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Ramsey interferometry with arbitrary coherent-population-trapping pulse sequence
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Coherent-population trapping (CPT) is a multilevel quantum coherence phenomenon of promising applica-
tions in atomic clocks and magnetometers. In particular, multipulse CPT Ramsey interferometry is a powerful
tool for improving the performance of CPT atomic clocks. Most studies on multipulse CPT Ramsey interferom-
etry consider periodic pulse sequence and time-independent detuning. However, to further improve the accuracy
and precision, one may modify the spectrum symmetry which involves a pulse sequence with time-dependent
detuning or phase shift. Here we theoretically analyze the multipulse CPT Ramsey interferometry under arbitrary
pulse sequences of time-dependent detuning and obtain a general analytical formula. Using our formula, we
analyze the popular CPT Ramsey interferometry schemes such as two-pulse symmetric and antisymmetric spec-
troscopy and multipulse symmetric and antisymmetric spectroscopy. Under periodic pulses, we quantitatively
obtain the influences of pulse width, pulse period, pulse number, and Rabi frequency. Furthermore, we examine
the impact of CPT pulses and Rabi frequency on the light shift in both two-pulse and multipulse CPT Ramsey
interference. Our theoretical results can guide the experimental design to improve the performance of atomic
clocks via multipulse CPT Ramsey interferometry.
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I. INTRODUCTION

Microwave excitation of the transition between two ground
states is commonly employed in frequency standards and
magnetometers, particularly in alkali-metal atoms. One can
use two light fields to couple the two ground states via a
common excited state. When the frequency difference be-
tween these two light fields matches the transition frequency
between the two ground states, the atoms can be pumped and
trapped in a coherent state. In this state, the atoms do not
interact with external laser fields and exhibit a distinctive dip
in the fluorescence spectrum, which is known as coherent-
population trapping (CPT) [1]. It provides a convenient way
to measure transition frequency using an all-optical method,
offering advantages in energy consumption and miniaturiza-
tion [2,3]. Thus, CPT has been extensively utilized in various
applications of quantum engineering and sensing, such as
all-optical manipulation [4–9], atomic cooling [10], atomic
clocks [2,11–13], and atomic magnetometers [14–17].

Conventionally, CPT spectroscopy has the drawback of
power broadening caused by strong CPT light power. The
power broadening increases the full width at half maximum
(FWHM) of the spectrum and decreases the measurement
precision of the transition frequency. Additionally, the light
shift induced by the light fields serves as a source of error
that affects the stability of CPT applications. Using two CPT

*hjiahao@mail2.sysu.edu.cn; eqjiahao@gmail.com
†chleecn@szu.edu.cn

pulses to perform CPT Ramsey interferometry can narrow
the spectral linewidth [11,18,19] and suppress the light shift
[20,21]. In this case, the linewidth of the CPT Ramsey spec-
trum can be narrower and the light shift can be reduced as the
interval of dark time between the two pulses increases [11,19].
As the demands for higher measurement precision and accu-
racy have grown, various techniques have been developed to
improve the spectrum contrast [22] and make the CPT Ramsey
spectrum more distinguishable [23].

Multipulse CPT Ramsey interferometry has been devel-
oped in recent years [22–25]. The spectrum linewidth can
be narrowed and the central peak can be identified due to
the multipulse interference. Understanding the mechanism
of multipulse CPT Ramsey interferometry is beneficial to
designing suitable CPT pulse sequences for frequency mea-
surement. Some typical multipulse CPT Ramsey schemes can
be analytically analyzed. For example, under multiple pulses
with identical periods and duration, one can explain the mul-
tipulse CPT Ramsey interference using a simple model based
on the Fourier analysis of the CPT pulse sequence [8,22]. The
Fourier analysis introduces a characteristic number Ns as the
spectrum will reach steady state for large pulse number N [8].
The other analytical treatment is to compare the multipulse
CPT Ramsey interferometry to the Fabry-Pérot resonator,
which is valid from periodic CPT pulse sequences [25] to
arbitrary time-independent CPT pulse sequences [26].

However, to further improve the performances one may
need to modulate the pulse detuning or phase shift with
time. For example, the autobalance technique uses a detuning
change during the dark time to modify the symmetry of the
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spectrum to achieve a real-time clock servo. The frequency
and phase jump have been applied to change the vertical sym-
metry of the spectrum and are used as additional variables in
autobalanced CPT [27–30]. Moreover, for a quantum lock-in
amplifier [31], one may even use the mixing between the
alternating magnetic field and CPT pulse sequence. The al-
ternating magnetic field may also induce alternating detuning.
The modulation of the frequency or phase has been applied
in experimental CPT schemes and has become a potential
technique. Numerical investigations have been conducted to
explore the characteristics of multipulse CPT Ramsey in-
terference with phase jumps [27], as well as CPT Ramsey
interference with arbitrary phase and detuning [30]. However,
the analytical analysis of multipulse CPT Ramsey interfer-
ometry under time-dependent detuning and arbitrary pulse
phase is still lacking, and it is of great importance for broad
applications to develop a general analytical formula to analyze
the effects of multiple pulses.

In this article we study multipulse CPT Ramsey inter-
ferometry with arbitrary CPT pulse sequences. In particular,
when the single-photon detuning and Rabi frequencies are
relatively small compared to the decay rate of the excited
state, we obtain an analytical formula to analyze various CPT
Ramsey interferometry scenarios, such as conventional CPT
Ramsey interferometry, CPT Ramsey interferometry with a
frequency or phase jump, multipulse CPT Ramsey interfer-
ometry, and multipulse CPT Ramsey interferometry with a
frequency jump. For the periodic CPT pulse sequence [23],
we can analytically study the influences of pulse length, pulse
strength, pulse interval, and pulse number on the spectrum
linewidth. The formula we derive is a general solution that is
valid for most situations with arbitrary CPT pulse sequences.
In contrast to the well-known vector model method [32],
which describes the CPT process as a vector movement in
a three-dimensional rectangular coordinate system, our ap-
proach involves explicit decomposition of the spectrum into
distinct components. This enables us to analyze the shape
of the fluorescence spectrum in a more detailed manner and
evaluate the individual impact of each CPT pulse. Finally,
we employ the analytical approach to investigate the light
shift induced by the ac Stark light shift in both two-pulse and
multipulse CPT Ramsey interference. Through our analysis,
we can also provide a comprehensive understanding of the
light shift in these scenarios.

