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Relaxation breakdown and resonant tunneling in ultrastrong-coupling cavity QED

Daniele De Bernardis *

Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy

(Received 15 May 2023; accepted 5 October 2023; published 20 October 2023; corrected 10 January 2024)

We study the open relaxation dynamics of an asymmetric dipole that is ultrastrongly coupled to a single
electromagnetic cavity mode. By using a thermalizing master equation for the whole interacting system we derive
a phase diagram of the Liouvillian gap. It emerges that the ultrastrong coupling inhibits the system’s relaxation
toward the equilibrium state due to an exponential suppression of the dipole tunneling rate. However, we find
that polaronic multiphoton resonances restore fast relaxation by a cavity-mediated dipole resonant tunneling
process. Aside from the numerical evidence, we develop a fully analytical description by diagonalizing the Rabi
model through a generalized rotating-wave approximation, valid in the so-called polaron frame. The relaxation
physics of such ultrastrong-coupling systems is then reduced to a multiphoton polaron version of the standard
textbook dressed states picture. At the end we discuss an extension to a multiwell dipole that can set the basis of
a cascaded resonant tunneling setup in the ultrastrong coupling regime.
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I. INTRODUCTION

Relaxation from a metastable state toward equilibrium
is a central problem in many branches of physics, such as
chemical reactions, radiaoactive decay, and electronic trans-
port, to name a few [1]. The energy barrier separating a local
minimum from the stable equilibrium, i.e., the activation bar-
rier of chemical reactions [2], can be overcome by thermal
fluctuations, for which, after an initial absorption of energy
from the bath, the system is kicked out the metastable state,
rolling down to its absolute equilibrium state and releasing the
energy excess. When the temperature is too small to kick the
system over the metastable energy barrier, relaxation is then
dominated by the tunnel effect (or quantum tunneling), which
is one of the first surprising consequences of the quantum
theory [3].

Following the hand-waving intuition that quantum fluc-
tuations replace thermal ones in kicking the system out of
the metastability, one might speculate that including in these
systems a supplemental quantum reservoir could sensibly alter
the tunneling dynamics. The work of Leggett et al. on tun-
neling systems coupled to an environment [4,5] has shown
that this is actually the case, and tunneling can be sensibly
changed as a function of the environment parameters. Since
for most systems the natural environment is provided by the
electromagnetic radiation, here quantum tunneling is cross-
ing its path with another fundamental concept of quantum
physics: the nonempty vacuum of quantum electrodynamics
(QED) [6], rising the question: can vacuum fluctuations of
the electromagnetic field affect tunneling and relaxation in
material systems?

Experiments have shown strong suggestions that the an-
swer may be positive, and that the electromagnetic vacuum of
a resonant cavity could have a major role in chemical reac-
tion and electronic transport where important differences are
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observed when molecules, atoms or electrons couple strongly
or ultrastrongly to such a extreme resonant electromagnetic
environment [7–10].

All these exciting observations have stimulated multiple
theoretical debates in various communities, opening new re-
search lines such as: polaritonic chemistry [11–13], cavity
QED control of electronic transport in mesoscopic devices
or in quantum Hall systems [8,14], cavity QED modification
of ferromagnetism, ferroelectricity, and superconductivity
[15–20], and their out-of-equilibrium extensions [21–28], all
with the general aim to explore and understand up to which
degree the quantum vacuum of cavity QED can be a resource
to modify and control properties of matter [29–32].

However, in the community there is still not a full con-
sensus about the origin, validity, and interpretation of these
theories and their relation with the actual experimental evi-
dence [33–36], suggesting that more research and additional
examples are needed to completely clarify these physical
mechanisms.

