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Nonlocality of the energy density for all single-photon states
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The nonlocality of single-photon states has been analyzed from several different but interrelated perspectives.
In this article we propose a demonstration based on the electromagnetic energy density observable and on
the antilocal property of the frequency operator � = c(−�)1/2. The present proof is based on the standard
quantization of the electromagnetic field, which can be formulated equivalently in the momentum representations
or in the position representations of Landau and Peierls [Z. Phys. 62, 188 (1930)] and of Białynicki-Birula
[edited by E. Wolf (Elsevier, Amsterdam, 1996)]. Our proof extends to all single-photon states the results
of Białynicki-Birula, which were formulated for two particular classes of states, those involving a uniform
localization [Phys. Rev. Lett. 80, 5247 (1998)] or alternatively states that are electrically or magnetically
localized [Phys. Rev. A 79, 032112 (2009)]. Our approach is formulated in terms of Knight’s definition of
strict localization [J. Math. Phys. 2, 459 (1961)], based on the comparison of expectation values of single-photon
states of local observables with those of the vacuum.
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I. INTRODUCTION

Localization of photons, together with the existence of
a position operator and consequently of a position wave
function for photons, has maintained a vivid debate in the
physics community since the early days of quantum mechan-
ics [1–16]. The question of the spatial localization of bosons
in quantum field theory has followed several different but
interrelated lines.

One line is based on a definition of strictly localized
states formulated by Knight [3]. He showed that for states
composed of a finite number of quanta, a class of space-
and time-dependent correlation functions of the Klein-Gordon
field cannot be zero anywhere. Only states involving the su-
perposition of infinitely many quanta, e.g., coherent states,
can be spatially localized. This result was reformulated and
extended by De Bièvre [17,18] in terms of expectation values
of Weyl unitary operators. In these type of approaches the
main property that leads to nonlocality is the antilocal prop-
erty of the frequency operator [19–21], defined as the unique
positive self-adjoint operator such that its square is minus
the Laplacian: � = c(−�)1/2. Antilocality means that if for
some square-integrable field �v(�x) both �v = 0 and ��v = 0 in
some finite volume, then �v = 0 everywhere in R3. In [4,5],
following the results of Knight, Licht characterized the whole
set of strictly localized states by showing that they can be
obtained by applying a partial isometry Ŵ †Ŵ = 1 on the
vacuum Ŵ †|∅〉.

Białynicki-Birula showed that for two particular classes
of single-photon states, the expectation value of the energy
density cannot be zero in any finite volume. The two classes
considered are states with a spherically uniform support [22]
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and states having either a magnetic or an electric localiza-
tion property, defined in [23]. The argument in [22] was
constructed using the Paley-Wiener theorem [24]: Single pho-
tons with an exponential radial falloff of the form exp(−Ar),
A > 0, cannot exist, but weaker falloffs are allowed. An ex-
ample corresponding to a falloff of the form exp(−A

√
r) was

given. In general, in order to fulfill the constraint from the
Paley-Wiener theorem, a quasiexponential localization is pos-
sible with a falloff exp(−Arγ ), where γ < 1. The advantage
of the argument of [22] is that it provides a localization limit
and gives a concrete example of a solution of Maxwell’s equa-
tions approaching that limit. In [23] the authors introduced the
notions of electrically and magnetically localized states and,
using a proof of the nonlocality of the helicity operator � (see
Appendix A), they showed that electrically or magnetically
localized states cannot be local if one uses the energy density
observable. The interest of the formulation of localization in
terms of the expectation value of the energy density is that it is
an observable that can be measured in current quantum optics
experiments using, e.g., superconducting nanowire detectors
[25]. We show in Appendix B that Knight’s theorem does not
imply the results on the energy density since it does not apply
to equal-time correlation functions. The goal of the present
article is to extend the results of Białynicki-Birula et al. to all
single-photon states.

We also mention [26,27], where it was shown that there
exist cylindrical functions for which a Gaussian falloff
is possible in the waist plane only, making the localiza-
tion stronger than the exponential limit shown in [22].
More recently in [28–30], some classes of strictly local-
ized states were constructed (that are not single-photon
states) so that they approach single-photon states as close as
possible.

Following the experimental development of on-demand
single-photon sources [31–36], one can ask how it is
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possible to produce single photons in a controlled way without
contradicting causality or how close experimentally produced
photons can be to perfect single-photon states. Similar ques-
tions concerning spontaneous emission have been addressed
in [37,38]. A precise analysis of these experiments can pro-
vide a test of whether the nonlocality predicted by the standard
quantization is actually realized in experiments. As stated,
e.g., in [28], the answer can be expected to be that, in
fact, those sources produce states that contain an infinity of
multiphoton components (similar but different from coherent
sates) that yield local energy densities, thus avoiding any con-
flict with causality. The presence of multiphoton components
could in principle be tested in experiments, although one can
expect that the multiphoton components will be quite small
and will depend on the type of source considered.

