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Influence of direct dipole-dipole interactions on the optical response of two-dimensional
materials in strongly inhomogeneous infrared cavity fields
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A two-dimensional (2D) material, formed, for example, by a self-assembled molecular monolayer or by
a single layer of a van der Walls material, can couple efficiently with photonic nanocavities, potentially
reaching the strong-coupling regime. The coupling can be modeled using classical harmonic-oscillator models
or cavity quantum electrodynamics Hamiltonians that often neglect the direct dipole-dipole interactions within
the monolayer. Here we diagonalize the full Hamiltonian of the system, including these direct dipole-dipole
interactions. The main effect on the optical properties of a typical 2D system is simply to renormalize the
effective energy of the bright collective excitation of the monolayer that couples with the nanophotonic mode.
On the other hand, we show that for situations of extreme field confinement, large transition dipole moments, and
low losses, fully including the direct dipole-dipole interactions is critical to correctly capture the optical response,
with many collective states participating in it. To quantify this result, we propose a simple equation that indicates
the condition for which the direct interactions strongly modify the optical response.
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I. INTRODUCTION

Light and matter couple strongly when a large number
of molecules, a van der Waals material or a similar system,
is placed within nanophotonic cavities [1,2]. In the strong-
coupling regime, the wave functions of the photonic modes
and the material excitations mix to form new hybridized
collective states known as polaritons [2—6]. For example,
the strong coupling between photonic modes and electronic
molecular transitions results in the formation of excitonic
polaritons [7-9]. Moreover, there is growing interest in vibra-
tional polaritons that are due to the coupling of vibrational
modes of molecules and infrared (IR) microcavities [10-13].
The emergence of these new IR polaritonic states can signifi-
cantly impact the physical and chemical properties of the sys-
tem [11,14-19], allowing for active manipulation of matter.

The optical properties of two-dimensional (2D) systems
located in a cavity can be studied using cavity quantum
electrodynamics (CQED) or via classical harmonic-oscillator
models [20,21], which often neglect the direct dipole-dipole
coupling between the different polarizing units, such as the
molecules or the different regions of the material (unit cells).
Within this framework, the system typically shows two op-
tically bright polariton modes under strong enough coupling
strength, whether we have one or an ensemble of polarizable
units forming a 2D material. The energy of these polaritonic
modes is different from those of the uncoupled nanocavity
and the vibrational or electronic excitation in the material,
and their energy difference (Rabi splitting) increases with
the number N of polarizable units, approximately as /N in
simple situations [22,23]. Additionally, N — 1 dark modes
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are also present that interact much more weakly with cavity
photons, or not at all [24].

On the other hand, the direct dipole-dipole interactions
between the polarizing units of the 2D material can also in-
fluence the optical response. In a simple example, applying
the Clausius-Mossotti equation to an ensemble of molecules
(or oscillators) indicates that the resonances of the classical
permittivity are shifted from the energy of the individual os-
cillators [25]. This effect is considered implicitly, for example,
in a recent work studying the coupling between collective
lattice vibrations (phonons) in hexagonal boron nitride (h-BN)
and microcavity modes [26]; the h-BN layer was treated as
an ensemble of dipoles, with resonant energy defined by the
classical permittivity, which served to take into account the
dipole-dipole interactions in an effective manner. In a similar
context, it was shown in Refs. [27,28] that a dense atomic
cloud could be described as a homogeneous particle with an
effective permittivity. In these works the authors showed that
there is a correspondence between the microscopic polaritonic
modes of the atomic cloud (obtained by considering dipole-
dipole interactions between the atoms) and the modes of a
homogeneous particle.

In this paper we use a microscopic CQED description of
the dynamics of excited states to gain further insight into the
effect of the direct dipole-dipole interaction on the optical
response. We focus on the coupling of a nanophotonic cavity
mode with vibrations of a 2D material (see Fig. 1), which
could consist of a self-assembled molecular monolayer or
a single layer of a van der Waals material. Van der Waals
materials manifest very clear phonon modes with large rest-
strahlen bands that enable new optical properties [29-32],
while molecular monolayers have applications in the design
of different devices such as chemical sensors, biosensors,
and organic field-effect transistors (see Ref. [33] and refer-
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FIG. 1. System under study. (a) Schematic of an ensemble of
N molecules placed in a 2D square lattice configuration inside a
photonic (plasmonic or phononic) nanocavity. The cavity fields are
represented by the red-shaded area. (b) Schematic of the excitation
of the molecules by the nanocavity and the collective mode emerging
from the direct dipole-dipole coupling between the molecules. The
inhomogeneous cavity IR field varies as a function of position r fol-
lowing a Gaussian distribution g(r) of width (standard deviation) oy,
as represented by the red-colored surface. If the molecules interact
with each other, a collective or cooperative vibronic behavior of the
2D molecular vibrations can emerge. Each resulting collective mode
can then be seen as a density wave along the 2D plane forming
a standing-wave pattern. The vertical lines illustrate the induced
molecular dipoles corresponding to one such density wave. The
schematics are not to scale.

ences therein). For simplicity, we often refer below directly to
molecular assemblies, even if some values used for the param-
eters can be more representative of van der Walls materials.
The cavity fields can present extreme spatial confinement,
down to subnanometer regions, as occurs in plasmonic cav-
ities formed by atomic-size protrusions (picocavities) in, e.g.,
scanning tunneling microscopy, nanoparticle-on-mirror con-
structs, or similar configurations [34-37]. We emphasize that
our methodology is very general and the conclusions can
be applied directly to other related situations, including the
coupling with excitonic molecular transitions.

In the following we first describe in Sec. II a general theory
of the coupling between vibrations in the 2D material and a
nanocavity mode. The model treats the vibrations as pointlike
dipoles, with each dipole corresponding to a molecule (or
to a microscopic region of the 2D material, such as a unit
cell [26,38]). The vibrations occur in the direction perpen-
dicular to the 2D monolayer. In Sec. III we diagonalize the
vibronic Hamiltonian in the absence of a nanophotonic cavity
to obtain the new eigenmodes of the system, corresponding to
the collective vibrational modes. We then include the cavity
mode in Sec. IV and write the full interaction Hamiltonian
as a function of these collective vibrational modes, which
we solve to find the new vibron-polariton modes. Based on
the properties of these modes, we obtain and analyze the
optical response of the coupled system to reveal the ef-
fect of the direct dipole-dipole interaction. We summarize
in Sec. V.

II. THEORETICAL MODEL

We consider a patch of N molecules (polarizing units in
the 2D material) that form a monolayer inside an IR nanopho-
tonic cavity (e.g., a plasmonic or phononic nanoresonator),
as sketched in Fig. 1(a). For our numerical simulations, we
arrange N = 51x51 = 2601 molecules in a lattice of square
unit cell with lattice constant a (which we fix at ¢ = 0.5 nm),
placed in the xy plane. Each molecule is modeled as a dipole
associated with a molecular vibration that is optically active
at IR frequencies. The same model is also suited to treat
other excitations, such as electronic transitions. The dipoles
are oriented perpendicular to the xy plane, in the z direction.
We consider perfectly regular arrays with dipoles oriented
along a fixed direction, but we expect that small randomness
in the position or orientation of the molecules would affect the
results weakly.