II. CPT IN A THREE-LEVEL � SYSTEM

A. Model

Coherent-population trapping can usually be achieved in a
three-level � structure as shown in Fig. 1. The bichromatic
light fields with Rabi frequencies �1 and �2 couple the two
ground states |1〉 and |2〉 to the excited state |3〉. Here δ1 and δ2

are the corresponding detunings and � is the decay rate of the
excited state |3〉. When the frequency difference of the light
fields matches the transition frequency of the ground state, the
two-photon detuning δ = δ1 − δ2 equals zero. In this scenario,
the system is effectively driven into a dark state

|dark〉 = �2|1〉 − �1|2〉√
�2

1 + �2
2

. (1)

FIG. 1. Three-level � system and the timing sequence of CPT.
(a) Bichromatic light with Rabi frequencies �1 and �2 coupling the
two ground states |1〉 and |2〉 to the excited state |3〉. The δ1 and δ2

are the frequency detunings from |1〉 and |2〉 to |3〉. The decay rate of
the excited state |3〉 is �. (b) The orange pulses are CPT pulses with
Rabi frequency �, which is the magnitude of �1 and �2. The τi is
the pulse length, ti is the starting point, and �i is the phase of the ith
CPT pulse. (c) Two-photon detuning δ = δ1 − δ2 versus time t . The
δ can be randomly time dependent.

In the dark state, the system does not interact with the light
fields.

The CPT phenomenon can be studied by utilizing the
Lindblad equation with the density matrix. Under the rotating-
wave approximation, the Hamiltonian in the interaction
picture reads [33]

ĤI = h̄(δ1|1〉〈1| + δ2|2〉〈2|)

+ h̄

(
�1

2
|1〉〈3| + �2

2
|2〉〈3| + H.c.

)
. (2)

According to the Lindblad equation, the time evolution of the
density matrix ρ obeys

dρ

dt
= − i

h̄
[ĤI , ρ] + �

2

2∑
j=1

(
L̂ jρL̂†

j − 1

2
{L̂†

j L̂ j, ρ}
)

. (3)

Here L̂ j = | j〉〈3| and their Hermite conjugates L̂†
j are Lind-

blad operators. We suppose that the magnitudes of Rabi
frequencies of monochromatic light are equal, i.e., |�1| =
|�2| = �, where � is the magnitude of the Rabi frequencies.
Then the Rabi frequencies can be expressed as �1 = �eiφ1

and �2 = �eiφ2 , with φ1 and φ2 the phases of monochromatic
light. In this case, Eq. (3) can be written as

d

dt
ρ11 = �

2
ρ33 − i

(
�e−iφ1

2
ρ∗

13 − �eiφ1

2
ρ13

)
,

d

dt
ρ12 = −i

�e−iφ1

2
ρ∗

23 + i
�eiφ2

2
ρ13 − i(δ1 − δ2)ρ12,

d

dt
ρ13 = −�

2
ρ13 + i

�e−iφ1

2
ρ11 − i

�e−iφ1

2
ρ33

+ i
�e−iφ2

2
ρ12 − iδ1ρ13,

d

dt
ρ∗

12 = i
�eiφ1

2
ρ23 − i

�e−iφ2

2
ρ∗

13 + i(δ1 − δ2)ρ∗
12,
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d

dt
ρ22 = �

2
ρ33 − i

(
�e−iφ2

2
ρ∗

23 − �eiφ2

2
ρ23

)
,

d

dt
ρ23 = −�

2
ρ23 + i�e−iφ1

2
ρ∗

12 + i�e−iφ2

2
ρ22

− i�e−iφ2

2
ρ33 − iδ2ρ23,

d

dt
ρ∗

13 = −�

2
ρ∗

13 − i
�eiφ1

2
ρ11 + i

�eiφ1

2
ρ33

− i
�eiφ2

2
ρ∗

12 + iδ1ρ
∗
13,

d

dt
ρ∗

23 = −�

2
ρ∗

23 − i�eiφ1

2
ρ12 − i�eiφ2

2
ρ22

+ i�eiφ2

2
ρ33 + iδ2ρ

∗
23,

d

dt
ρ33 = −�ρ33 + i�e−iφ1

2
ρ∗

13 − i�eiφ1

2
ρ13

+ i�e−iφ2

2
ρ∗

23 − i�eiφ2

2
ρ23, (4)

where ρi j = 〈i|ρ| j〉. In the following, we solve these equa-
tions analytically.

B. Analytical formula of ground-state coherence

Under the condition that the Rabi frequency is far smaller
than the decay rate � � �, one can find d

dt ρ33 � �ρ33 and
we can get under the adiabatic approximation [32]

ρ33= 1

�

(
i�e−iφ1

2
ρ∗

13−
i�eiφ1

2
ρ13+ i�e−iφ2

2
ρ∗

23−
i�eiφ2

2
ρ23

)
.

(5)
Usually, the CPT works in the situation of near resonance
δ1,2 � �. Due to the large decay rate of the excited state,
the population in the excited state can be ignored (compared
with ground-state populations), i.e., ρ33 � ρ11 and ρ33 � ρ22.
Thus we can obtain

ρ13 = 1

�
(i�e−iφ1ρ11 + i�e−iφ2ρ12), (6)

ρ23 = 1

�
(i�e−iφ1ρ∗

12 + i�e−iφ2ρ22), (7)

ρ∗
13 = 1

�
(−i�eiφ1ρ11 − i�eiφ2ρ∗

12), (8)

ρ∗
23 = 1

�
(−i�eiφ1ρ12 − i�eiφ2ρ22). (9)

In a CPT process, the population is mostly in the ground states
where ρ11 + ρ22 ≈ 1. Substituting Eqs. (6)–(9) into Eqs. (4)
and (5), we obtain

ρ33 = �2

�2
[1 + 2�(ρ12eiφ(t ) )] (10)

and

d

dt
ρ12 = −�2

2�
e−iφ(t ) −

(
�2

�
+ iδ

)
ρ12. (11)

Here δ = δ1 − δ2 is the two-photon detuning and φ(t ) = φ1 −
φ2 is the phase of monochromatic light. Equation (11) can be
analytically solved under a train of CPT pulses.

We can construct the response of Eq. (11) to an impulse
taking place at t0, which is the Green’s function [34]

G(t, t0) = H (t − t0) exp

[
−

∫ t

t0

(
�2(u)

�
+ iδ(u)

)
du

]
,

(12)
where H (x) is the Heaviside function. If the density matrix
starts from a mixture state, ρ = |1〉〈1| + |2〉〈2|, which is a
commonly used initial state. This initial state can be easily
achieved by applying a long preparation pulse. Since there is
no light shift induced by the initial population imbalance of ρ,
it is convenient to discuss the role of multiple pulses. Taking
the initial value ρ12(0) = 0, we have

ρ12(t,�) = −
∫ t

0

�2(t ′)
2�

e−iφ(t ′ )G(t, t ′)dt ′, (13)

which is a function of δ(t ) and �(t ). We analyze Eq. (13)
within the context of a general CPT pulse sequence, as shown
in Figs. 1(b) and 1(c). The orange pulses represent the CPT
pulses with Rabi frequency �, variable pulse duration τi, and
phase �i. The gray solid line represents the time-dependent
detuning δ(t ). As a result, Eq. (13) can be expressed as

ρ12(t,�) = − �2

2�

N∑
l=1

⎡
⎣ N∏

k=l+1

exp

(
−�2

�
τk

)⎤
⎦

× exp

(
−

∫ t

tl +τl

iδ(u)du

)
e−i�l

×
∫ tl +τl

tl

exp

[
−

∫ tl +τl

t ′

(
�2

�
+ iδ(u)

)
du

]
dt ′.