In a second line, Hegerfeldt [6,7,39,40] established some
general properties of bosons: For states containing exclusively
positive energies, if the state function has a finite support at a
given time, the time evolution will spread it over all space at
any later times (see also [41]). In a later work, concerning
causality in Fermi’s two-atom model [40], he showed that
for positive bounded observables 0 � Ô � 1, the expectation
value 〈ψ (t )|Ô|ψ (t )〉 is either nonzero for almost all t or iden-
tically zero for all t . This opens the question of compatibility
with Einstein causality. Some recent works have explored the
possibility of constructing variations of quantum field theory
involving negative-energy states that could avoid Hegerfeldt’s
nonlocality [42–45]. A link between the positivity of ener-
gies and the antilocality of the frequency operator � can be
described as follows: The frequency operator can be defined
as the square root of minus the Laplacian because −� is a
positive operator, which is the reason why the energies are all
positive in the Coulomb gauge quantization of the electromag-
netic field.

In the present article we consider the standard quanti-
zation of the electromagnetic field in Fock space with a
positive-energy spectrum, which is most often formulated in
a momentum representation [46,47]. As it was shown in [48],
it can be formulated equivalently in two position representa-
tions: the Landau-Peierls (LP) [1] and the Białynicki-Birula
(BB) [11] representations. The equivalence of these quantiza-
tions is formulated in terms of isomorphisms of the Hilbert
spaces with their corresponding scalar products [48]. An ad-
vantage of the BB representation is that it is Lorentz covariant
and independent of a choice of gauge, since it is formulated
directly in terms of the electric and the magnetic fields. All our
results are formulated in the Schrödinger representation but
they do not involve at all the time evolution. The nonlocality
of the expectation value of the energy density is proven at any
fixed time, for all single-photon states. It is not created by the
time evolution. This is an important difference from the works
of Knight and Hegerfeldt.

We recall the definition of a localized state that we will
use as formulated by Knight [3]: It is a state which cannot
be detected by any means, outside its volume of localization,
i.e., for any local observable, a localized state will give the
same expectation value as the vacuum state, outside its volume
of localization. For example, let |ϕ〉 be a spatially localized
state in a volume Vs and Ô(Vd) a local observable which can
probe the state |ϕ〉 over a volume Vd. Since |ϕ〉 is localized,

Non-localized state

General state Localized state

(b ii)

(b i)

FIG. 1. Sketch illustrating Knight’s definition of a localized
state. We consider a state |ϕ〉 with an associated localization volume
Vs and a detector Ô(Vd) with finite volume Vd, which probes the state.
Two situations can occur: (a) a general state where Vd ∩ Vs �= ∅ and
the expectation value of Ô(Vd) is not equal to that of the vacuum or
(b i) a localized state where Vd ∩ Vs = ∅ and the expectation value
of Ô(Vd) is equal to that of the vacuum for all observables Ô. This
means that the state cannot be “seen” outside its volume of local-
ization by any localized detector. (b ii) A state is considered to be
nonlocalized if it can be probed outside its apparent volume of local-
ization by some observable Ô(Vd ), i.e., 〈ϕ|Ô(Vd)|ϕ〉 �= 〈∅|Ô(Vd)|∅〉
for Vd ∩ Vs = ∅. In general, this means that for such extended states,
there is no Vs satisfying (a) and (b i) for any Ô(Vd).

the expectation value of Ô(Vd) can give the following results
[illustrated in Figs. 1(a) and 1(b i)]:

(i) 〈ϕ|Ô(Vd)|ϕ〉 = 〈∅|Ô(Vd)|∅〉 for Vd ∩ Vs = ∅
(ii) 〈ϕ|Ô(Vd)|ϕ〉 �= 〈∅|Ô(Vd)|∅〉 for Vd ∩ Vs �= ∅.

The contraposition implies that a nonlocalized state is a state
for which there exists at least one local observable whose
expectation value is not equal to that of the vacuum at at least
one point outside the volume of localization [Fig. 1(b)].

In this article we will provide a demonstration of the
nonlocalization of any single-photon state, based on the mea-
surement of the mean value of the local energy density in
any finite volume. It is inspired by the pioneering works
of Białynicki-Birula and Białynicki-Birula [22,23] and the
antilocal property of the frequency operator � [19–21] (see
Appendixes A and D). Another important operator that will
be used in the following is the helicity operator � [23,48], de-
fined by c∇× = �� = �� (see Appendix A). Its spectrum
for transverse fields is {±1} and it allows us to decompose
any transverse field �v into its positive- and negative-helicity
parts �v = �v (h+) + �v (h−), where �v (h±) = (1 ± �)�v/2 and
��v (h±) = ±�v (h±).