If the molecules are sufficiently far apart from each other,
the molecular vibrations (or the excitonic transitions) are
typically assumed to interact much more efficiently with the
localized cavity field than directly with each other. This lo-
calized field can be confined to a very small region [35],
as represented schematically by the red-colored surface in
Fig. 1(b), strongly increasing the coupling between the cavity
and the molecules [34,36,39]. However, when the molecules
are closely packed, the direct dipole-dipole interaction be-
tween molecules can be important. For example, if the
dipole-dipole Coulomb interaction between the molecules
cannot be neglected, new collective modes emerge even in the
absence of the nanophotonic cavity. These can be understood
as collective density charge waves where the dipoles oscillate
perpendicularly to the molecular plane with a characteristic
pattern (i.e., a standing-wave-like pattern in the molecular
plane with a characteristic in-plane wave vector resulting from
the interference between the density waves due to reflection
at the edges of the molecular patch); these are localized 2D
phonon polaritons. One such collective mode is exemplified
by the vertical lines in Fig. 1(b), with the length of each
line illustrating the strength of the dipole associated with the
vibration of the corresponding molecule collectively forming
the stationary pattern.
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To study the optical response of this system, we consider
the Hamiltonian describing the interaction of one IR nanocav-
ity mode with the ensemble of molecular vibrations, which
also interact with each other,

H = ﬁpht + ﬁmo] + ﬁvib—pht + ﬁvib-vib

N N
= hoad@ a+ 1Y _wbth;+ 1) g;@ +a)b}+b))
j=1 j=1

+ 1YY Qu(Bh +by)(b] + b, (1

Jol>j

where & and @' are the bosonic annihilation and creation opet-
ators of the nanocavity excitations (e.g., plasmons or phonon
polaritons), with frequency w,y, respectively. The molecular
vibrations at frequency w; are quantized using the vibron
(i.e., a quantum of intramolecular vibration) annihilation and
creation operators b ; and lA)j where the index j distinguishes

between the molecules. Thus, the terms ﬁpht and H.,, in
Eq. (1) correspond to the energy of the cavity mode and that of
the vibrations, respectively. The third term ﬁvib-phl describes
the interaction between the vibration of each molecule and
the IR cavity field mode, with coupling strength g;. Here
we specifically consider a nanocavity mode with a Gaussian
field distribution [Fig. 1(b)]. Thus, for identical molecules the
coupling strength is proportional to the cavity field,

(xj —x0)* + (yj — )’0)2>
205 ’ 2)

g(rj) = goexp (-

with [r;| = ijz- + y?, go the value at the center ry = (xo, Yo)
of this Gaussian function, and o7, the standard deviation.

Finally, Hyipvin describes the intermolecular dipole-dipole
interaction, where the coupling strength /2;; between each
pair of molecules j and [ is given by the (static) Coulomb
coupling as

hQj = ———I[d;-d; — 3(d; -e;;)(d; - ;). (3)

47'[801‘].1

Here d; is the (real) transition dipole moment vector of
molecule j, rj; is the distance vector between molecules j and
[ (with ej; its unit vector), rj; = |rj|, and &g is the vacuum
permittivity.

We place the molecules in the xy plane, as described previ-
ously, and consider that all molecules have the same transition
dipole moment d; = dy, (aligned along the z axis) and the
same bare energy ; = wpol. In the following numerical cal-
culations, we parametrize the interaction by considering the
coupling between nearest neighbors,

Flel(Vﬂ = Cl) = hQO.

This model can be extended to different lattice configurations
(including disordered ensembles), different dipole orienta-
tions, and samples where the molecules differ from each other.

Furthermore, note that we do not include a diamagnetic
term Hgigm = D" + a)?, which is often considered in ultra-
strong coupling, where D = ilg j|2 Jw;j [40]. The effect of
this term on the diagonalization of the Hamiltonian can be re-
produced by shifting the cavity frequency w.,, —> ®cay + 2D

cav

[41]. Thus, our conclusions should not be affected by the
inclusion of this diamagnetic term.

III. COLLECTIVE VIBRATIONAL STATES

In order to solve the full Hamiltonian of the system
[Eq. (1)] and to better understand the emergence of collective
vibrational modes, we first neglect the nanocavity mode and
diagonalize the vibrational contribution to the Hamiltonian
Heoit = Hmot + Hyipvib. Following the Bogoliubov procedure
[42], there exist collective bosonic operators P, that are linear
combinations of the vibrational operators b ; of the individual
molecules,

N
ﬁn = Z(anjéj + lgnjg;r')s (4)
j=1

and diagonalize A, according to

Heont = Huol + Huivio = Z W, PP, )
n

where P, and W, are the new operators and eigenfrequencies
of the collective modes of the system and (B,, Hoon] = AW, P,.
The subscript n refers to the index of the collective modes and
J to the index of the molecules. To obtain the values of W, and
the a,; and B,; coefficients, we write

N
[pn’ ﬂmol + Hvib—vib] = hWnpn = hWn Z(O{njgj + ,Brug;)
j=1

(6)
From Eq. (4), the left-hand side of this expression is also

[Py, Hinot + Hyibvin] = Z(anj (b, Hyib + Hyibvin]
J

+ ,an[l;j», Hyip + Hyibviv]).  (7)

Inserting the expression for Hool + Heivovin given by Eq. (1)
into the right-hand side of Eq. (7) and comparing the re-
sulting equations with Eq. (6), we obtain a system of linear
equations resulting in the eigenvalue problem MV, = W, V,,
where M is the Hopfield matrix [43]

o) 0 Qp  —Qp Qv —Qu
0 —w Q2 —Q2 s Qy —Qy
Q. —Qp y 0 Qv —Qon
M — le 79]2 0 —w) QzN *QZN
Qv Qv Qv —Quw oy 0
Qv Qv Qv —Qu 0 TON J oONx2N
(3

This matrix admits 2N eigenvalues, and if W, is an eigenvalue,
so is —W,,. The N distinct frequencies W, correspond to the
normal modes, i.e., the collective states. The eigenvectors V,,
are determined by the values of «,,; and B,

VE=(am Bu - v Bav)ixaws ©))

where 27=1(|oz,,j|2 — |B4j|*) = 1 ensures the bosonicity of
the operators. The matrix M is real and block symmetric.
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Not all matrices M show exclusively real eigenvalues. How-
ever, for the parameters we consider, we find real eigenvalues
and eigenvectors. Since the vector elements of V, are real
(ie., o y

= oy and ,le‘j = B,;), we can write, from Eq. (4),

N
+P, =Zan,+ﬂn, (b + b)),

which can be written as a matrix-vector product. Inverting this
matrix allows us to write b} + b; as a function of P} + B,.
Defining the N xN inverse matrix X, = (a,; + B, j)‘l [44],
we obtain

(b + b)) = ijn(ﬁ,j +B,). (10

Analysis of the new collective vibrational modes

We show the nature of some illustrative collective modes
in Figs. 2(a)-2(d) for the N = 51x51 = 2601 molecules in a
square lattice. In this paper we do not consider any change
of the interaction at edges; only the number of neighbors
differs. We set the nearest-neighbor interaction strength to
h2y = 1 meV and indicate above each panel the correspond-
ing eigenenergy W, of the mode n. The value of €2 is chosen
to be comparable to the value for van der Waals or other polar
materials (see Appendix A). Each panel represents the spatial
pattern of the eigenvalue associated with the collective mode,
which is plotted as a color plot of the amplitude of the o,
coefficients (with each «,; corresponding to a molecule j) as
a function of the location of the molecules in the xy plane.
We observe that the collective mode with the largest energy
[Fig. 2(a)] corresponds to all molecules oscillating in phase
(same sign), while other modes show approximately periodic
changes of sign of the individual vibrational amplitudes in
the x and y directions. Thus, the collective modes can be
thought of as the standing-wave pattern of a density wave
of molecular vibrations (oscillating in the z direction) with
a characteristic in-plane wave vector along the xy plane of
the 2D molecular monolayer. The position of these collective
modes in the energy dispersion relation of the molecular layer
is marked with purple circles in Fig. 2(e).