In this article we explicitly address the problem of how
the electromagnetic vacuum of ultrastrong-coupling cavity
QED can affect the relaxation toward equilibrium of a polar-
izable material. In order to isolate every different effect we
consider a simple paradigmatic setup: an asymmetric double-
well dipole in a single-mode resonant cavity. Its low-energy
dynamics can be approximated to the quantum Rabi model,
which is the simplest theoretical framework with which to
study light-matter interactions. We complete the description
of the model including two basic dissipative mechanisms:
Ohmic cavity dissipation and dipole radiative losses. Un-
der these circumstances the system’s relaxation is described
through a thermalizing master equation valid for arbitrary
light-matter coupling values, whose steady state is the cor-
rect thermal equilibrium state. From the spectral gap λ of its
Liouvillian operator we derive a phase diagram describing
how relaxation toward equilibrium is modified by the coupling
to the cavity.
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The intuition arising from all recent works regarding ther-
malization and transport in cavity QED would suggest that
the coupling with the cavity always favors and accelerates
the relaxation properties of the system. However, here we
show that an increasing light-matter coupling strength from
the strong to the ultrastrong coupling regime exponentially
suppresses the relaxation rate of the dipole, being a proto-
type for the so-called localization transition in the spin-boson
model [5]. The cavity-induced inhibition of the dipole re-
laxation is restored only due to the occurrence of polaronic
multiphoton resonant tunneling processes, in very close anal-
ogy to Franck-Condon physics describing electron tunneling
assisted by vibrational transitions [37–40]. After showing that
this mechanism is already observable in current experimental
platforms such as superconducting circuits we comment on
the possible consequence for cavity-assisted quantum trans-
port and cascaded ultrastrong-coupling setups with multiwell
dipoles.

Differently from previous studies [21–23], we exploit a
generalized rotating-wave approximation of the Rabi model
from which we analytically derive the transition rates of the
master equation in the ultrastrong coupling regime. From
this calculation we obtain a complete and simple picture of
how relaxation and thermalization work in terms of polaronic
dressed states, valid in the ultrastrong coupling regime.

The article is organized as follows. In Sec. II we introduce
the physical system and its approximated description in terms
of the asymmetric quantum Rabi model. By considering the
Liouvillan gap of its open dynamics, in Sec. III we study
how the ultrastrong coupling regime changes the relaxation
and thermalization rate. By using a generalized rotating-wave
approximation to diagonalize the Rabi model we explicitly
show an exponential slow-down of the system’s relaxation
due to the ultrastrong coupling regime. In Sec. IV we show
that the fast relaxation can be restored by a cavity-assisted
multiphoton resonant tunneling process. Exploiting again the
generalized rotating-wave approximation we develop the dis-
cussion in terms of multiphoton polaron dressed states. In
Sec. V we extend this setup to the extended Dicke model
leading to a cascaded resonant tunneling device. Finally, in
Sec. VI we draw our conclusions.

II. MODEL

We consider the paradigmatic cavity quantum electrody-
namics (cQED) setup described in Fig. 1(a), where a single
electrically polarizable object (a dipole) is placed into the
planar capacitor of a resonant LC circuit. This simple toy
model is able to reproduce most of the features of cQED in
all various coupling regimes and is particularly important in
giving a simple and intuitive description of many solid-state or
circuit cQED setups relevant for experiment in the ultrastrong
coupling (USC) regime in the GHz or THz range [15,41–44].
The system cavity QED Hamiltonian is given by the so-called
asymmetric Rabi model (h̄ = 1)

HcQED ≈ HRabi = ωca†a + ωd sz + εsx + g(a + a†)sx, (1)

FIG. 1. (a) Cavity QED system. The cavity is modeled as an
LC circuit, where the inductor magnetic flux � takes the role of
the dynamical variable of the electromagnetic field, usually given
by the vector potential �A. The dipole inside the capacitor couples
to the voltage drop U = �̇ between the plates, separated by the
distance d . (b) The dipole is described as a particle in a tilted
double-well potential. The position x represents the displacement
between the two charges q, −q, such that the dipole moment is qx.
When the central well of the potential is large enough the system
is approximated by only the two lowest levels (two-level approx-
imation; see Appendix A). (c) Open-system schematic view. The
cavity QED system can be interpreted as an element of a dissipative
circuit.