The article is structured as follows. We first recall how one
can describe single-photon states using position space repre-
sentations. We then discuss the notion of a local observable
and explain why the energy density is relevant in the context
of local detection of single photons. We finally formulate our
proof of the nonlocality of photons and illustrate it with some
examples.

II. REPRESENTATION OF A GENERAL
SINGLE-PHOTON STATE

In the quantum optics literature [46–50], photons are of-
ten constructed using plane waves, which are not adapted
to discuss their localization in position space. To overcome
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this issue, one can construct wave packets from the general
plane-wave decomposition [46,47,49] or directly quantize the
field using pulses of arbitrary shapes [11,17,18,22,48,50–52].
In this article we will follow the latter choice, and taking
advantage of the result shown in [48], we can switch back
and forth between two equivalent position representations
of the quantum theory. The first one, called the Landau-
Peierls representation [1,48,50], is quite close to the standard
plane-wave quantization since it also takes the electric field
and the vector potential as canonical variables, but in position
space. The second one is what we call the Białynicki-Birula
representation [11,22,48,51], which takes as canonical vari-
ables the electric and magnetic fields.

The LP representation is based on the complex field

�ψ (�x) =
√

ε0

2h̄
[�1/2 �A(�x) − i�−1/2 �E (�x)], (1)

where �±1/2 are self-adjoint operators constructed from the
frequency operator introduced before (see Appendix A), �A is
the vector potential in the Coulomb gauge, and �x ∈ R3. The
LP field is an element of the Hilbert space of square-integrable
functions from which we can construct a Fock space of states
and annihilation and creation operators directly on arbitrary
pulse-shaped functions [48,50]

B̂ �ψ |∅〉 = 0, (2a)

B̂†
�ψ |∅〉 = | �ψ〉, (2b)

satisfying the general bosonic commutation relations [47,49]

[B̂ �ψ, B̂†
�ψ ′ ] = 〈 �ψ | �ψ ′〉LP =

∫
R3

d3x �ψ	 · �ψ ′. (3)

The state | �ψ〉 constructed in (2) represents a single-photon
state carried by the classical pulse-shaped field �ψ . Its quan-
tum dynamics is determined by the classical dynamics of the
classical pulse (see [50], Appendix B) according to

| �ψ (t )〉 = B̂†
�ψ (t )

|∅〉, (4)

where �ψ (t ) is a solution of the following complex representa-
tion of Maxwell’s equations:

i
∂ �ψ
∂t

= � �ψ, (5a)

∇ · �ψ (t ) = 0. (5b)

This formulation of the quantum theory is related to
the standard quantization using plane waves through the
isomorphism which transforms �ψ in the momentum space
representation z(�k, σ ),

�ψ (�x) =
∫
R3

d3k
∑
σ=±

�φ�k,σ
(�x)z(�k, σ ), (6a)

z(�k, σ ) =
∫
R3

d3x �φ	
�k,σ

(�x) · �ψ (�x), (6b)

where �φ�k,σ
are the plane waves of wave vector �k and polariza-

tion σ (see Appendix A). Creation and annihilation operators
can thus be developed on the plane-wave basis

B̂†
�ψ =

∫
R3

d3k
∑
σ=±

z(�k, σ )B̂†
�φ�k,σ

, (7a)

B̂ �ψ =
∫
R3

d3k
∑
σ=±

z	(�k, σ )B̂ �φ�k,σ
, (7b)

where B̂†
�φ�k,σ

and B̂ �φ�k,σ
are the plane-wave creation and anni-

hilation operators, respectively, in the position representation,
i.e., the analogs of the standard â†

�k,σ
and â�k,σ

in momentum
space [46,47,49].

The BB representation can be constructed from the LP
representation using the isomorphism I [48] as

�F = I �ψ = i
√

h̄�1/2 �ψ. (8)

Expressed in terms of the real electromagnetic variables, it
takes the form

�F =
√

ε0

2
( �E + ic� �B), (9)

where we have used the relation � = c�∇× (see
Appendix A) and the definition of the vector potential
∇ × �A = �B. The BB vector �F is related to the Riemann-
Silberstein vector �FRS = √

ε0( �E + ic �B)/
√

2 through the
helicity decomposition

�F (h+) = �F (h+)
RS , �F (h−) = ( �F (h−)

RS

)	
. (10)

The construction of creation and annihilation operators for the
BB representation is directly given by the isomorphism I,

Ĉ �F = IB̂ �ψI−1, Ĉ†
�F = IB̂†

�ψI
−1. (11)

They satisfy the commutation relation

[Ĉ �F , Ĉ†
�F ′] = 〈 �F | �F ′〉BB =

∫
R3

d3x �F 	 · �−1 �F ′. (12)

We have used another letter to refer to the creation and anni-
hilation operators in the BB representation to emphasize that
they do not act on the same Hilbert space [48], as one can
see with the two different scalar products in the commutation
relations (3) and (12), defining two Hilbert spaces

HLP = { �ψ | ∇ · �ψ = 0, 〈 �ψ | �ψ ′〉LP < ∞}, (13a)

HBB = { �F | ∇ · �F = 0, 〈 �F | �F ′〉BB < ∞}. (13b)

The BB scalar product (12) has the advantage that it is
Lorentz invariant, and thus the BB representation is Lorentz
covariant. Furthermore, it does not involve the choice of a
gauge since the fields are expressed directly in terms of the
electric and magnetic fields.