To understand the coupling of the collective mode n with
light, it is useful to obtain the dipole moment of the collective
mode D,,, as only modes with a significant value of D, couple
efficiently, in the absence of nanocavity, with an incoming
laser or other focused illumination (characterized by almost
constant fields in the molecular ensemble). The total dipole
can be written in terms of the operators of each molecule
asD = ZIJLI d !-(IA); +b ;). Transforming to the collective pic-
ture, we can write

N

D=>"X;ud;(P] + P,). (11)

j=1

We find that the collective mode with higher energy shows
the highest nonzero total dipole moment D; = 21};1 d;X; =
43.72dy,01. This efficient coupling in this mode can be ex-
pected because the induced molecular dipoles oscillate with
the same phase, as mentioned previously. Lower-energy
eigenvalues have generally much lower values of D, due

(a) AW, = 108.25 meV, (b)
D, =43.72dq

iWso = 105.94 meV,
D50 = 00

0 10 20 0 10 20
X (nm) X (nm)
()  7AiW39 = 102.81 meV, d  AWis00 = 99.08 meV,
D30 = 0.0 D500 = 0.0

y (nm)
y (nm)

Qo =1.0meV

102 |- N

AW (meV)

98 - .

0 2 4 6 8

k2 + k2 (nm™")

FIG. 2. Eigenmodes and eigenenergies of a molecular layer in
the absence of nanocavity, for N = 51x51 = 2601 molecules ar-
ranged in a 2D square lattice. (a)—(d) Collective vibrational modes
arising from dipole-dipole interactions. The color plot shows the
distribution of the values of the coefficient «,; of the system eigen-
vectors in the xy plane for the collective modes (a) n =1, (b)
n =150, (c) n = 300, and (d) n = 1500 [marked by the purple circles
in (e)]. Each a,; is associated with a molecule and thus with a
spatial position. For each mode, we also indicate the correspond-
ing eigenfrequency W, and total dipole moment D,,. (e) Dispersion
relation, corresponding to the energy of the modes of the system,
plotted as a function of the wave vector [k| = vk + k; associated
with each eigenvector. In (a)—(e) we use lattice constant a = 0.5
nm, dipole-dipole interaction 72, = 1 meV, and vibrational energy
hwge = 100 meV.

to the sign changes of o,;(B,;) and thus are more diffi-
cult to excite optically. For example, the low-energy modes
in Figs. 2(b)-2(d) are characterized by D, = 0. To further
characterize the collective modes and based on the clear

043718-4



INFLUENCE OF DIRECT DIPOLE-DIPOLE ...

PHYSICAL REVIEW A 108, 043718 (2023)

periodicity of the vibrational pattern in Figs. 2(a)-2(d), we
calculate for each mode n the 2D Fourier transform of the
spatial «,; maps in the xy plane, | [a, j]|2. We then define
the characteristic wave vector of each mode, k,,, where
ky and k, are the wave-vector components on the x and y
axes, respectively, as the value at which the corresponding
maximum of |Fle, j]l2 is found. In Fig. 2(e) we present
the resulting dispersion relation, showing the energy of the

modes as a function of the parallel wave vector vVk? + k‘z,.
This dispersion follows closely that of an infinite 2D layer
of identical molecules, as shown in Appendix C. We find
that the energies cover a frequency range between 97.32 and
108.25 meV. The results show a certain spreading of the data
points, i.e., modes can have the same v (kM*)? + (k)?
but a different energy because the square lattice is not
isotropic, so the direction in the (k,, k,) plane influences the

result, particularly for large v (k™)* + (k)**)*. Specifically,
the obtained values are contained within an upper set of
points corresponding to &, (k,) = O that reaches k" (k;na") =

m/a~628nm~' and a lower one for kM = k" that

reaches (chc’f“"")2 + (k;n""‘)2 = ﬁ(n/a) ~ 889 nm~! (see
further discussion in Appendix C). As for our particular ex-
ample we have chosen to orientate the dipole moments in the
direction perpendicular to the xy plane where the molecules
are situated, the modes of smaller wave vectors are character-
ized by larger energies.

IV. COLLECTIVE VIBRATIONAL DYNAMICS
OF A MOLECULAR MONOLAYER
COUPLED TO A CAVITY

We consider next the effect of the coupling of the
molecules with the nanophotonic mode. With this purpose, we
return to the total Hamiltonian in Eq. (1) and use Eq. (10) to
rewrite

Huopne = 1) gj@" + &)} + b)) (12)
J

in terms of the collective operators, which gives

Appecon = 1YY~ giXju(@" + a)(B] + B,)
nooj

=hY Gu@" +a)P] + Py, (13)

where we defined G, = ) i8 iXjn. Thus, in the new collective
base

A =howa'a+hYy WP,
n

+ @ +a) ) Ga(B] + By). (14)

A photonic nanocavity mode characterized by homoge-
neous fields couples preferentially with the largest-energy
mode due to its particularly large dipole strength (and the
large resulting G,). Thus, it is informative to diagonalize
the Hamiltonian in the simple case that just one collec-
tive state of frequency W interacts with one cavity mode.
We look for the two new polariton operators §,, = {mid +

nm]&"' + szﬁ + nmgf"", where the Hopfield coefficients ¢,
and 7, (I,m=1,2) satisfy the normalization condition
1&11* = Imin1* + 1221* = [mi2]* = 1. Following a Bogoliubov
diagonalization procedure [42], the characteristic polynomial
of the eigenproblem [det(I'W — M) = 0] can be written as
(0 — W) (WP — W?) — 4wy Wi GT = 0. (15)

cav

The solutions of this equation are the eigenenergies of the two
vibron-polariton modes [20]

1
(W:2k = _[wgav + le + \/(wgav - W12)2 + 16g%wcavwl]'

2
(16)

which indicates that the new modes are separated by an energy
difference that depends on the coupling strength G; and on
the cavity detuning. Equation (16) is formally equivalent to
the equation obtained for coupling between a single molec-
ular vibration and a cavity mode [21,45] [note that Eq. (16)
slightly differs from the expression that is found when the
rotating-wave approximation is used]. The main aspects to
consider when coupling with a collective mode are that (i)
Wi in Eq. (16) corresponds to the frequency of the collective
vibrational mode (without cavity) and not to the resonant fre-
quency of the individual molecules, (ii) the coupling strength
G includes a contribution from all molecules that couple with
the photonic nanocavity [46,47], and (iii) together with the
two bright modes at energies W, there are N — 1 dark modes
that do not couple at all with the cavity in this approximation
[24,48,49].

We consider next the general case where the nanopho-
tonic cavity field can be strongly inhomogeneous, and
we need to consider all the collective modes simultane-
ously. The N + 1 eigenfrequencies ‘W,, and eigenvectors
(&t Mt Sz Tz -+ )T of the system can be found by diag-
onalizing the matrix

Weay 0 G —Gi Gu  —Gu
0 -waw Gi1 —Gi -+ Gu —Gum
Gi -G W 0 0 0
M=| G -G 0 -W 0 0 |,
gM _gM 0 0 WM 0
Gu —-Gu O 0 e 00 =Wy
(17

which results in the transformed Hamiltonian H =
anllzl AW Gl G, where M = N + 1.