where a is the annihilation operator of a cavity photon with
frequency ωc. The pseudospin operators sx,z are linked, re-
spectively, to the dipole moment x and the dipole internal
energy through the two-level approximation, ωd is the dipole
lowest transition frequency, and ε is the dipole asymme-
try (which breaks the Z2 symmetry of the Rabi model).
The dipole eigenstates are also asymmetric with frequencies
±ωε/2 =

√
ω2

d + ε2/2, and this picture holds until the two-
level subspace is well separated in energy from the rest of the
spectrum; see Fig. 1(b) for a schematic view. Finally, g is the
light-matter interaction strength due to the dipole coupling to
the cavity. A complete derivation of the model is presented in
Appendixes A and B.

As schematically shown in Fig. 1(c), the system dissipates
energy mainly in two external environments: a resistive el-
ement (or transmission line) for the cavity, and free-space
radiative modes for the dipole. The full system dynamics is
thus obtained from the contribution of three Liouvillian super-
operators

∂tρ = LH (ρ) + Lc(ρ) + Ldip(ρ), (2)

where

LH (ρ) = −i[HRabi, ρ] (3)
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generates the coherent time evolution, while the cavity and
dipole dissipative dynamics are given by

Lc/dip(ρ) =
∑
n<m

[1 + NT (ωmn)]�c/dip
nm D(|n〉〈m|, ρ)

+
∑
n<m

NT (ωmn)�c/dip
nm D(|m〉〈n|, ρ). (4)

Here D(c, ρ) = c ρ c† − 1
2 [c†c , ρ]+ is the usual dissipa-

tor super-operator [45] ([·, ·]+ is the anticommutator), and
NT (ω) = 1/{exp[ω/(kBT )] − 1} is the bosonic thermal pop-
ulation, where kB is the Boltzmann constant. The transition
rates of the relaxation dynamics are given by

�c
nm = JOhm(ωmn)| 〈n|cc

nm|m〉 |2 = γ
|ωmn|
ωc

| 〈n|a − a†|m〉 |2,

�dip
nm = Jrad(ωmn)| 〈n|cdip

nm |m〉 |2 = κ
|ωmn|3

ω3
d

| 〈n|sx|m〉 |2, (5)

where ωmn = ωm − ωn is the difference between the eigenfre-
quencies of the Rabi Hamiltonian in Eq. (1), while JOhm(ω) =
γω/ωc is the spectral density of the resistance (cavity bath),
which is Ohmic, with photon loss rate γ , and Jrad(ω) =
κω3/ω3

d is the spectral density of the radiative modes (dipole
bath), which is super-Ohmic with dipole decay rate κ . Notice
that a different choice for these spectral densities does not
change our main conclusions, as long as the spectral densities
are Ohmic or super-Ohmic. See Appendix E for important
details regarding the modeling of dissipation.

It is then easy to verify that the steady state of such a
defined master equation is correctly given by the thermal den-
sity matrix ρ(t = +∞) = ρT = e−HRabi/(kBT )/Z , where Z =
Tr[e−HRabi/(kBT )].

III. RELAXATION REGIMES OF CAVITY QED

In this section we will explore the combined effect of
light-matter coupling g and dipole asymmetry ε on the open
relaxation dynamics of the system. For the sake of simplicity,
through the whole paper we focus only on the relevant dipole-
cavity resonant case where ωc = ωd .