(14)
This is the general formula of ground-state coherence. Equa-
tion (14) can be used to describe most cases of pulse
sequences including the two-pulse CPT Ramsey interferome-
try and multipulse CPT Ramsey interferometry under fixed or
time-dependent frequency detuning and phase. However, the
absence of single-photon detunings δ1 and δ2 in the derivation
of Eqs. (6)–(9) means that the influence of light shift induced
by the excited state is not taken into account.

According to Eq. (10), if the phases of each CPT pulse are
identical, the phase value does not affect the observation ρ33.
This is because a global phase of the Rabi frequencies can be
gauged into the state without changing the density matrix if
we select the initial mixture state without nondiagonal terms.
That means the magnitude of Rabi frequencies can be real if
we select proper initial phases of |1〉 and |2〉. Generally, we
gauge the phase of the last CPT pulse �N into zero such that
the phase of Eq. (10) can be eliminated; thus

ρ33 = �2

�2
[1 + 2�(ρ12)]. (15)

Further, if the phases of CPT pulses are constant, all the
phases can be gauged as zero.

If the detuning δ(t ) is fixed as δ during the CPT pulses
and varies with time t during the dark period, Eq. (14) can be
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written in the form

ρ12 = f (�, δ)Q, (16)

where

f (�, δ) = − �2

2�
(

�2

�
+ iδ

) (17)

is the slow variant envelope and Q is the multipulse CPT
Ramsey interference term

Q =
N∑

l=1

⎛
⎝ N∏

k=l+1

e−(�2/�)τk

⎞
⎠ exp

(
−

∫ t

tl +τl

iδ(u)du

)
e−i�l

×
{

1 − exp

[
−

(
�2

�
+ iδ

)
τl

]}
. (18)

III. APPLICATIONS IN CPT RAMSEY SPECTROSCOPY

Our analytical formula (14) can be applied in various
experimental CPT Ramsey scenarios. In the following, we
show its applications in conventional two-pulse CPT Ramsey
spectroscopy, antisymmetric two-pulse CPT Ramsey spec-
troscopy with a frequency jump, and multipulse CPT Ramsey
spectroscopy.

A. Two-pulse sequence

In most cases, the CPT Ramsey interferometry is imple-
mented with two pulses, as shown in Fig. 2(a). In this scheme,
the CPT pulse sequence contains a preparation pulse with
duration τ1 and a detection pulse with duration τ2, which
are separated by a free evolution with dark time T [18].
Using Eq. (14) with pulse number N = 2, we can easily get
the corresponding analytical results, which can be used as a
benchmark example. Our analytical results can also be used
to optimize the CPT pulse sequence as we need.

1. Conventional two-pulse CPT Ramsey spectroscopy

Considering the simple case in which the detunings are
time independent and the phases equal zero, Eq. (14) can be
simplified as

ρ12(t, δ,�) = f (�, δ)
N∑

l=1

⎡
⎣ N∏

k=l+1

exp

(
−�2

�
τk

)⎤
⎦

× exp[−iδ(t − tl − τl )]

×
{

1 − exp

[
−

(
�2

�
+ iδ

)
τl

]}
. (19)

For two-pulse CPT Ramsey interferometry, the CPT Ramsey
interference term reads

Q = QT
1 + QT

2 , (20)

where

QT
1 = exp

(
−�2

�
τ2

){
1 − exp

[
−

(
�2

�
+ iδ

)
τ1

]}

× exp[−iδ(T + τ2)]

FIG. 2. Two-pulse CPT Ramsey spectrum. (a) Timing sequence
of conventional CPT Ramsey spectroscopy including the preparation
pulse τ1, the detection pulse τ2, and the dark time T . (b)–(d) The
CPT Ramsey spectra are obtained by numerical simulation (blue cir-
cles), our analytical formula (black solid line), and the vector model
(red squares) with dark time T = 500 × 2π

�
, Rabi frequency � =

0.035�, and pulse sequences of (b) τ1 = 60 × 2π

�
and τ2 = 60 × 2π

�
,

(c) τ1 = 200 × 2π

�
and τ2 = 60 × 2π

�
, and (d) τ1 = 200 × 2π

�
and

τ2 = 10 × 2π

�
. (e) Enlarged area in (c) between the gray lines. (f)

Timing sequence as in (c) but with a larger Rabi frequency of � =
0.1�. When � is large, our analytical results as well as the ones with
the vector model will deviate from the numerical simulations.

and

QT
2 = 1 − exp

[
−

(
�2

�
+ iδ

)
τ2

]
.

The conventional CPT Ramsey fringe is mainly dominated
by QT

1 in Eq. (20). It increases with the preparation pulse
duration τ1 and decreases with the detection pulse duration
τ2. In Eq. (20) QT

2 increases with the detection pulse τ2,
which contributes a trend of slow variance, resulting in the
vertical asymmetry [18,35]. If the duration of the detection
pulse is sufficiently long, then the system is pumped back into
a new dark state, thereby reducing the interference fringes of
ρ33 at a specific time [36]. However, it should be mentioned
that we often integrate the entire pulse duration in practical
experiments. Consequently, the observed signal is a superpo-
sition of ρ33 at different times. As a result, there may still be
interference patterns if one observe the integrated signal in
experiments.