To analyze the optical response of the system, we consider
the typical situation where the optical dipole of the nanopho-
tonic cavity is much larger than that of the molecules (or, in
an alternative picture, that the field induced by the nanopho-
tonic cavity is much larger than the incident field). Thus,
the coupling of light with the system is mostly dominated
by the photonic fraction of each mode m, which is given by
|&m1]? = |nm1]>. We then define the spectral function

v/2

oW+ P

S@) =Y (tm > = l1m )
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to characterize the optical response of the system, where we
include ad hoc the effect of losses through the damping rate y,
which were neglected in the original Hamiltonian, converting
the §-like modes to Lorentzians. We set the losses to iy =
1 meV except when explicitly stated otherwise. For simplic-
ity, Eq. (18) does not consider interference effects between
different modes that could induce Fano resonances under
certain experimental conditions [10,50,51]. In Appendix D
we discuss how, for the systems considered here, introducing
losses in this way gives almost identical results as including
complex-value (lossy) frequencies in the Hamiltonian.

A. Optical response of the vibrational modes

For the following analysis, we study the effect of sep-
arately changing the different parameters: the strength of
the dipole-dipole interaction €2y, the confinement o, the
molecule-cavity strength g, and the losses y. Other pos-
sibilities, such as modifying the lattice parameter a, can be
thought of as a combination of these separate changes (see
more details in Appendix B).

We consider as a first step a nanophotonic cavity charac-
terized by a homogenous field distribution (o, — 00), which
couples with the 2D molecular square patch containing N =
51x51 = 2601 molecules that was analyzed in Sec. III. The
optical spectrum of the system is shown in Fig. 3(a) as a
function of the frequency of the cavity wc,, for the case of
no direct molecule-molecule coupling €2y = 0 and molecule-
cavity coupling strength fig ;(r;) ~ 0.04 meV [throughout the
paper we set figi = V'3 |g;(r)|?, except when explicitly
stated otherwise]. For large detuning wc,y — ®Wmo1, We observe
a single peak at the frequency of the nanophotonic mode. As
Weay —> Wmol, the second mode becomes visible and the two
peaks show the typical avoided anticrossing.

This avoided anticrossing is a characteristic property of
the strong-coupling regime [52,53] and can be described
by setting the dipole-dipole interaction to zero 2;; = 0 and
®j = Wmol in Eq. (1) and defining N new operators N =
Z?}:l c jllAn, where cj; are coefficients forming an orthonormal

base and (c11, €12, - .+, C1v) = (81,82, -+, &N)/V 21 lg;I?
[48]. Then § is the only collective mode coupled to the cavity,
with a total effective coupling

8tot =

thus allowing us to write

N

Heon = hoeay@'a + 1) onaSS; + hga@' +a)S] +8)).
j=1

(19)

Figure 3 shows the results for /g = 2 meV. This Hamilto-
nian has N + 1 excited eigenstates: two polariton modes, with
eigenfrequencies approximately equal to wmel & gtor (resulting
from the linear combination of the cavity mode and the collec-
tive bright state of the molecules), and N — 1 dark modes that
do not couple with the nanophotonic cavity (these dark modes
are combinations of molecular excitations orthogonal to the

(@) —Qy =0,
f Wmo = 100 meV

(b) — Qo # 0, weay = W,
-—Q) =0, Wnot =W

R Weay(MeV) =

hQy(meV) =

108.2

Normalized Spectrum

115.9

I I :l

123.1 3.0
100 120 140 100 120 140

hw (meV) hw (meV)

FIG. 3. Effect of direct molecule-molecule coupling on the op-
tical spectrum S(w) of a spatially homogeneous IR cavity mode
coupled to a 2D square lattice with N = 51x51 = 2601 molecules.
The solid lines correspond to the normalized spectrum (a) ignor-
ing (29 = 0) and (b) including the molecule-molecule interaction
(20 # 0), with the resonant frequency of the molecule set to fiwy,o =
100 meV (highlighted by the light blue vertical dashed lines). In
(a) different spectra (shifted vertically for visibility) correspond to
different frequencies of the cavity modes we,,. In (b) the same w,,
are considered and the dipole-dipole coupling strength €2 is changed
between spectra. The €2 values are chosen so that, for each spectrum,
the maximum frequency of the collective eigenmodes, i.e., W;, cor-
responding to the collective mode with associated wave vector k = 0
in Figs. 2(a) and 2(e), is equal to the cavity frequency. This condition
corresponds to resonant coupling. The dashed lines in (b) correspond
to the spectra obtained without the molecule-molecule interaction
but setting wpo = W), i.e., the frequency of the k = 0 collective
mode that would be obtained if the molecule-molecule interaction
were included. The results are obtained for a homogeneous field
distribution /ig;(r;) ~ 0.04 meV, lattice constant a = 0.5 nm, total
molecule-cavity coupling strength figiy = Aiv' Y 18 (r)]> = 2 meV,
and iy = 1 meV.

collective bright state of the molecular excitation) [24,49].
The exact expression (for no losses) of the eigenfrequencies
of the polaritonic modes is given by Eq. (16) after changing
W — wno and the effective coupling strength to G| — gior-
The spectral response after switching on the molecule-
molecule coupling, €2 # 0, is shown by the solid lines in
Fig. 3(b) for the same w.,, values (we use a different value of
Qo > 0 for each value of the cavity resonance, as indicated by
the labels, for reasons explained below; since €2 is defined in
units of energy, changing its value could be seen as changing
a while keeping the dipole moment unchanged, or vice versa).
In this case, wcay, 29 > 0 and we observe two closely situated
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peaks for all wc,y, Which is drastically different from the
results for the equivalent situation with 2y = 0 (and the same
values of w.,y). This difference can be connected to the disper-
sion of the collective modes for nonzero molecule-molecule
coupling (Fig. 2). The coupling with a cavity mode charac-
terized by homogenous fields is dominated by the collective
vibrational excitations of small wave vector |k| = Vk; 4 k7,
whose eigenenergies are significantly larger than the molec-
ular one. The energy of the excitations that couple with the
cavity are thus very different depending on whether the direct
molecule-molecule coupling is included or not.

To take into account the shift from the molecular vibra-
tional energy to the energy of the brightest collective mode,
we also perform simulations where no molecule-molecule in-
teractions are considered but setting the molecular frequency
to wme = W;. Here W) corresponds to the maximum fre-
quency in the dispersion, associated with the collective mode
characterized by k = 0 (W; is obtained for the values of €2
indicated by the labels, but the molecule-molecule interaction
term in the Hamiltonian is not included in the calculation of
the spectra). The obtained results are shown by the dashed
lines in Fig. 3(b) and are generally very similar to the re-
sults in Fig. 3(b) with dipole-dipole interaction (and unshifted
vibrational frequency 7Ziwme = 100 meV), plotted with solid
lines. Further, we note that the values of €, for each cavity
frequency wg,y are chosen in Fig. 3(b) so that W) = weuy
(resonant system), which explains why we always obtain two
peaks of similar amplitude.