III. DETECTION MODEL: LOCAL ENERGY OBSERVABLE

We remark that in the quantum field theory of the
electromagnetic field, the localization properties cannot
be established by looking only at the spatial properties of the
state functions. One has to consider the joint representation
of the states and the local observables. This can be done by
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considering, e.g., mean values or correlation functions. The
fact that the LP spatial properties do not correspond to the
physically measurable properties had already been stated by
Pauli [53]; we will give an explicit example of this particular-
ity in Sec. V.

To show the nonlocality of single-photon states, it is
enough to find one particular local observable for which
Knight’s localization criterion does not hold. An operator
is said to be a local observable if it represents a physical
measurement which can be made with an instrument well
localized in space. Here �̂E (�x) and �̂B(�x) are local since in
practice they can be measured by instruments involving, e.g.,
localized charged particles or magnetic moments and thus
possibly designed as small as required. Any operator that can
be written as a pointwise function of �̂E (�x) and �̂B(�x) is also
considered to be a local observable.

In this section we introduce the local observable of the
energy density that we will use to show the nonlocality and
which can represent some actual detectors. It was defined in
[22] as

Êem(�x) = ε0

2
:[ �̂E2(�x) + c2 �̂B2(�x)]:, (14)

where : · : stands for the normal ordering.
If one considers an experimental setup close to what is

done in [54], the photons that are produced are “long,” i.e.,
carried by a pulse with a slowly varying envelope. Con-
sequently, the associated pulse described in space is much
bigger than any actual detector. This means that the detector
can probe the photon field only partially, without “seeing”
the full state at the same time: Vs  Vd. Moreover, there
exist efficient single-photon detectors, e.g., superconducting
nanowires [25], that are sensitive to the electromagnetic en-
ergy. Those detectors are prepared at a temperature that is
slightly below the critical temperature Tc of the superconduct-
ing nanowire, so it has no resistance. When a photon triggers
the detector, there is a local absorption of energy, heating up
the detector above Tc and yielding a measurable resistance that
signals the detection of a photon.

What is measured in such experiments can thus be modeled
by the local energy density Êem(�x) integrated over the volume
of the detector Vd, i.e.,

ÊVd =
∫
Vd

d3x Êem(�x). (15)

The expectation value of the energy density operator for a
general single-photon state in the LP representation, |1ph〉 =
B̂†

�ψ |∅〉 for any �ψ ∈ HLP or equivalently written [48] in
the BB representation |1ph〉 = Ĉ†

�F |∅〉 for �F = i
√

h̄�1/2 �ψ ∈
HBB, was computed in [22]. It can be written as (see Ap-
pendix C for an indication of the calculation)

〈Êem(�x)〉|1ph〉 = h̄|�1/2 �ψ (h+)(�x)|2 + h̄|�1/2 �ψ (h−)(�x)|2 (16a)

= | �F (h+)(�x)|2 + | �F (h−)(�x)|2 � 0. (16b)

We will show in the next section that this result implies the
nonlocality of single photons.

IV. PROOF OF THE NONLOCALITY OF THE ENERGY
DENSITY FOR ALL SINGLE-PHOTON STATES

The result obtained above for the mean value of the energy
density operator is clearly greater than or equal to zero for any
single-photon pulse, i.e., for any function �ψ or �F representing
the single-photon state. In this section we will show that the
average local energy is strictly different from zero at any
position in space

〈Êem(�x)〉|1ph〉 �= 0 ∀ �x ∈ R3. (17)

This result is a consequence of the following lemmas.
Lemma 1. For any field �v(�x) that is not identically zero, ��v

and �v cannot be both zero in any open set of R3 [19–21].
Lemma 2. Fields of positive or negative helicity, i.e.,

��g (hλ)(�x) = λ�g (hλ)(�x), λ = ±, have the property that either
�g (hλ) is identically zero or �g (hλ) �= 0 in any open set of R3.

