the context of recent works on this
subject, it is to be noted that our microscopic starting point
is drastically different from phenomenological approaches
[18,19]. We show that restoring detailed balance condition
plays a pivotal role in deciding the fate of the quantum dy-
namics. We also show that our findings for spatial density
profile obey analytical forms in an appropriate parameter
regime.

Future work will be directed towards understanding quan-
tum dynamics for filling particles in higher-dimensional
lattices with arbitrary geometries and fully and partially con-
nected networks [45—49]. Understanding the full counting

statistics [50] and distribution of total occupation, P[N(z)],
will be a problem of significant interest. A challenging and
interesting question is understanding quantum dynamics and
thermalization when reservoirs are locally connected to empty
lattices that can host interacting bosons or fermions. It is
important to highlight that with the current state-of-art exper-
imental progress in absorption imaging techniques [51-53]
and quantum gas microscopy [54-56], it has now become
feasible to measure local density profiles for systems with
very high precision even to the resolution at the level of a
single atom.
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APPENDIX: ANALYTICAL FORMS FOR LOCAL DENSITY
PROFILE n;(t) AND TOTAL OCCUPATION N(¢)

In this Appendix, we present the details of the derivation
of the analytical forms for local density profile n;(¢) given
in Eq. (57) and total occupation N(¢) given in Eq. (67). We
start with the equations of motion for the correlation function
[Eq. (55)] which we recall below:

dc,"j
dt

=ig(Ci—1,j —Cijt1 +Ciy1,j — Ci j—1)
— (L FU6)Gim + 8jm) Cij + 2T 68midmj

where F stands for bosons and fermions, respectively. Note
that ' is defined in Eq. (53) and T'; is defined in Eq. (54).
We will closely follow Refs. [18,19] to derive the analytical

(AL)
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form for the density profile. For sake of brevity we define

I"=T.¥Tg, (A2)

where F stands for bosons and fermions, respectively. It is
easy to see from Egs. (53) and (54) that the following inequal-
ity holds for both bosons and fermions:

I''>0. (A3)
Therefore, Eq. (A1) can be rewritten as
# =igCi1; —Cijy1 +Cyr1j —Cij1)
—T'(8im + 8jm) Ci.j + 2T G8midmj (A4)

with " > 0 always. Note that Eq. (A4) is an inhomogeneous
equation. Given that the lattice is initially in a vacuum, the
following initial condition is satisfied:

In order to solve Eq. (A4) along with the initial condition in
Eq. (AS), we consider the following auxiliary problem. We
will first solve Eq. (A4) without the inhomogeneous piece
2T G8idyj. Let us write the homogeneous equation as

dc;;
dt

=ig(Cis1j—Cijy1 +Ci1;—Cijo1)

—T'Gim + 8jm) Ci j, (A6)
where the symbol tilde indicates an auxiliary function satisfy-
ing the homogeneous equation and we have used the symbol
7 to differentiate the time variable with that of the actual prob-
lem. Closely following Refs. [18,19], we make the following
ansatz:

G i(v)= Si(f)gf(f)- (A7)
Plugging in the ansatz given in Eq. (A7) into (A6), we can
show that S;(¢) satisfies the differential equation

s, . . ~ Lo =
— = iglSip1 +Sict ] = T &imSis

I (A8)

where the time dependence 7 on S;(t) in Eq. (A8) has been
dropped for the sake of brevity.

One can show that solving the original inhomogeneous
differential equation in Eq. (A4) along with the initial con-
dition in Eq. (AS5) can be achieved via solving the auxiliary
homogeneous equation in Eq. (A6) with the initial condition

Ci.j(t = 0) = 8ijm. (A9)

This auxiliary initial condition [Eq. (A9)] translates into

Si(t = 0) = 8. (A10)

Without loss of generality, we henceforth consider the mid-
dle site to be at m = 0. Furthermore, we take the lattice size
L to be infinity, i.e., the lattice is now extended from —oo to
+00. Since the system is expected to be symmetric about the
Oth site, for simplicity, we consider only the positive side of
the lattice chain in the analysis presented below. Now our goal

is to analyze Eq. (A8) along with the initial condition given
by Eq. (A10). One can solve Eq. (A8) along with the initial
condition (A10) using a combination of Laplace and Fourier
transformations [18] and the solution is given as

T -
Si(t)y=Jgt)-T' / die '
0

N
x(z t_) I2eVTr—F1, (Al

+t

where J;(z) denotes the Bessel function of first kind. Note that
the local density at a particular site i at time ¢ is given as

n,-(t):ZFG/ dr I5:(0)2. (A12)
0

Notice that in order to simplify Eq. (A12) one needs to use
Eq. (A11l) which itself has an integral, thereby making the
simplification of #;(¢) in Eq. (A12) complicated. Interestingly,
it turns out that n;(¢) can admit an interesting scaling form. To
do so, let us take the limits