The results in Fig. 3(b) thus indicate that the molecule-
molecule interaction can strongly modify the optical response
but that, for a spatially homogenous cavity field, this effect
can be mostly corrected by considering a shifted vibrational
frequency wme — Wi. Shifts from the bare molecular fre-
quencies in optical spectra due to dipole-dipole interactions
can also occur in J-aggregate ensembles [54] and absorbed
molecules [55].

From a practical perspective, this renormalization of the
energy can be accomplished by associating the vibrational
frequency with the resonance of the classical permittivity of
the infinite material (monolayer in the case in this work), as,
to a first approximation, the classical permittivity is a response
function that already contains the interactions between dif-
ferent regions of the material (via a Clausius-Mossotti-like
relation, for instance). This approach was followed, for ex-
ample, in Ref. [26].

We emphasize further the energy renormalization in
Fig. 4(a), where we plot the results over a smaller fre-
quency range for different effective coupling strength gy =

21};1 lg;(r)|?. In this case, we include a weak variation of

the spatial field distribution of the photonic mode (o, = 15a)
and the system is in resonance fiwc,y = iAW) =~ 108.2 meV.
Consistent with the results in Fig. 3, the results obtained
including the molecule-molecule interactions /A2y = 1 meV
and using the vibrational frequency wpo (solid lines) are
very similar to those obtained for 2y = 0 and hwy,, = AW =
108.2 meV. All spectra show two almost symmetric peaks,
with energy separation (Rabi splitting) that increases with
growing gi:. In contrast, the direct molecule-molecule inter-
actions can strongly modify the optical spectra for a tightly

(a) oL=15a (b)
- QO * 07 Weay = Wl
-=Q =0, Wmot = W

i gior = 2.0 meV
- QO * 07 Weay = Wl
—=Q) =0, Wno =W

i gor(meV) = oL =
|
: V A
o 1.0 50a
(D] P — e ]
o
wn
] ‘
S \
S - 1004
=
3
Z
200 a
2.5 30.0a
100 105 110 115 120100 105 110 115 120
A w (meV) hw (meV)

FIG. 4. Influence of the direct dipole-dipole interactions on the
optical spectra S(w) for different values of the coupling strength and
field localization. The normalized optical spectra of an IR cavity
coupled to a 2D square lattice with N = 51x51 = 2601 molecules
is plotted (a) changing the total molecule-cavity coupling strength
Gt = 2_; 1g;(r)|? (values indicated in the figure) while keeping fixed
the width of the field distribution to op. = 15a and (b) changing the
field localization of the photonic mode oy, (values indicated in the
figure) and keeping fig,x = 2 meV fixed. Solid lines correspond to
the results obtained including direct molecule-molecule interactions
with 712y = 1 meV and vibrational frequency /fiwn, = 100 meV.
Dashed lines represent the values without molecule-molecule inter-
actions and using fiwye = iW; ~ 108.2 meV. We also set fiwe,y =
nW, = 108.2 meV for all spectra. The spectra are shifted vertically
for visibility and are obtained for lattice constant a = 0.5 nm. We set
hy = 1 meV.

confined cavity field. This effect is illustrated in Fig. 4(b),
where we fix figi, = 2 meV and vary the field confinement
or/a. The cavity resonance is again chosen to be resonant
with W;. The constant value of gy assumed in this case
implies a strengthening of the coupling of the cavity with
each individual molecule g; for increased field confinement
(smaller o1 /a), as the number of molecules interacting with
the cavity field is effectively reduced. We observe that, for
oL/a 55, there is a striking difference between the results
obtained including molecule-molecule interactions (%€2¢ =
1 meV and fiwme = 100 meV, solid line) and those without
these interactions (29 = 0 and /iwne = AW; ~ 108.2 meV,
dashed line). The former shows a gradual smearing out and
disappearance of the low-energy peak that is not present
for the latter, a behavior that can be understood from the
following simple picture. A weakly confined (i.e., almost uni-
form) nanocavity field couples preferentially with the single

eigenmode at Vk? + ky2 = 0 that is characterized by a sig-
nificantly larger dipole moment Y i Xjndmor than that of the
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FIG. 5. Influence of direct molecule-molecule interactions for
different cavity frequencies of an IR cavity characterized by (a) an
almost homogeneous and (b) an inhomogeneous field distribution.
The cavity is coupled to a 2D square lattice with N = 51x51 =
2601 molecules and the normalized optical spectrum is plotted for
different cavity frequencies, indicated in the figure (arrows) and
including (solid lines) or ignoring (dashed lines) direct molecule-
molecule interactions. The former considers vibrational energy
hwge = 100 meV and the latter fwp, = iW; =~ 108.2 meV. The
spectra are shifted vertically for visibility and are obtained for a
field distribution of width (a) o, = 30a and (b) o1 = 2.5a. The other
parameters are the dipole-dipole coupling strength /2y = 1 meV,
lattice constant @ = 0.5 nm, total molecule-cavity coupling strength
higiow = IV}, lg;(r)]> =2 meV, and iy = 1 meV.

other eigenvalues. Thus, the optical response is dominated by
the coupling between the photonic mode and one collective
vibrational mode, resulting in the standard emergence of two
almost symmetric peaks of a typical strongly coupled resonant
system [see Eqgs. (16) and (19)]. On the other hand, a strongly
confined field can couple efficiently (large G,) with modes of

higher order (larger vk} + k7), resulting in a more complex
spectrum with contributions from many collective vibrational
modes along the dispersion curve. As a subtle point, we note
that the difference between the two spectra (with and without
molecule-molecule interactions) is smallest for o /a =~ 10-20
and it increases for less confined fields (larger o /a), which
we attribute to the illumination of the molecules near the
edges of the molecular ensemble. However, the differences in
this case of almost homogeneous fields remain significantly
smaller than in the case of very strongly confined fields.

We confirm the importance of direct molecule-molecule in-
teractions for strong nanocavity field confinement by showing
in Fig. 5 the optical spectra as a function of the frequency
of the cavity mode wy. We consider a small [op = 30a,

Fig. 5(a)] and a large [0y, = 2.5a, Fig. 5(b)] field confinement
and the other parameters are kept the same as in Fig. 4(b) both
when including (solid lines) and neglecting (dashed lines) the
direct molecule-molecule interactions. In all cases, we find the
typical avoided-crossing near-resonant conditions (Awcay =
hW, =~ 108.2 meV). Further, for weak-field confinement, we
find very similar results independently of the inclusion or
exclusion of the direct molecule-molecule interaction. In con-
trast, for the strongly confined nanocavity field, including the
direct interaction [solid line in Fig. 5(b)] strongly affects the
results: By comparison, the peak spectrally closer to wy =
W, becomes weaker and broader than the one near w,, (or the
ones with no direct-direct interaction).

B. Establishing the criteria for strong dipole-dipole interaction

We focus next on determining the condition that needs to
be fulfilled for the direct molecule-molecule interactions to
change significantly the optical response of a coupled system
beyond a simple energy renormalization. With this purpose,
we first consider that the cavity field mostly extends over a
range approximately equal to [0, kn,x] of wave vectors in k
space. This range of wave vectors would indicate the set of
modes from the dispersion [Fig. 2(e)] of the 2D material that
can be excited. The numerical dispersion for small k can be
approximated by (see derivation in Appendix C)

Q
oK) = [0 +20m0 Y — e — 27 lkla
s ( /m2 +n2)3

(20
(the sum runs over m,n = —N/2 to N/2, excluding n=m)
so that the range of wave vectors approximately equal to
[0, [kmax|] corresponds to frequencies covering a spectral
width A® = Wmax — Omin = 27 RLo|Kmax|a. We propose that
the molecule-molecule interactions need to be considered ex-
plicitly in the Hamiltonian when this spectral width is of the
order of or larger than the losses, i.e., Aw X y, corresponding
to the following condition:
mL 2y Q1)
oL
We have approximated |kp.x| &~ 1/or, for the Gaussian illu-
mination of width (in real space) or. Equation (21) predicts
that the direct molecule-molecule interaction needs to be in-
cluded in the Hamiltonian for very large coupling strength,
very large confinement (low o), and/or very low losses. This
equation could be further generalized to other conditions, such
as different illuminations. This criterion depends only on the
ratio of the different parameters oz /a and €2y/y, not on their
absolute value.