A proof of Lemma 1 is given in Appendix D and Lemma
2 can be shown directly as follows. Let �g be a transverse
field �g = �g (h+) + �g (h−). The helicity components are eigen-
functions of the helicity operator ��g (h±) = ±�g (h±). Using
the definition of the helicity operator � = c�−1∇×, we can
reformulate this relation as

c∇ × �g (h±) = ±��g (h±). (18)

Taking a given λ = ±, if �g (hλ) is zero in an open set S , then
∇ × �g (hλ) is zero in the same set and finally (18) implies that
��g (hλ) is also zero in S , which by Lemma 1 implies that �g (hλ)

is zero everywhere. We conclude that �g (hλ) is either identically
zero or nonzero for any open set as stated in Lemma 2.

The central result (17) can thus be shown by taking �g to
be the BB representation �F of any single-photon state, which
is transverse, and thus can be decomposed as �F = �F (h+) +
�F (h−). We conclude then that �F (h±) is either identically zero or
nonzero in any open set. Moreover, since (16b) has two terms,
even if one of them is identically zero, the other cannot be
zero too since it would mean that the single-photon state itself
is zero. This result is valid for any open set and therefore one
can extend it to any point �x ∈ R3, which completes the proof.

Thus, since the zero-point energy has been removed using
the normal ordering in (14), 〈Êem(�x)〉|1ph〉 is never equal to the
vacuum mean value, preventing Knight’s localization criterion
to be fulfilled for any single-photon state. In physical terms
this means that if the electromagnetic field is prepared in
a single-photon state, a detector, placed anywhere in space,
which measures the energy in a finite volume, has a nonzero
probability of detecting the photon. The probability can be
small, but it is strictly nonzero.

V. ILLUSTRATION OF NONLOCALITY

The nonlocality brought by the splitting into helicity com-
ponents can be illustrated through simple one-dimensional
examples. We can compute the expectation value 〈Êem(�x)〉|1ph〉
for single-photon states representing three extreme cases: First
we consider a state |ψLP

comp〉 = B̂†
ψLP

comp
|∅〉, where ψLP

comp ∈ HLP

is a function of compact support, i.e., ψLP
comp(x) = 0 outside an

interval of size L; then we consider a state |F BB
comp〉 = B̂†

F BB
comp

|∅〉,
where F BB

comp ∈ HBB is a function of compact support, i.e.,
F BB

comp(x) = 0 outside an interval of size L; and finally we
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consider a state |ψext〉 = B̂†
ψext

|∅〉, where ψext ∈ HLP is ex-
tended over all space, i.e., ψext(x) �= 0 for any x ∈ R. To
construct ψext, we use real fields Ecomp(x) and Acomp(x) with
support in the interval [−L/2, L/2] of the form

Ecomp(x) ∝
{

sin2
(

π
L x + π

2

)
for x ∈ [− L

2 , L
2

]
0 otherwise,

(19a)

Acomp(x) ∝
{

sin2
(

π
L x + π

2

)
for x ∈ [− L

2 , L
2

]
0 otherwise,

(19b)

and to build ψLP
comp we take the extended fields

ELP
ext (x) = �1/2Ecomp(x), (20a)

ALP
ext(x) = �−1/2Acomp(x). (20b)

The resulting ψLP
comp and ψext are represented by blue solid

lines in Figs. 2(a) and 2(d) and Figs. 2(b) and 2(e), respec-
tively. To construct a localized BB representation F BB

comp we
take the fields

EBB(x) = Ecomp(x), (21a)

ABB(x) = �−1Acomp(x). (21b)

The resulting localized BB representation is shown by the
green dotted line in Figs. 2(c) and 2(f).

For these three examples, we compute the expectation
value of the energy density operator and obtain the results
displayed as the red dashed lines in Fig. 2. In general, one
can see that the localization property of the LP or BB repre-
sentation does not give any information for the localization of
the energy density. Indeed, the compact support property of
the states ψLP

comp and F BB
comp is not preserved for the expectation

value of the local energy [Figs. 2(a) and 2(d) and Figs. 2(c)
and 2(f)], as expected. Moreover, a localized LP representa-
tion implies a nonlocalized BB representation and vice versa
due to the form of the isomorphism I. This is illustrated in
Figs. 2(a) and 2(d) and Figs. 2(c) and 2(f), where we have
either a localized LP function and a nonlocalized BB function
or a nonlocalized LP function and a localized BB function.
The most general case is shown in Figs. 2(b) and 2(e), where
neither the LP nor the BB representation is localized and so
neither is the energy density.