V= —— ~ o),

I — 00,
2gt

t — oo, (Al3)

where v ~ O(1) is the scaled variable that will be used later.
Owing to the scaling limit described in Eq. (A13), the up-
per limit of the integral can be set to infinity. Moreover, the
contribution of the integral in Eq. (A12) largely comes when
the integrand is evaluated at large t. This can be checked nu-
merically although it is not entirely obvious from Eq. (A11).
Therefore, it is justified to simplify Eq. (A11) in the large-t
limit. In order to do so we use the following relation that holds
for large 7:

(= t_)i/z ~e ! (Al4)
TH+F '
Using Eq. (A14) in (A11) we obtain
- iJi2gt)
Si(t) = ————. Al5
(*) i+ Tl (A1)

Using the simplified form of S;(t) in Eq. (A15), the local
density at a particular site is given as

PlI2gT)?
(i+tI)?°
(A16)

t t
n,-(t):ZT‘(;/ dt |S’,~(1:)|2=21"6/ dt
0 0

where we recall that I'g is defined in Eq. (53) and Si(1)
is given in Eq. (Al5). Note that i in Eq. (A16) stands for
lattice index. Equation (A16) is a compact analytical expres-
sion for the local density profile under the condition given in
Eq. (A13). We now proceed to analytically derive the scaling
form. To do so, we need to use the appropriate asymptotic ex-
pansion for the Bessel function that appears in Eq. (A16). Now
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making a change of variable T = ¢ s and recalling i =2gv,
we rewrite Eq. (A16) as

In the large-u limit (for a fixed z) the asymptotic expansion of
J, (uz) is given by [57,58]

! J 2gt 2 1
n,-(t):8FGg2v2t/ dsM. (A17) 47()\* 1 1
o Qgv+sT) Ju(pz) ~ 5 r Tu(nz),  (A20)
. . . . -z 2/ |2(2)|5
To facilitate the implementation of the asymptotic form of
Bessel function, it is convenient to introduce where 7, (11 z) is given by
S
I gvt and z ” (A18) S exp[ MC(Z)] for 0<z<1,
S nz) =
which simplifies Eq. (A17) as a 2 cos [g,u [—{(z)]% — %] for 1 <z< o0
1 A21)
L )l . (
n;(t)=8T vt d7 ———. A19 with
(t) & Ay (A19)
|
(%)2/3[1n (—”2““) — 1= z2]2/3 for 0<z<1,
{(z) = 23 (A22)
-3)" V22 c ()3 for 1<z< o0.
(
We split Eq. (A19) as follows: ‘We now use the expression for 7}, (uz) from Eq. (A21) and get
1 2712 3 7
| > 8Tgg [+, cos*[3u[—¢@)]: — Z]
~ e 2)] mi(r) = 2108 / dz <15 . (a2s)
ni(t)_8FGg2vt|:/o dzm T | (28+ZF/)2\/ZZT1
1 [, ( )P For large i, the cosine-squared term in the numerator is highly
+ / dz Lz (A23) oscillatory and therefore can be approximated by % We finally
1 2g+zI) obtain the following scaling form for the local density profile

To evaluate Eq. (A23) we use the appropriate forms in
Eqgs. (A20)—-(A22) depending on the range of integration over
z. It is easy to notice that the first integral in Eq. (A23) is ex-

n;(t):

n;(t) = ¢<2Lgt>’ where

ponentially suppressed in . Hence, keeping only the second 4Tgg 1
term in Eq. (A23) and performing some manipulations, we get o(v) = \/ZT Qgtl) (A26)
2T 1 1 7—2( wz) as also given in the main text in Egs. (60) and (61). Upon

n;(t) = A24 erforming the integral in Eq. (A26) we obtain

(t) AT Qe (A24) p g g q. (A26)
|
g(1 Z[In(1 g) —In(g —/ @ —=DA=v)] - /(@ — D1 =2

q)(v):g( ol +vy —n@+y - V@ -DA-VN-V@-DA-v)

which is given in Eq. (62) of the main text. Here we introduced
the dimensionless variable g as

.28 A
) A28
8=r =7 70) (A238)

Our result in Eq. (A26) exactly coincides with the one ob-
tained in Ref. [18] where a different approach was used. In a

similar fashion, the total occupation number N (¢) is given by

o0

1
Nty =) ni(t):4gt/ dv ®(v)
i=—00 0
16FGg2t/ 1 1
«/z —1 Qg+zIM?*
(A29)

@ - D20+ D ’

(

We next perform an integral by parts in Eq. (A29) which
further simplifies N (¢) as

N(@t) =

AT 3t /(’o% 1 1
b4 12 V2 =1 (@+2)7?

__ 2Tt I R

cos 1(g)]

+2(1 —2g2)\/7

(A30)

which matches with the expression in Eq. (67) of the main
text.
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