To assess the validity of the proposed equation, we
first consider a particular example of dipole-dipole cou-
pling strength €2y = 1 meV, o, = 2.5a and optical coupling
strength 7igis = 1 meV. Figure 6 shows the corresponding
spectra as the loss varies y, again including the dipole-dipole
interactions in the Hamiltonian and setting /iwy,, = 100 meV
(solid line) or ignoring them and renormalizing the vibra-
tional energy to wpe = W) (dashed line). We observe that
the two spectra start to differ for /iy < 2-3 meV, consistent
with the condition 7y < 2.5 meV obtained from Eq. (21).
Interestingly, the spectrum obtained for the weakest losses
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FIG. 6. Influence of losses y in the normalized spectrum. The
cavity is coupled to a 2D square lattice with N = 51x51=2601
molecules and the normalized optical spectrum is plotted for
different cavity losses y, indicated in the figure, and including
(solid lines) or ignoring (dashed lines) direct molecule-molecule
interactions. The former considers vibrational energy /fiwm, =
100 meV and the latter wy, = W;. The spectra are shifted ver-
tically for visibility and are obtained for a field distribution of
width o = 2.5a. The other parameters are the dipole-dipole cou-
pling strength (a) 72y = 1 meV (AW, =~ 108.2 meV) and (b) /12y =
0.1 meV (AW; =~ 100.8 meV) as well as w.,, = W, lattice constant
a = 0.5 nm, and total molecule-cavity coupling strength 7fig,, =

h /Z,' lg;(r)]> =1 meV.

(hy = 0.25 meV) and including dipole-dipole interactions
shows many small narrow peaks, a direct signature of the
participation of more than one collective vibrational mode in
the response.

As the threshold condition of y scales directly with €2, we
next perform in Fig. 6(b) a similar analysis for a much smaller
value of the dipole-dipole interactions, 72y = 0.1 meV. This
figure corresponds to numerical parameters closer to that of
molecules. For this case, we observe that the two spectra start
to differ for iy £ 0.2 — 0.4 meV, and the condition in Eq. (21)
gives iy < 0.25 meV, which is challenging to achieve experi-
mentally but within reach [56]. Finally, we apply the criterion
in Eq. (21) to the results in Fig. 4(b). In this case, 72y =
hy =1 meV, which gives the threshold oy /a £ 27 when the
dipole-dipole interactions need to be explicitly considered, in
good agreement with the numerical results.

V. CONCLUSION

We have studied the effect of direct molecular dipole-
dipole interactions on the optical response of photonic
nanocavities strongly coupled with molecular assemblies or
2D materials. The description was based on a CQED approach
to the dynamics of the states in the system, without rotating-
wave approximation and including the losses via an effective
broadening of the modes. An alternative approach to model
the system based on classical dipoles or coupled harmonic
oscillators is also possible.

As a first step, we described how, in the absence of the
nanocavity, the dipole-dipole interactions lead to the emer-
gence of collective modes that span a significant frequency
range and are characterized by a very large wave vector in the
in-plane direction. It was thus possible to obtain a dispersion
relation and we found that it resembles the one characterizing
an infinite layer, even for a relatively small molecular patch
with a lateral size of only N xa ~ 25 nm (to be compared with
the much larger wavelength).

When the photonic nanocavity was included, the influence
of the direct molecule-molecule interactions on the optical
response of the coupled system strongly depended on the
degree of localization of the cavity fields. For homogeneous
or slowly varying fields, the effect of these interactions was
mostly a direct renormalization of the vibrational resonant
frequency. However, when the fields were confined to the
level of a few intermolecular distances, conditions existed
under which direct interactions could show a more profound
effect. Instead of observing the two clear polaritonic peaks,
as occurs for no direct interactions, one of the polaritonic
modes could spread out into many (weaker) subpeaks. We
attributed this observation to the fact that, as a consequence of
the direct molecule-molecule interaction, multiple collective
modes at different frequencies and wave vectors could couple
(less efficiently) with the photonic nanocavity and contribute
to the response.

We further derived a simple equation that indicated the
conditions for this effect of dipole-dipole interaction to be-
come relevant, beyond the energy renormalization. In general,
molecules (or 2D materials) characterized by strong tran-
sition dipole moment and/or weak losses were required,
together with large field localization. Several 2D materi-
als are characterized by low losses and large vibrational
dipole moments, which could reach the dipole-dipole cou-
pling strength 71$2p ~ 1 meV used in most of our calculations
(Appendix A). Molecules are generally characterized by
weaker ¢, but their associated losses could also be suffi-
ciently small. For example, several vibrations of the molecule
4, 4 -bis(N-carbazolyl)-1, 1’-biphenyl (CBP) have losses of
Yol ~ 0.7-1.74 meV =~ (0.04-0.1)wne and the losses of h-
BN lattice vibrations (phonons) are yh.an &~ 0.5 — 0.6 meV
[56]. Further, the vibrational losses for a single molecule
embedded in a matrix can be as small as 0.07 meV (10-ps
lifetime).

Our results thus identify the conditions where it becomes
necessary to include explicitly direct molecule-molecule in-
teractions to describe the optical response of a coupled system
beyond a renormalization of the energy. Furthermore, we have
focused our study on the coupling with molecular vibrations
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or phonons, but the analysis and conclusions can be applied
to other transitions (such as molecular excitonic transitions)
in a straightforward manner. For example, it is interesting to
consider the coupling of plasmonic systems with excitonic
transitions characterized by large dipole moment and present
in quantum emitters such as molecules or quantum dots. The
coupling strength can be very large in these systems [57-59],
and the losses of the excitonic transitions are only limited
by the spontaneous decay rate and can thus in principle be
extremely small at cryogenic temperature. On the other hand,
plasmonic losses and room-temperature excitonic losses can
be large, so it is important to consider the details of each
experimental configuration.
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APPENDIX A: ESTIMATION OF £,
FOR REAL MATERIALS

To estimate the value of 2y, we consider first a simple
description of the relative permittivity ¢, of a polar material
at a frequency w, near a phonon resonance. Ignoring losses,

we obtain
2 2
w7y — W
er(w) = soo<1 + %)
[0

— 2
T w

(AL)

where w;, and wr are the longitudinal and transverse phonon
frequencies, respectively, and &, is the high-frequency per-
mittivity. This permittivity corresponds to a transition dipole
moment d, per unit cell of volume V¢ [26],

h
dy, = \/Evcellgogoo (a)z - w%)’ (A2)

where g is the vacuum permittivity. Assuming, for simplicity,
a cubic structure V.o = a°, with a the lattice parameter of the
unit cell, we obtain

d? o —of

Qo =

= = A3
47 gpeohial (A3)

8 wr

For this derivation we have considered an arbitrary value of
£s0 to show that it does not affect the final result. The model
in the main text corresponds to £o, = 1 as only one vibrational
mode is included.