As a benchmark example, we examine the conventional
CPT Ramsey pulse sequence consisting of a preparation pulse
of duration τ1, a detection pulse of duration τ2, and the pulse
interval T = 500 × 2π

�
, as illustrated in Fig. 2(a). The Rabi
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frequency of the CPT pulse is � = 0.035�. For a detection
pulse duration of τ2 = 60 × 2π

�
, if the preparation pulse dura-

tion is short τ1 = 60 × 2π
�

, the CPT Ramsey spectrum contrast
is low, as shown in Fig. 2(b). The black solid line is the ana-
lytical result of Eq. (20), red squares are the results obtained
by the vector model [32], and blue circles are the numerical
results using Lindblad equations. As the preparation pulse
duration τ1 increases to τ1 = 200 × 2π

�
, the QT

1 of Eq. (20)
grows, improving the contrast of the CPT Ramsey fringe [see
Fig. 2(c)]. Meanwhile, reducing the detection pulse duration
to τ2 = 10 × 2π

�
further improves the contrast of the CPT

Ramsey fringe and the spectrum becomes vertically symmet-
ric, as shown in Fig. 2(d). As the period in frequency space
of QT

1 is 2π
T +τ2

, the linewidth of the CPT Ramsey spectrum

satisfies �ν = 1
2(T +τ2 ) . Thus, the CPT Ramsey with a long

dark time T can narrow the spectrum linewidth, which is
consistent with our common knowledge.

As shown in Fig. 2, the results of our analytical formula
perfectly match the ones obtained by the vector model [32].
Both the vector model and our analytical approach are based
on the adiabatic approximation, which remains valid when
the Rabi frequency is sufficiently smaller than the excited-
state decay rate. This condition can be observed in Fig. 2(e),
which falls within the range indicated by the gray lines in
Fig. 2(c). However, when the Rabi frequency gets larger, the
adiabatic approximation gradually becomes invalid. This can
be observed in Fig. 2(f), where a discrepancy appears between
the numerical results and the ones with our analytical formula
as well as the vector model.

For two-pulse cases, the vector model has served as a visual
framework for understanding and calculating the CPT pro-
cess, which can include the effect of a light shift originating
from the initial state. In this paper we mainly focus on how the
multiple CPT pulses affect the fluorescence spectrum. Thus
we choose for discussion an initial state that has no light
shift caused by population imbalance. In our approach, we
can deepen the understanding of the fluorescence results by
explicitly decomposing them into distinct components. Each
component is associated with specific CPT pulses, enabling
us to analyze the shape of the spectrum and evaluate the indi-
vidual impact of each CPT pulse. We will further discuss the
influence of multiple CPT pulses on the spectrum in Sec. III B.

2. Antisymmetric two-pulse CPT Ramsey
spectroscopy with a frequency jump

Usually, we need to perform two CPT Ramsey interfer-
ometry measurements with different frequencies and compare
their differences to obtain an antisymmetric error signal for
clock locking [23]. To achieve real-time antisymmetric spec-
tra, we can directly apply a frequency jump of �δ during the
dark time T or implement a change in phase �� = �2 − �1

for the detection pulse based on conventional CPT Ramsey
interferometry, as illustrated in Fig. 3(a). Here �1 and �2 are
the phases of the preparation pulse and detection pulse, re-
spectively. According to Eq. (14), the two-pulse CPT Ramsey
interference term becomes

Q = QT ′
1 + QT

2 , (21)

FIG. 3. Two-pulse CPT Ramsey interferometry with frequency
and phase shifts. (a) Timing sequence of Rabi frequency � and
detuning δ of two-pulse CPT Ramsey sequences with time T =
500 × 2π

�
. The amplitude of the Rabi frequency is 0.035�, τ1 and

τ2 are preparation and detection durations, respectively, and �δ and
�t = 100 × 2π

�
are the magnitude and duration of the frequency

jump, respectively. The �1 and �2 are the phases of preparation and
detection pulses, respectively. (b)–(d) The CPT Ramsey spectra of
the numerical simulation (blue circles) and the analytical formula
(black solid line) with τ1 = 1000 × 2π

�
, τ2 = 10 × 2π

�
, and (b) zero-

frequency jump �δ = 0 and �1 = �2, (c) frequency jump �δ = π/2
�t

and �1 = �2, and (d) zero-frequency jump �δ = 0, �1 = 0, and
�2 = − π

2 . (e) The CPT Ramsey spectra of the numerical simula-
tion (blue circles) and the analytical formula (black solid line) with
τ1 = 60 × 2π

�
, τ2 = 60 × 2π

�
, and a zero-frequency jump �δ = 0,

with �1 = 0 and �2 = − π

2 .

where

QT ′
1 = QT

1 exp(−i�δ�t + i��). (22)

As an example, we set τ1 = 1000 × 2π
�

, τ2 = 10 × 2π
�

, and
T = 500 × 2π

�
. When the two phases are equal, i.e., �1 = �2

and �� = 0, it reduces to the conventional CPT Ramsey
interferometry as shown in Fig. 3(b), while the spectra will
become horizontal antisymmetric if the frequency jump and
phase shift satisfy �δ�t − �� = π

2 , as shown in Figs. 3(c)
and 3(d). Then the real-time processing of error signals will
be obtained. In autobalance CPT Ramsey interferometry [29],
�� or �δ can be used as additional parameters to com-
pensate for the light shift. However, if τ1 = 60 × 2π

�
is short

and τ2 = 60 × 2π
�

is substantial, the error signals will not be

043721-5



FANG, HAN, LU, HUANG, AND LEE PHYSICAL REVIEW A 108, 043721 (2023)

horizontally antisymmetric as QT
2 is considerable compared

to QT ′
1 . This means that if the detection pulse duration is

comparable to the preparation pulse duration, the spectrum
will become horizontally asymmetric, as shown in Fig. 3(e).
The black solid lines are the analytical result of Eq. (21) and
the blue circles are the corresponding numerical results.

B. Multipulse sequence

In Sec. III A we analyzed conventional and frequency-
shifted two-pulse CPT Ramsey spectra using our analytical
formula. In this section we will analyze multipulse CPT Ram-
sey interferometry. With a multipulse sequence, the central
peak becomes obvious due to constructive interference while
the neighboring peaks are suppressed through destructive in-
terference. The multipulse CPT Ramsey interferometry makes
the central peak easy to identify. Thus, the multipulse se-
quence is useful for developing practical quantum sensors,
such as atomic clocks. However, for practical applications,
the multipulse CPT Ramsey interferometry involves multiple
pulses which need to be sophisticatedly tuned. Our analytical
formula provides a simple way to analyze and optimize the
pulse sequence as desired. We consider that the multipulse
CPT Ramsey interferometry starts with a preparation pulse τ1

to prepare the dark state, followed by N pulses of duration τ

with pulse interval T , as shown in Fig. 4(a). By using our ana-
lytical formula, below we analyze the roles of the preparation
pulse and periodic pulse sequence and provide an example to
achieve the antisymmetric spectrum with a frequency jump.

1. Influence of the preparation pulse

We consider the phases of all CPT pulses to be identical
and so we can set the phases as zero. According to Eq. (11),
the interference term

Q = QM
1 + QM

2 (23)

includes two parts

QM
1 = exp

(
−�2

�
Nτ

)

×
{

1 − exp

[
−

(
�2

�
+ iδ

)
τ1

]}

× exp[−iδN (T + τ )]

and

QM
2 =

N∑
i=1

exp

(
−�2

�
(N − i)τ

)

×
{

1 − exp

[
−

(
�2

�
+ iδ

)
τ

]}

× exp[−iδ(N − i)(T + τ )].