VI. CONCLUSION

We point out that none of the statements in this article
involve time evolution. They are statements about the ex-
pectation value of the energy density for any single-photon
state at any fixed time. This is an important difference from
the works of Knight and of Hegerfeldt. The nonlocality, as
probed by the energy density, is not created by the time
evolution; it is already present with the initial condition for
any state as shown in Fig. 2. Our point of view is that the
nonlocality appears through the frequency operator � and
it manifests in several ways: in time-independent expecta-
tion values like the energy density; in properties of the time
evolution, as described by Hegerfeldt; or in time-dependent
correlation functions, as treated by Knight. The time evolu-
tion of the states is determined by the frequency operator
�, both in the Landau-Peierls and in the Białynicki-Birula

FIG. 2. Illustration of the nonlocality of single-photon states for
two extreme cases. (a) The blue solid line shows the LP representa-
tion of a single-photon state |ψLP

comp〉 with compact support and the
green dotted line its BB representation. The red dashed line shows
the expectation value of the energy density computed for that state.
The compact support property of |ψLP

comp〉 is lost for both the BB
representation and the energy. (b) The blue solid line shows the LP
representation of an extended single-photon state |ψext〉 and the green
dotted line its BB representation. The red dashed line shows the
expectation value of the energy density computed from that state.
The extended property of |ψext〉 is visible from both representations
and for the energy. (c) The green dotted line shows the BB represen-
tation of a single-photon state |F BB

comp〉 with compact support and the
blue solid line its LP representation. The red dashed line shows the
expectation value of the energy density computed for that state. The
compact support property of |F BB

comp〉 is lost for the LP representation
and the energy. (d), (e), and (f) are the same plots as (a), (b), and (c),
respectively, but with a logarithmic scale.

representations [48]:

i
∂ �ψ
∂t

= � �ψ, i
∂ �F
∂t

= � �F . (22)

The antilocality and the positivity of � are at the origin
of the time-independent and the time-dependent nonlocality
properties of single-photon states. This different aspects are
complementary and they can contribute to a better understand-
ing of the nonlocality of single-photon states.
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APPENDIX A: PLANE-WAVE BASIS, CURL, FREQUENCY,
AND HELICITY OPERATORS

We consider the generalized basis of transverse plane
waves { �φ�k,σ

} defined by

�φ�k,σ
(�x) = (2π )−3/2�εσ (�k)ei�k·�x, (A1)

where σ = ±, and the circular polarization vectors can be
chosen as

�ε+(�k) = 1
√

2|�k|
√

k2
x + k2

y

⎡
⎢⎢⎣

−kxkz + i|�k|ky

−kykz − i|�k|kx

k2
x + k2

y

⎤
⎥⎥⎦, (A2)

with �ε−(�k) = �ε+(�k)	. They are eigenfunctions of the curl
operator with eigenvalues ∇ × �φ�k,σ

= σ |�k| �φ�k,σ
. To construct

the frequency operator �, we recall that it is defined as the
unique positive operator satisfying �2 = −c2�, where � is
the Laplace operator, which can be written for transverse
fields as −� = ∇ × ∇×. Therefore, the frequency operator
satisfies �2 �φ�k,σ

= c2|�k|2 �φ�k,σ
= ω2

�k
�φ�k,σ

. The positive square

root of �2 can thus be defined by its action on the continuum
basis of plane waves

� �φ�k,σ
= ω�k �φ�k,σ

, ω�k > 0, (A3)

and the particular powers �±1/2 used in the LP representation
(1) can similarly be defined as �±1/2 �φ�k,σ

= ω
±1/2
�k

�φ�k,σ
. Here

�2, �, and �±1/2 are all positive self-adjoint operators.
The helicity operator � is then defined through a combina-

tion of the curl and the frequency operators by

c∇× = ��. (A4)

It has the same eigenfunctions with eigenvalues � �φ�k,σ
=

σ �φ�k,σ
and therefore commutes with both ∇× and �. One can

decompose any transverse field �v into a sum of a positive- and
a negative-helicity part �v (h±),

�v = �v (h+) + �v (h−), (A5)

where ��v (h±) = ±�v (h±). The positive- and negative-helicity
parts can be constructed by applying the projectors P (h±) =
(1 ± �)/2, i.e., �v (h±) = P (h±)�v. We also remark that �2 = 1
and �−1 = �. Helicity can be interpreted as the projection of
the spin on the direction of motion [48].

APPENDIX B: COUNTEREXAMPLE TO THE EXTENSION
OF KNIGhT’S CONSTRUCTION FOR EQUAL-TIME

CORRELATION FUNCTIONS

In this Appendix we show that Knight’s result on
time-dependent correlation functions cannot be extended to
equal-time correlation functions, nor in particular to the ex-
pectation value of the energy density. Since we are interested
in photons, we adapt Knight’s construction for the scalar

Klein-Gordon equation to the electromagnetic case, but a
similar argument can be made for massive scalar fields. In
fact, the argument is based on the construction that was made
by Białynicki-Birula and Białynicki-Birula in [23] in order to
show that there exist single-photon states with either electric
or magnetic localization (but not both).