As an example, we obtain 2y = 0.0196wr for SiC [60] and
Qo = 0.016w7 and 0.008w7 for the in-plane and out-of-plane
modes of h-BN, respectively [26]. These values are compara-
ble to the value €29 = 0.01wp; used in the main text, although

a more rigorous model would need to consider that the unit
cell of these materials is not cubic, that we are comparing here
with a bulk material and not a monolayer, and that wp does
not exactly correspond to w; or wy.

We can also proceed in the same manner for molecular en-
sembles. We note that the permittivity is in this case typically
written in a different form, such as

2
&r(w) = €c + — 5 (A4)
a)mol -
where S sets the strength of the resonance and wp, is the
resonant frequency. Proceeding in the same way as before, we

obtain

S2
- 8T Wmol€co .
For CBP [30], e, = 2.8 and the vibrational peak at wpne =

1504 cm~! is characterized by S = 164 cm~!, which gives
Qo = 1.7x 10 *wmo.

Qo (AS5)

APPENDIX B: OPTICAL RESPONSE OF THE
VIBRATIONAL MODES WITH LATTICE CONSTANT a

The lattice constant will change the results of our discus-
sion in the main text quantitatively, but not qualitatively. For
homogeneous fields, changing the lattice constant would have
the same effect as changing the coupling strength € o< 1/a,
which we explore in Fig. 3(b). For inhomogeneous fields, i.e.,
confined fields, changing a can involve several effects simulta-
neously (change of €2, change of the normalized confinement
or/a, and change of the coupling strength g;).

Here we explore two different situations where we change
the lattice constant a. In Fig. 7(a) we show the case where
we fix g; and g and in Fig. 7(b) the case where we fix
gt and op. We show the results for a nanophotonic cavity
which couples with the 2D molecular square patch containing
N = 51x51 = 2601 molecules as a function of the lattice
constant a, considering /12y = 0.125/a> meV. We set for each
case weyy = Wi and fig, = 2 meV.

APPENDIX C: THEORETICAL DISPERSION RELATION
OF AN INFINITE MONOLAYER

In the main text we numerically solved for the collective
excitations of the finite system arising from the direct dipole-
dipole interactions. On the other hand, it is possible to obtain
the analytical dispersion relation of the infinite 2D molecular
monolayer by taking a solid-state approach, where quasiexci-
tations propagate on a lattice. Each molecule is indexed by s
and is located at ry. The total vibronic Hamiltonian becomes

Huol + Hyipvib = Ti Z motb! by

S
+ k Z Z ers’_r5|(l;I + I;S)(EZ/ + I;s/).
s s'>s

(ChH

The equations of motion for the expectation values B = (bg)
can be obtained from dbs/dt = —i/h[bs, Hynol + Hyipvib]- TO
better illustrate the procedure to obtain the dispersion relation,

043718-10



INFLUENCE OF DIRECT DIPOLE-DIPOLE ...

PHYSICAL REVIEW A 108, 043718 (2023)

(@  fige=2meV, (b)
gjfixed
— Q) #0, Weay = Wy
__QO =0, Wmol = W

figor = 2 meV,
oL =1.25nm
— Q% 0, weay = Wy
—=Q) =0, Wno = W,

a(nm) =

0.5 /A\

0.6

80 100 120 140 80 100 120 140
fw (meV) hw (meV)

Normalized Spectrum

FIG. 7. Influence of the direct dipole-dipole interactions on the
optical spectrum S(w) for different values of the lattice constant a.
The normalized optical spectrum of an IR cavity coupled to a 2D
square lattice with N = 51x51 = 2601 molecules is plotted, keeping
the total coupling fixed at 7ig,,x = 2 meV and including (solid lines)
or ignoring (dashed lines) direct molecule-molecule interactions. The
former considers vibrational energy 7wy, = 100 meV and the latter
®mol = W;. (a) Each equivalent molecule (in the same lattice position
J) experiences the same coupling strength g;, which requires chang-
ing o appropriately (for reference, when a = 0.5 nm, o = 2.54).
(b) Same as in (a) but the field distribution o = 1.25 nm is kept
fixed. The spectra are shifted vertically for visibility and are obtained
for iy = 1 meV, and 2y = 0.125/a® meV. In all the spectra, the
value of the resonant cavity frequency .,y is set equal to the corre-
sponding value of W;.

we first consider a 1D chain, assume nearest-neighbor cou-
pling Qi _r,| = 2; j+1 = Qo and neglect the terms 55135, and
bb], that describe the creation and annihilation of two vibra-
tions at the same time [rotating-wave approximation (RWA)].
By doing so, we arrive at

Bj = —iwmeBj — iQ0(Bj—1 + Bj+1)-

We then insert the ansatz f; = Be'**/~" into the above
equation, where q is the lattice constant, and obtain

® = Omol + Qo™ + ), (€2)
which straightforwardly leads to the dispersion relation
® = Wmol + 2820 cos(ka). (C3)

This result has the advantage of simplicity, but does not
show the right tendency for low values of k, where the
coupling with a significant number of neighbors beyond
the nearest one can contribute to the result. However, the

procedure described can be extended to all neighbors in
a straightforward manner. The equations of motions are in
this case ,Bj = —iwmoBj — iZl# Qj;f;. Using the ansatz
B; = Bre'®Tim@) with r;; = r; — r; gives the dispersion re-
lation

W=+ Y SHET + e, (C4)
I#]

with the factor of % to avoid double counting and €;; as
defined in Eq. (3), where the sum runs over all / # j, with
J an arbitrary number

1. Dispersion relation beyond the RWA

For the relatively small values of €2y used in the main text,
the RWA [used to derive Eq. (C4)] is a good approximation.
However, for completeness, we derive next the dispersion
relation without the RWA, i.e., including the terms that do not
conserve the number of excitations. We begin by considering
again only coupling between nearest neighbors in a 1D chain.
The equations of motion become

Bj = —iwmolBj — iS0Bj—1 — iS0Pj+1 — QB — QB

B} = ioma B} +iQ0B7_; + Q0B +iQBj—1 +iQ0Bj+1.
Defining A; = B; + B and B; = B; — B, we get

d .
EAj = —iwmaBj,
d ) )
EBj = —la)m(,]Aj — lZQ()(Aj_l +Aj+1).
Taking the time derivative of the first equation, we find
d2

ﬁAJ‘ = —wpoAj — 20na QA1 +Ajsr).

Following the same procedure as before, with the ansatz A; =
eikaj=en) results in

= \/w; o+ 20ma (e + e-ika). (C5)

On the other hand, if we proceed in the same manner but ex-
pand to all possible neighbors, we obtain the final dispersion
relation

o \/”ﬁm +man Y Quj (T 4 e, (C6)
1#]

with a factor % again included when we expand to more
molecules. Equation (C6) reduces to the RWA in the limit of
small €2;;, as expected.