Here QM
1 is the fast oscillating term versus δ. Obviously,

the preparation pulse duration τ1 only affects QM
1 and QM

1
increases with τ1. Therefore, the amplitude of the spectrum
increases with the preparation pulse duration. As shown in
Figs. 4(b) and 4(c), the spectrum of multipulse CPT Ram-
sey interferometry with longer preparation pulse duration

FIG. 4. Multipulse CPT Ramsey interferometry. (a) Timing se-
quence of Rabi frequency � of multipulse CPT Ramsey sequences.
Here τ1 is the preparation pulse, T = 500 × 2π

�
is the dark time,

τ = 10 × 2π

�
is the pulse duration, and N is the pulse number. (b)–(e)

Multipulse CPT Ramsey spectra with (b) τ1 = 60 × 2π

�
and N = 8,

(c) τ1 = 200 × 2π

�
and N = 8, (d) τ1 = 60 × 2π

�
and N = 40, and (e)

τ1 = 200 × 2π

�
and N = 40.

τ1 = 200 × 2π
�

has a higher amplitude of the peaks than that
with a shorter preparation pulse τ1 = 60 × 2π

�
.

However, the subsequent CPT pulses also affect QM
1 . The

greater the number of or the longer subsequent CPT pulses
are, the smaller QM

1 is. Hence, when the number N or the
duration τ of the subsequent CPT pulses is large, the duration
of the preparation pulse τ1 has little impact on the spectrum.
As shown in Figs. 4(d) and 4(e), the preparation pulse has
little influence on the spectrum of multipulse CPT Ramsey
interferometry when the pulse number N is large.

2. Periodic pulse sequence

With a large pulse number N , the influence of the first
CPT pulse duration can be neglected. For simplicity, many
experiments use periodic multipulse sequences [23]. Under a
periodic CPT pulse sequence with interval T , pulse number N ,
pulse duration τ , and Rabi frequency �, according to Eq. (14)
we have

ρ12(δ) = f (δ)
N−1∑
l=0

Rl exp(−ilδT )T . (24)

This is a temporal analog to light passing through the Fabry-
Pérot resonator [26], in which R ≡ exp(−�2

�
τ ) takes the role

of the reflection coefficient and T ≡ 1 − exp[−( �2

�
+ iδ)τ ]
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FIG. 5. Linewidth of the multipulse CPT Ramsey spectrum.
(a) Linewidth W versus pulse number N . (b) Linewidth W versus
reflection coefficient R. (c) Numerical results of the FWHM versus
the pulse number N and the pulse duration τ with the Rabi fre-
quency � = 0.04�. (d) Numerical results of the FWHM versus the
pulse number N and the Rabi frequency � with the pulse duration
τ = 10 × 2π

�
.

corresponds to the transmission coefficient. Using the series
summation, Eq. (24) can be simplified as

ρ12(δ) = f (δ)T S, (25)

with

S = 1 − RN exp(−iNδT )

1 − R exp(−iδT )
. (26)

For multipulse CPT Ramsey interferometry, f (δ) and T are
flatter than S near the resonance point. The line shape of ρ12

is mainly described by S, as shown in Fig. 5. If the pulse num-
ber N → ∞, the FWHM 2π�ν∞ of �ρ12 is determined by
the reflection coefficient R and the pulse period Tp = T + τ ,
which is the Airy distribution [37],

2π�ν∞ = 4

Tp
arcsin

⎛
⎝

√
(1 − R)2

2(R2 + 1)

⎞
⎠. (27)

Equation (27) is valid in the saturation region of RN � 1.
For a finite pulse number, the FWHM of Eq. (25) cannot be

exactly given [38]. However, we can calculate the Lorentzian
linewidth through the Taylor expansion for 1

Re(S) ,

1

Re(S)
= F0 + 1

2
F2T 2

p δ2 + O(T 4δ4), (28)

with

F0 = 1 − R
1 − RN

(29)

and

F2 = R(1 + R)

(1 − R)(1 − RN )
− N2RN (1 − R) + 2NRN+1

(1 − RN )2
.

(30)
The real part of S can be approximated as the Lorentzian form

Re(S) ≈ S̃ = A

(
1
2W

)2

(
1
2W

)2 + δ2
. (31)

Here A = 1
F0

and W = 2
√

2
T

√
F0
F2

are the amplitude and FWHM

of S̃. Substituting Eqs. (29) and (30), we get that

W = 2

Tp

(
2(R2 + R)

(1 − R)2
− 2N2RN

1 − RN
− 4NRN+1

(1 − RN )(1 − R)

)−1/2

.

(32)
In Fig. 5(a) we show W versus the pulse number N , where W
decreases with the pulse number N . Intuitively, more pulses
will lead to a narrower linewidth. Since R decreases with both
τ and �, larger � and τ will result in a larger linewidth.
Larger values of � and τ means fewer pulses needed to
reach saturation and fewer pulses contributing to multipulse
interference and therefore the linewidth becomes broader. For
illustration, Fig. 5(c) shows the change of the FWHM with the
pulse number N and the pulse duration τ when � = 0.04�,
while Fig. 5(d) displays the change of the FWHM versus the
pulse number N and the Rabi frequency � when τ = 10 × 2π

�
.

3. Antisymmetric multipulse CPT Ramsey spectroscopy
with a frequency jump

As mentioned in Sec. III A 2, one may prefer to use an anti-
symmetric spectrum for frequency locking. In multipulse CPT
Ramsey interferometry, applying a frequency jump �δ for a
duration of �t before the kth subsequent pulse [as illustrated
in Fig. 6(a)], or introducing a phase jump ��, can alter the
spectrum horizontal symmetry to be antisymmetric. However,
how to determine pulse sequence with a frequency jump or
phase jump is still challenging. Here we use our analytical
formula to address this issue.