We start with a state | �ψ〉 = B̂†
�ψ |∅〉 with the properties

[B̂ �ψ, B̂†
�ψ ] = 1, (B1a)

[ �̂A(�x j, t0), B̂†
�ψ ] = 0 ∀ �x j /∈ R, (B1b)

where R is an open set of R3 and t0 a given time which we take
as zero in the following without loss of generality. The mean
value of the equal-time correlation function of the potential
vector outside R for a state with such properties is thus

〈 �ψ | �̂A(�x1) · · · �̂A(�xM )| �ψ〉 = 〈∅|B̂ �ψ
�̂A(�x1) · · · �̂A(�xM )B̂†

�ψ |∅〉

= 〈∅|B̂ �ψ B̂†
�ψ
�̂A(�x1) · · · �̂A(�xM )|∅〉

= 〈∅|(1 + B̂†
�ψ B̂ �ψ ) �̂A(�x1) · · · �̂A(�xM )|∅〉

= 〈∅| �̂A(�x1) · · · �̂A(�xM )|∅〉. (B2)

This calculation shows that outside R, the mean value is that
of the vacuum. The key point of this result is to construct a
state | �ψ〉 with the properties (B1). To do so, the commutator
(B1b) can be written as

[ �̂A(�x j ), B̂†
�ψ ] =

√
h̄

2ε0

∫
R3

d3k
∑
σ=±

ω
−1/2
�k

�φ�k,σ
(�x j )[B̂ �φ�k,σ

, B̂†
�ψ ]

=
√

h̄

2ε0
�−1/2

∫
R3

d3k
∑
σ=±

�φ�k,σ
(�x j )〈 �φ�k,σ

| �ψ〉

=
√

h̄

2ε0
�−1/2 �ψ (�x j ), (B3)

which is zero outside R if one takes a function �ξ with compact
support in R, i.e., �ξ (�x j ) = 0 for all �x j /∈ R and defines �ψ =
�1/2�ξ .

APPENDIX C: DERIVATION OF THE MEAN VALUE
OF THE ENERGY DENSITY FOR A GENERAL

SINGLE-PHOTON STATE

In order to have a self-contained proof of nonlocality dis-
cussed in this article, we provide here an indication of the
main steps for calculating the mean value of the energy den-
sity given in (16). For simplicity, we will show here only the
derivation done with the BB representation of the states, but
one can equivalently compute it with the LP representation.
The result can anyway be expressed easily in both representa-
tions using the isomorphism I [see Eq. (8)].

We first remark that the normal-ordered energy density
observable (14) can be written as [22]

Êem = ε0

2
:( �̂E − ic �̂B) · ( �̂E + ic �̂B): (C1)
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and that electromagnetic field operators can be expressed as

�̂E = 1√
2ε0

( �̂F + �̂F†), (C2a)

�̂B = −i√
2ε0c2

�( �̂F − �̂F†) (C2b)

in terms of the BB field operator �̂F defined by [48]

�̂F(�x) =
∫
R3

d3k
∑
σ=±

�g�k,σ
(�x)Ĉ�g�k,σ

. (C3)

The set of functions {�g�k,σ
} introduced here is a basis of the BB

Hilbert space HBB [see Eq. (13b)]. By inserting Eqs. (C2) into

(C1) and using the decomposition �̂F = �̂F(h+) + �̂F(h−), which
can be done with the projectors P (h±) = (1 ± �)/2, we can
rewrite the energy density as

Êem(�x) = :( �̂F(h+)† + �̂F(h−) ) · ( �̂F(h+) + �̂F(h−)†):. (C4)

Among the four terms of (C4), only two will give nonzero
expectation values and thus we have

〈Êem〉|1ph〉 =
∑
λ=±

〈∅|Ĉ �F
�̂F(hλ)† · �̂F(hλ)Ĉ†

�F |∅〉. (C5)

To work out the final result, we use the commutators

[ �̂F(h±)(�x), Ĉ†
�F ] = �F (h±)(�x) (C6)

and obtain (16) in the BB representation

〈Êem〉|1ph〉 = | �F (h+)|2 + | �F (h−)|2. (C7)

APPENDIX D: ANTILOCALITY OF THE FREQUENCY
OPERATOR

We provide in this Appendix a proof of Lemma 1 used to
show the nonlocality of photons in Sec. IV. This result was
shown in [19–21] and we will sketch here the argument of
[20]. We recall the statement.

Lemma 1. For any field �v(�x) that is not identically zero, ��v
and �v cannot both be zero in any open set of R3.

We are going to prove that if �v and ��v are both equal to
zero in some open set S , it implies that �v(�x) = 0 everywhere.