In Fig. 8 we compare the numerical dispersion relation for
a finite (N = 51 x51) number of molecules (without nanocav-
ity), obtained as in Fig. 2(e), with the analytical dispersion
of the infinite monolayer. The latter is evaluated in the range
kyy = [0, 7 /a] with increments of 7 /100a. The results for
hQ = 0.8 meV in Fig. 8(a) show good agreement between
the numerical results of the finite system (blue squares) and
the analytical results of the infinite monolayer within the RWA
[Eq. (C4), lilac circles]. The exact theoretical dispersion of
the infinite monolayer obtained without the RWA [Eq. (C6)]
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FIG. 8. Dispersion relation for dipole-dipole interaction strength
between the molecules: (a) 12y = 0.8 meV and (b) 72y = 12 meV.
The molecules are placed in a square lattice with lattice constant a =
0.5 nm and /iwy, = 100 meV. We compare the numerical results of
the eigenvalues W, for N = 51x51 = 2601 molecules (blue squares)
with the analytical expression for an infinite monolayer obtained with
[lilac circles, Eq. (C4)] and without [pink triangles, Eq. (C6)] the
RWA. The analytical equations are evaluated for a range of k., =
[0,  /a]. Dashed lines show the linear approximation according to
Eq. (C7).

is not shown, but it is almost identical to that obtained with
the RWA.

To illustrate a situation that requires going beyond the
RWA, we plot in Fig. 8(b) the dispersion relation for a very
large 1€2p = 12 meV. This large coupling leads to a signif-
icantly larger span of energies of the collective modes. We
find again that the exact theoretical dispersion of the infi-
nite system, as obtained without the RWA (orange triangles)
[Eq. (C6)], matches well the numerical results for the finite
number of molecules (blue squares). However, the theoretical
dispersion of the infinite system obtained within the RWA
(lilac circles) [Eq. (C4)] is markedly different from both.

Figure 8 also shows a spreading of the data points in the
dispersion relation. To explain its origin, we plot in Fig. 9(a)
the Brillouin zone for a lattice with a square unit cell, where
we enhance the triangle formed by the critical points I', X,
and M. The dispersion is shown schematically in Fig. 9(b).

k2 + k2

For each wave vector |k| = s

the eigenvalues extend

over a range of energies. The eigenvectors with wave vector
pointing in the direction I'-X of the Brillouin zone (k, = 0,
maximum value k™ = 7 /a) correspond to the points of
largest energy for each |k|. Similarly, eigenvectors with wave

(a)
ky
n
alY M
X
_x I r
a a k'x
_x
a
(b)
h
*
*
Q¥
.
\\\\
3 e
< e
0 x \2r

JK2 + k2

FIG. 9. (a) Brillouin zone of the square lattice. The critical
points (points of high symmetry) I', M, X, and Y are depicted.
(b) Illustrative example of a typical dispersion relation for a square
lattice with dipole-dipole interactions (shaded orange area). For a
fixed V&2 +ky2, the energies of the collective vibrational modes
show a certain spread so that they are contained within the two
dashed blue lines shown in the plot. The upper blue dashed line
corresponds to wave vectors in the I'-X direction in the recipro-
cal space, with k, =0 and k, < 7 /a. The lower blue dashed line
corresponds to wave vectors in the I'-M direction [k, =k, and

()2 + (k7™ = V2( fa)].

vector in the I'-M direction (k. = k), with maximum value
[ (kmax)2 4 (k_{,‘““")2 =27 /a), results in the lowest-energy

solutions. The eigenenergies corresponding to these two di-
rections are highlighted in the figure by the blue dashed lines.

2. Linear approximation for k — 0

The dispersion relations in Fig. 8 show a linear dependence
between the energy and the modulus |Kk| of the wave vector
for small k. For simplicity, we consider the case k, = 0, as

the results show the same slope with |k| = V7 + k7, inde-
pendently of the individual weights of k, and k,. Moreover,
since we are considering a square lattice with constant a, let us
write the positions x; = am and y; = an. In this case, Eq. (C6)
becomes

cos(ky,am)

W= \/a)rznol + 20mo1€20 Z W’
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FIG. 10. Comparison of the results obtained using two different
procedures to incorporate losses in the spectral response. Normal-
ized spectra are shown for a 2D lattice with N = 51x51=2601
molecules with lattice constant 0.5 nm and 7wy, = 100 meV that
couple with an IR cavity mode characterized by field confine-
ment (a) op =30a and (b) op = 2.5a. In both cases, /gy =
Wy ; lg;(r)]* =2 meV and the dipole-dipole coupling strength
is 12 = 1 meV (AW, =~ 108.2 meV). The solid lines correspond
to the results obtained when incorporating molecular, A" = 1 meV,
and plasmonic losses, /ik = 1 meV, directly in the Hamiltonian and
applying Eq. (D1). The dashed lines are obtained, as in the main text,
by solving the Hamiltonian without losses and then applying Eq. (18)
with line broadening 7y = 1 meV. The spectra are shifted vertically
for visibility.

where the sum runs from m, n = —N/2 to N/2, excluding n =
m. At k, = 0, this expression takes the value

Qo
— — :,2 ) - -
a)(kx - 0) - \/ mol 2 'mol ; ( ,—’n2 n2)3-

To find the slope, we first focus on the term

cos(k.am)

Zoma@0 ) =S

m,n

inside the square root. The derivative of this term with respect
to k, is

5 Q am sin(k,am)
—2Wmol 340 Z (—m)3 .

Interestingly, all the individual terms are null at k, = 0, but the
infinite sum is not, which indicates that the value of the sum

m,n

at k, = 0 is determined by the terms corresponding to large
m? + n2. Based on this, we convert the sum in m and n to an
integral, which can be solved analytically:

o0 ©  axsin(k.ax)
—2Wmo1$20 dx dy = 4w wme Qoa.

(V2 )2

The energies at low values of k, thus follow

Q
0= [0+ 2wmne —— — 4T Wy Roak,.
\/ mol an:( /m2 +n2)3

Expanding this expression to first order and substituting
ke > k| =+ kf + kf (discussed above), we obtain

Qo
— 2 -
w= \/a)mol + 2Wmol mgn NS

27 Qo |K|awmol

— = . (e0))}
\/ Dpo1 + 20m01 X ey

For Q¢ <« wme the second term of the denominator can be
ignored and Eq. (C7) becomes Eq. (20). The dispersion given
by Eq. (C7) is also plotted in Fig. 8 (dashed line) and shows
good agreement with the numerical results for low [k]|.

APPENDIX D: COMPARING DIFFERENT
WAYS OF INCLUDING LOSSES

We incorporated the losses in the spectra of the main text
by changing the é functions obtained in the spectral function
when no losses are considered into Lorentzian lines of full
width at half maximum y . In the following, we compare these
results to those obtained by performing the transformation
Weay = Wcay + ik /2 and ®mo] = ®Wmol + 1['/2 and numeri-
cally diagonalizing the full Hamiltonian of the system to find
the new eigenvalues. For simplicity, we consider molecular
losses Al = 1 meV and different cavities with Zik = 1 meV.
As the new eigenvectors of the system ‘W, are no longer real,
we use the same definition as in Eq. (18) but modified as

S@) =Y _(tm > = l1m )

Im(W,,)
" 1o — Re(W,) P + Om(W,) P’

(D1)

in order to compare both results.

In Fig. 10 we compare the results obtained in the main
text [Eq. (18), dashed lines] with those obtained using the
procedure described in this Appendix (solid lines). The results
are obtained for the same system as in Fig. 1(a) (N = 51x51
dipoles in a monolayer coupled to a cavity mode), for small
oL = 30a [Fig. 10(a)] and large op, = 2.5a [Fig. 10(b)] local-
ization of the cavity fields. The results are very similar in both
of the procedures used to incorporate losses.
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