Taking the frequency jump and the phase jump before the
kth subsequent pulse, we can divide the interference term into
three parts

Q = QM′
1 + QM′

2 + QM′
3 , (33)

where

QM′
1 = exp

(
−�2

�
Nτ

){
1 − exp

[
−

(
�2

�
+ iδ

)
τ1

]}

× exp[−iδN (T + τ )] exp(−i�δ�t + i��),

QM′
2 =

k−1∑
i=1

exp

(
−�2

�
(N − i)τ

)

×
{

1 − exp

[
−

(
�2

�
+ iδ

)
τ

]}

× exp[−iδ(N − i)(T + τ )] exp(−i�δ�t + i��),
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FIG. 6. Multipulse CPT Ramsey interferometry with frequency
jump. (a) Timing sequence of Rabi frequency � with a frequency
jump applied right before the kth subsequent pulse. Here τ1 =
200 × 2π

�
is the preparation time; T = 500 × 2π

�
is the dark time;

τ = 10 × 2π

�
and N = 40 are the duration and number of applied pe-

riodic pulses, respectively; and �ν = 0.0025� and �t = 100 × 2π

�

are the magnitude and duration of the frequency jump, respectively.
The multipulse CPT Ramsey spectra with the frequency jump happen
(b) right after the preparation pulse τ1, (c) right before the last tenth
pulse, (d) right before the last third pulse, and (e) right before the last
pulse.

and

QM′
3 =

N∑
i=k

exp

(
−�2

�
(N − i)τ

)

×
{

1 − exp

[
−

(
�2

�
+ iδ

)
τ

]}

× exp[−iδ(N − i)(T + τ )].

The frequency jump �δ affects the horizontal symmetry of
QM′

1 and QM′
2 , but QM′

3 remains horizontally symmetric. If the
frequency jump satisfies �δ�t = π/2, it will adjust QM′

1 and
QM′

2 from symmetric to antisymmetric in the horizontal di-
rection. To obtain a horizontally antisymmetric spectrum, the
contribution of the horizontally symmetric term QM′

3 should
be small. Thus, it is a natural choice to apply a frequency
jump right before the last pulse to suppress QM′

3 . In Figs. 6(b)–
6(e) we apply the frequency jump with �δ�t = π/2 after
the preparation pulse τ1, before the last tenth pulse, before
the last third pulse, and before the last pulse, respectively.

The preparation pulse is τ1 = 200 × 2π
�

and the pulse in-
terval is T = 500 × 2π

�
. The duration τ = 10 × 2π

�
and the

pulse number N = 40. Clearly, with the delay of the fre-
quency jump, QM′

3 decreases and the spectrum tends to
become antisymmetric. Thus, our analytic analysis can pro-
vide a straightforward way to design the multipulse sequence
for CPT Ramsey interferometry, which should be beneficial
for developing high-accuracy schemes such as autobalanced
Ramsey spectroscopy [28–30].

IV. LIGHT SHIFT IN CPT RAMSEY INTERFEROMETRY

In practice, various sources may cause a frequency shift
in CPT Ramsey interferometry, such as the asymmetry shift
caused by the population difference between the ground states
[32,39] and the Stark shift induced by the laser light [21].
Equation (14) considers the situation where the populations
of the two ground states are equal so that there is no fre-
quency shift caused by the ground-state population difference.
In general, this situation is commonly satisfied when a long
preparation pulse is applied, allowing the initial state in the
equal superposition of two ground states.

When laser light interacts with atoms, it induces the ac
Stark light shift of the transition from the ground state |i〉 to
the excited state | j〉, which can be simply calculated as

Si j = 1

4

�2
i jδi j

δ2
i j + �2

i j/4
, (34)

where �i j , δi j , and �i j denote the Rabi frequency, the de-
tuning of the |i〉 to | j〉 transition, and the decay rate of | j〉,
respectively. To examine the impact of the light shift on CPT
Ramsey interference, we take the case discussed in Ref. [21]
as an example.

As shown in Fig. 7(a), the system consists of two ground
states, represented by |1〉 and |2〉, with a frequency differ-
ence of fS = 2000 × 2π

�
. Additionally, there are two excited

states, denoted by |3〉 and |4〉, with a frequency difference of
fP = 200 × 2π

�
. The decay rate of both excited states is �.

Furthermore, the detunings of the laser’s first-order sidebands
that couple the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are ± δ

2 ,
respectively. The gray histogram in Fig. 7(b) represent the
light intensity distribution of laser sidebands emitted from
a fictitious vertical-cavity surface-emitting laser (VCSEL) in
the nth-order range from −3 to 3. The Rabi frequencies
of the nth-order sidebands, denoted by �(n), can be ex-
pressed in terms of the square root of the light intensity.
In this case, the specific values of the Rabi frequencies are
�(0) = 0.38�, �(±1) = �, �(±2) = 0.73�, and �(±3) =
0.42�. The light intensity ratio corresponds to the square
of Rabi frequencies, which is �(0):�(±1):�(±2):�(±3) =
0.04:0.28:0.15:0.05, as shown in the statistical histogram of
Fig. 3(b). Higher-order sidebands are typically disregarded
because their intensity decreases as the order n increases, and
their detuning from the absorption line also increases with
higher n [21]. The detuning δi j (n) of the transition |i〉 ↔ | j〉
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FIG. 7. Light shift of CPT Ramsey interference. (a) The system
consists of two ground states, represented by |1〉 and |2〉, with a
frequency difference of fS , and two excited states, denoted by |3〉 and
|4〉, with a frequency difference of fP. The decay rate of both excited
states is �. The detuning of the laser’s first-order sidebands that
couple the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are ± δ

2 , respectively.
(b) Statistical histogram representing the light intensity distribution
of the laser sidebands emitted from a VCSEL. With this configura-
tion, the laser induces the cw light shift of |1〉 ↔ |3〉 and |2〉 ↔ |3〉,
denoted by Scw1 and Scw2 respectively; Scw = Scw2 − Scw1 is the
Raman light shift as in Ref. [21]. (c) Light shift of two-pulse CPT
Ramsey interference with squared Rabi frequency �2 for prepara-
tion pulse τ1 = 3000 × 2π

�
, free evolution time T = 3000 × 2π

�
, and

different detection pulse length τ2. The detuning δ has a light shift of
Scw during the light pulse. (d) Light shift of multipulse CPT Ramsey
interference versus squared Rabi frequency �2 for preparation pulse
τ1 = 3000 × 2π

�
, free evolution T = 3000 × 2π

�
, different periodic

pulse length τ , and pulse number N = 8. The lines represent the
analytical results and dots represent the numerical results. The results
with τ2 = 10 × 2π

�
and τ2 = 20 × 2π

�
are represented by blue circles

and black pentagons, respectively.

interacting with the nth-order sideband can be calculated as

δ13(n) = δ

2
+ fS

2
(n − 1),

δ14(n) = δ13(n) + fF ,

δ23(n) = − δ

2
+ fS

2
(n + 1),

δ24(n) = δ23(n) + fF .