Proof. Since � is positive and self-adjoint, the operators
U (t ) = exp(i�t ), t ∈ (−∞,+∞), define a one-parameter
family of unitary operators. The field defined as �u(�x, t ) =
U (t )�v(�x) satisfies the wave equation

∂2�u
∂t2

= −�2�u, (D1)

with initial conditions

�u(�x, t = 0) = �v(�x), (D2a)

∂ �u
∂t

(�x, t = 0) = i��v(�x). (D2b)

Since the solutions of the wave equation propagate with
a finite speed c, the property of the initial conditions to be
zero, i.e., �v(�x) = 0 in a set S , implies that there is a t0 > 0
and a nonempty open subset S0 ⊂ S such that �u(�x, t ) = 0 for

all �x ∈ S0 and 0 � t < t0. Thus, for any C∞ field �ϕ(�x) with
compact support in S0,

〈�ϕ|�u(·, t )〉 =
∫
R3

d3x �ϕ(�x)	 · �u(�x, t ) = 0 (D3)

for 0 � t < t0. We now consider the continuation of the
variable t into the upper complex half plane and define the
function

f (z) = 〈�ϕ|ei�z�v〉 (D4)

for Imz � 0 that has the following properties [20]: (i) f (z)
is holomorphic for Imz > 0 and continuous for Imz � 0, (ii)
f (t ) = 〈�ϕ|�u(·, t )〉 when t ∈ R and f (t ) ∈ R for t ∈ (0, t0),
and (iii) f (t ) = 0 for 0 � t < t0. We remark that for t > t0,
f (t ) is not necessarily zero or real. The main steps of a proof
that f (z) is holomorphic in the upper half plane, by showing
the existence of the derivative df /dz, can be summarized as
follows: �v can be developed in the basis �φ�k,σ

of continuum

eigenfunctions of the Laplacian �v = ∫
R3 d3k

∑
σ α�k,σ

�φ�k,σ
. We

can then write
d

dz
f (z) = d

dz

∫
S0

d3x �ϕ	 · ei�z�v

=
∫
S0

d3x �ϕ	 · ei�zi��v

=
∫
S0

d3x
∫
R3

d3k
∑

σ

�ϕ	 · �φ�k,σ
α�k,σ

iω�keiω�k z. (D5)

The derivative can be brought inside the integral by the
Weierstrass M-test and the Lebesgue dominated convergence
theorem, because the integral converges absolutely since ei�z

is a contractive semigroup [55]. The existence of the deriva-
tive is then obtained by exchanging the two integrals by the
Fubini-Tonelli theorem: Writing z as z = zr + izi, one obtains∣∣∣∣ d

dz
f (z)

∣∣∣∣ �
∫
S0

d3x
∫
R3

d3k
∑

σ

|�ϕ	 · �φ�k,σ
||α�k,σ

|ω�ke−ω�k zi

=
∫
R3

d3k
∑

σ

|α�k,σ
|ω�ke−ω�k zi

∫
S0

d3x|�ϕ	 · �φ�k,σ
|

� C
∫
R3

d3k
∑

σ

|α�k,σ
|ω�ke−ω�kzi < ∞, (D6)

where C is a constant. The last integral is finite for zi > 0,
which completes the argument for the existence of df /dz.

We will now use the Schwarz reflection principle [56],
which in the present context can be formulated as follows:
If f+(z) satisfies the properties that (i) f+(z) is holomorphic
in the open upper complex rectangle D+ = {Imz > 0, Rez ∈
(0, t0)}, (ii) f+(z) is continuous in D+ ∪ (0, t0), and (iii) f+(t )
is real in the interval t ∈ (0, t0), then f+(z) can be continued
holomorphically through the interval (0, t0) to the lower rect-
angle D− = {Imz � 0, Rez ∈ (0, t0)}, by defining

f+(z) =
{

f+(z) for z ∈ D+
[ f+(z	)]	 for z ∈ D−.

(D7)

This defines thus a holomorphic function f+(z) in the whole
open set D+ ∪ D− = {Rez ∈ (0, t0)}, which includes the inter-
val (0, t0).
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By applying the Schwarz reflection principle to the func-
tion f (z) that we combine with the properties (i) and (ii), it
shows that f (z) is analytic in the union of the open upper
half plane and D−. Property (iii) states that f (z) = 0 in the
interval z ∈ (0, t0), which implies that f (z) = 0 in the whole
region where f is holomorphic, in particular in the whole open
upper half plane Imz > 0. Since, according to (i), f (z) is con-
tinuous for Imz � 0, this implies that f (z) = 0 for Imz � 0.
In particular, f (t ) : 〈�ϕ|�u(·, t )〉 = 0 for −∞ < t < ∞. Since

�ϕ is an arbitrary function, this implies that �u(�x, t ) = 0 for
−∞ < t < ∞ and �x ∈ S0. The unique continuation theorem
for solutions �u(�x, t ) of the wave equation, proven, e.g., in [57],
states that if �u(�x, t ) = 0 for an open set for all −∞ < t < ∞,
then �u(�x, t ) = 0 everywhere. In particular, for t = 0 this im-
plies that

�u(�x, t = 0) = �v(�x) = 0 ∀ �x ∈ R3, (D8)

which completes the proof.
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