(35)

Under this configuration, the energy levels |1〉, |2〉, and |3〉
form a three-level � system, as shown in Fig. 1(a). The laser
light will induce the ac Stark shift in the detunings δ1 and
δ2 associated with the energy level transitions |1〉 ↔ |3〉 and

|2〉 ↔ |3〉, respectively, that is,

δ1 = δ

2
+ Scw1

(
δ

2
,�

)
,

δ2 = − δ

2
+ Scw2

(
δ

2
,�

)
,

(36)

where Scw1 and Scw2 are the continuous-wave (cw) light shift,
which can be calculated as

Scw1 =
3∑

n=−3

1

4

�2(n)δ13(n)

δ2
13(n) + �2/4

+ 1

4

�2(n)δ14(n)

δ2
14(n) + �2/4

,

Scw2 =
3∑

n=−3

1

4

�2(n)δ23(n)

δ2
23(n) + �2/4

+ 1

4

�2(n)δ24(n)

δ2
24(n) + �2/4

.

(37)

The cw light shift of the Raman transition is Scw = Scw2 −
Scw1. During the light pulse, the detuning has a cw light shift
of Scw that increases linearly with increasing light intensity or
the square of the Rabi frequency �2 [see Fig. 7(b)]. According
to Eq. (14), the density matrix element ρ12 can be expressed
as

ρ12(�, δ) = f (�, δ − Scw)
N∑

l=1

⎡
⎣ N∏

k=l+1

exp

(
−�2

�
τk

)⎤
⎦

×
{

1 − exp

[
−

(
�2

�
+ i(δ − Scw)

)
τl

]}

× exp

⎛
⎝−iδ(t − tl − τl ) + iScw

N∑
k=l+1

τk

⎞
⎠.

(38)
Then we can calculate ρ33 and obtain the light shift of ρ33, S ,
by using the equation [40]

S = ρ33(�,−δh) − ρ33(�, δh)

2 ∂ρ33

∂δ
(�, δh)

, (39)

where ±δh are symmetric points around the line center that
are near half maximum.

We consider the sequence as shown in Fig. 7(c). The
preparation pulse τ1 = 3000 × 2π

�
, the free evolution time

T = 3000 × 2π
�

, and detection pulse τ2. Then the ρ12 can be
written as

ρ12(�, δ) = f (�, δ − Scw)
(
QS

1 + QS
2

)
, (40)

where

QS
1 = R̃(�, τ2)T̃ (δ,�, τ1)

× exp

[
−i

(
δ − τ2Scw

T + τ2

)
(T + τ2)

]

and

QS
2 = T̃ (δ,�, τ2).

Here we define the variable reflection coefficient R̃(�, t ) =
exp(−�2

�
t ) and transmission coefficient T̃ (δ,�, t ) = 1 −

exp{−[�2

�
+ i(δ − Scw)]t}.

From the observation of Fig. 7(c), it becomes evident that
the analytical solution (represented by lines) closely matches
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the numerical results (depicted by dots) when the Rabi fre-
quency is sufficiently small. This implies that the coupling
light field is weak and the adiabatic approximation remains
valid. To analyze the light shift S , we first refer to a conclusion
discussed in the Appendix: The overall shift of a function is
primarily determined by the shifts of the multiplicative terms
exhibiting rapid variation or by the sum of terms with a large
derivative. In Eq. (40) the multiplicative envelope function
f (�, δ − Scw) demonstrates a slow variation with respect to
δ. Therefore, the light shift S is predominantly influenced by
QS

1 + QS
2, because it exhibit a more rapid rate of variation. Si-

multaneously, when τ2 is significantly small and τ1 is notably
large, QS

2 becomes substantially less than QS
1. Additionally,

QS
1 incorporates a long phase integration time T + τ2, which

results in a larger derivative than QS
2. As a result, the pri-

mary contribution to the light shift S is attributed to QS
1. The

term QS
1 includes a multiplicative component referred to as

the transmission coefficient T̃ (δ,�, τ1). When the prepara-
tion pulse τ1 is sufficiently long, the transmission coefficient
T̃ (δ,�, τ1) tends towards 1. Under such circumstances, the
shift of QS

1 can be approximated as τ2Scw
T +τ2

. Therefore, the CPT
Ramsey interference light shift S is predominantly influenced
by QS

1 and is suppressed relative to the cw light shift Scw,
as indicated in Fig. 7(b), and is dependent on T . The CPT
Ramsey interference light shift S tends to decrease as the
length of the detection pulse τ2 becomes shorter. However,
when the Rabi frequency � is sufficiently small, such that
the QS

1 is not significantly larger than QS
2, the influence of

QS
2 and the envelope term f (�, δ − Scw) on the light shift

S increases. In such a scenario, Ramsey interference cannot
entirely suppress the light shift S , causing the light shift S to
increase rapidly with the square of the Rabi frequency �2.

Furthermore, the analytical results can be extended to the
case of multipulse CPT Ramsey interference. As an exam-
ple, the sequence setup includes a preparation pulse with a
duration of τ1 = 3000 × 2π

�
, followed by a series of periodic

pulses [see Fig. 7(d)]. These periodic pulses have a free evo-
lution time of T = 3000 × 2π

�
and a pulse length of τ with a

total number of pulses N = 8. The ρ12 can be written as

ρ12(�, δ) = f (�, δ − Scw)
(
QS′

1 + QS′
2 + QS′

3

)
, (41)

with

QS′
1 = R̃N (�, τ )T̃ (δ,�, τ1)

× exp

[
−iN

(
δ − τScw

(T + τ )

)
(T + τ )

]
,

QS′
2 =

N−1∑
l=1

R̃N−l (�, τ )T̃ (δ,�, τ )

× exp

[
−i(N − l )

(
δ − τScw

(T + τ )

)
(T + τ )

]
,

and

QS′
3 = R̃(�, τ )T̃ (δ,�, τ ).

Similar to the two-pulse CPT Ramsey interference case, the
overall shift S is dominated by QS′

2 . Though the multiplica-
tive component T̃ (δ,�, τ ) is present within QS′

2 , due to the

small value of τ , it varies slowly with δ. Therefore, the shift
of QS′

2 is mainly influenced by the remaining multiplicative
components. Thus, we can estimate the shift of QS′

2 as τScw
T +τ2

.
However, in multipulse CPT Ramsey interference, when the
Rabi frequency is tiny, the multipulse interference sharpens
the shape of QS′

2 , leading to a faster variation rate and large
derivative. Consequently, the shift of QS′

2 will also contribute
significantly to the overall light shift S and reduce its value.
As illustrated in Fig. 7(d), when the Rabi frequency is tiny, for
example, �2 < 0.005�2, the multipulse interference will sup-
press the light shift S compared with two-pulse CPT Ramsey
interference with the same T and τ2.

Finally, it is also important to note that the operations of
multiple pulses can also introduce new noises, which is not
explicitly considered in our model. Here the shift of the fringe
is supposed to occur ideally only due to a change in the
difference frequency of the Raman pulses. Taking the CPT
atomic clock as an example, the addition of these extraneous
steps would cause new sources of error that would worsen the
clock performance significantly. In contrast, for a CPT-based
magnetometer, the primary source of shift may be the varia-
tion of the magnetic field. The shifts caused by these realistic
factors are not included in our theoretical analysis. By utiliz-
ing techniques of quantum control [28,29], some parameters
can be adjusted in a feedback loop to compensate for these
shifts and minimize the effects of noise in the experiments.

V. DISCUSSION

In conclusion, starting from the Lindblad equation, we
derived an analytical formula to describe multipulse CPT
Ramsey interferometry with an arbitrary pulse sequence. The
analytical formula can potentially optimize the pulse sequence
and help us analyze the influence of time-dependent detuning.
We illustrated the validity of the analytical result with the
popular CPT Ramsey scenarios and explained the influence
of the CPT pulse on the spectral line shape, FWHM, and light
shift.

For two-pulse CPT Ramsey interferometry, we studied
the influence of the preparation and the detection pulse. We
quantitatively showed that the preparation pulse should be
as long as possible to gain a larger spectrum amplitude and
the detection pulse should be small to avoid destroying the
CPT coherence. The frequency or phase jump will change
the spectrum symmetry. The analytical results showed that a
long preparation pulse and a small detection pulse are required
to obtain the antisymmetric spectrum. For multipulse cases,
the role of preparation pulses becomes less significant as the
number of subsequent pulses increases. As the number of
pulses increases, the side peaks are continuously destroyed by
interference, and we obtained a high-contrast central peak. By
adding a frequency or phase jump right before the last pulse,
we obtained an antisymmetric multipulse CPT Ramsey spec-
trum. Our theoretical results can be applied to design novel
multipulse and frequency-modulated CPT Ramsey schemes.
Under the condition of the period pulse sequence, one can
find the approximate Lorentzian line shape for the spec-
trum and determine the relationship between the FWHM and
the parameters of the CPT pulse sequence. Thus using our
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analytical formula, one can quantitatively understand the role
of multiple pulses.

For multipulse and frequency-regulated CPT Ramsey inter-
ferometry, there are many potential applications such as a CPT
clock and CPT magnetometers. Effective optimization meth-
ods are conducive to efficiently improving the measurement
accuracy. In this study we considered the initial state to be
equally populated in both ground states and thus the light shift
is mainly induced by additional levels and laser sidebands.
For this kind of light shift, we discussed the corresponding
influences analytically, while for the light shift caused by the
initial imbalanced population, one can perform the simula-
tions based on the vector model [32], which deserve further
investigation.
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APPENDIX

In this Appendix we show how to analyze the shift of
a spectrum. Specifically, our approach involves explicit de-
composition of the spectrum into distinct components. Our
goal here is to investigate how different components (both
multiplicative and additive) have an impact on the shift of
the spectrum. Finally, we will proceed to analyze the primary
contributor of the light shift.

Let us consider an even function

F (x) = A(x)B(x), (A1)

where both multiplicative components A(x) and B(x) are also
even functions. We introduce shifts SA and SB to functions
A(x) and B(x), respectively, leading to new functions

Ã(x) = A(x − SA) (A2)

and

B̃(x) = B(x − SB). (A3)

Subsequently, the product of the transformed functions Ã(x)
and B̃(x) is defined as F̃ (x) = Ã(x)B̃(x). Compared to the
original function F (x), F̃ (x) exhibits a shift SF . This relation-
ship can be expressed as

F̃ (x) = F (x − SF ). (A4)

Referring to Eq. (39), the shift SF can be calculated as fol-
lows:

[F̃ (−xh) − F̃ (xh)]

/(
2
∂F̃

∂x
(xh)

)

≈ F (−xh) − SF
∂F
∂x (−xh) − F (xh) + SF

∂F
∂x (xh)

2 ∂F
∂x (xh)

= SF . (A5)

In this equation ±xh are symmetric points around the center,
which are near the half maximum of F̃ (x). The calculation
employs the fact that for an even function, F (xh) = F (−xh)
and ∂F

∂x (xh) = − ∂F
∂x (xh). Given that the shift SF is small, it

allows the approximation ∂F̃
∂x (xh) ≈ ∂F

∂x (xh).
We replace F̃ (x) with Ã(x)B̃(x) in Eq. (A5). Given that

both A(x) and B(x) are even functions and considering that
the shifts SA and SB are small, we can approximate ∂Ã

∂x (xh) ≈
∂A
∂x (xh) and ∂B̃

∂x (xh) ≈ ∂B
∂x (xh). With these assumptions, we will

proceed with the calculation of the shift as follows:

SF =
∂A
∂x (xh)SA + A(xh )

B(xh )
∂B
∂x (xh)SB

∂A
∂x (xh) + A(xh )

B(xh )
∂B
∂x (xh)

. (A6)

The SF is the weighted average of SA and SB, with weights
of ∂A

∂x (xh) and A(xh )
B(xh )

∂B
∂x (xh), respectively. The former refers to

the rate at which A changes with respect to x at xh, while the
latter signifies the rate at which B changes with respect to x at
xh when aligned to the same scale as A. This implies that the
shifts of multiplicative components with a rapid variation rate
will predominantly determine the overall shift. For instance, in
Eq. (40), the multiplicative component QS

1 + QS
2 will exhibit a

more rapid variation rate than f (�, δ − Scw), thereby exerting
a dominant influence on the overall shift.

We can also contemplate the function B(x) as a summation
of multiple terms expressed as

B(x) =
∑

i

Bi(x), (A7)

where each Bi(x) is an even function. When we introduce
shifts SBi to each function Bi(x), we get new functions defined
as

B̃i(x) = Bi(x − SBi ), (A8)

which constitute the components of B̃(x):

B̃(x) =
∑

i

B̃i(x). (A9)

We can then calculate the relationship between SB and SBi

using Eq. (39),

SB =
∑

i
∂Bi
∂x (xh)SBi∑
i

∂Bi
∂x (xh)

. (A10)

This calculation is based on the fact that each Bi(x) is an even
function and the shift is small such that ∂B̃i

∂x (xh) ≈ ∂Bi
∂x (xh).

This suggests that components with a large derivative will
primarily influence the total shift. For instance, in Eq. (40),
the derivative of QS

1 is larger than that of QS
2, thereby causing

QS
1 to have a dominant influence on the overall shift.
Thus, the overall shift of a function is predominantly de-

termined by the shift of multiplicative terms that vary rapidly
or the summative term with a large derivative, which can be
analytically calculated according to the pulse sequences.
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