A. Zero temperature Liouvillian gap

To have a first indication about the relaxation properties
of the system we consider the Liouvillian gap λ = Re[λ1]
[46–48], obtained from the spectrum {λn}, n = 0, 1, 2 . . ., of
the total Liouvillian operator L = LH + Lc + Ldip defined
from Eq. (2) [49]. This quantity provides the slowest relax-
ation rate of the system, describing the long-time evolution of
the system, for which before reaching its thermal steady state
the density matrix decays as [46,48]

lim
t→∞ ρ(t ) ≈ ρT + ρ1eλt . (6)

It is worth noticing that using the Liouvillian gap to char-
acterize the relaxation toward equilibrium is not always
straightforward and may cause problems in more complex
many-body systems [50]. We will see that in our case it
works without problems or ambiguities, correctly matching
the expected physical predictions and giving a correct and

FIG. 2. (a) Phase diagram of the Liouvillian gap λ as a function
of the light-matter coupling g and the dipole asymmetry ε. Param-
eters: γ = κ/4 = 0.05ωc, ωd = ωc. (b) A cut of the phase diagram
at ε = 0 as a function of the light-matter coupling g, in logscale.
(c) A cut of the phase diagram at g/ωc = 3 as a function of the dipole
asymmetry ε, in logscale.

clear picture of how relaxation works as a function of our
control parameters (g, ε).

We consider only the zero-temperature case T = 0, which
is the relevant case for superconducting cavity QED setups
[51]. The same picture holds also for finite temperature,
provided that kbT � h̄ωc, h̄ωd , where kb is the Boltzmann
constant. When the temperature grows larger, and kbT > h̄ωc

USC effects are pushed to much larger light-matter coupling
values [52].

In Fig. 2(a) we show the Liouvillan gap as a function of
the light-matter coupling and the dipole asymmetry, λ(g, ε).
At small light-matter coupling g ∼ 0, the effect of increasing
ε is to progressively rotate the dipole eigenstates from the
sz basis to the sx basis, decreasing the value of the matrix
element in the dipole transition rate in Eq. (5). However, the
vanishing matrix element is compensated by the increasing
energy difference between the dipole levels, giving a larger
contribution from the radiative spectral density of the bath,
Jrad ∼ ω3. This can be seen by explicitly computing the dipole
transition rate at g = 0 using the bare uncoupled dipole states
in Eq. (A4), for which we have

�
dip
LR = κ

4

(
1 + ε2

ω2
d

)3/2

cos

[
tan−1

(
ε

ωd

)]

= κ

4

√
1 + ε2

ω2
d

. (7)
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In the specific case κ = 4γ this rate is always larger than
the bare photon loss set by γ which becomes the slowest
relaxation timescale, and so we have λ = −γ /2. In such
conditions, the Liouvillian gap does not show any structure
as long as the light-matter coupling remains small. It is worth
noticing that replacing the super-Ohmic radiative spectral den-
sity with an Ohmic spectral density would give too slow of
an increase of the decay rate as a function of the transition
frequency to compensate for the effect of the vanishing matrix
element of the dipole transition rate. As a result we would
have that (�dip

LR )Ohm = κ/(4
√

1 + ε2/ω2
d ), and so the overall

relaxation rate would decrease as a function of ε at very weak
coupling g/ωc 
 0 to then increase again at slightly larger
coupling. In this case the Liouvillian gap λ would exhibit a
different structure as a function of (g, ε), in the weak-coupling
limit. Giving rid of this weak-coupling feature only consider-
ing a radiative bath (and thus a super-Ohmic spectral density)
for the dipole highlights the effect of the USC, making this
choice particularly meaningful.

In the USC regime, g/ωc � 1, for small dipole asymmetry
ε 
 0, the Liouvillian gap goes to zero monothonically with
an exponential behavior λ ∼ − exp[−g/ωc], as is clearly vis-
ible from Fig. 2(b). Increasing the dipole asymmetry, ε, we
observe the emergence of lobes where the Liouvillian gap
approaches zero λ ∼ 0, separated by a narrow region where
relaxation is partially restored and λ ∼ −γ /2. This is shown
in Fig. 2(c), where we fixed g/ωc = 3 and we plot λ as a
function of ε. Quite surprisingly, these narrow gaps between
the lobes appear only when ε 
 ωc × k, where k = 1, 2, 3, . . .

is an integer number. Moreover this lobular structure is present
also in the higher Liouvillian eigenstates, suggesting impor-
tant physical consequences for the system.

B. Relaxation breakdown in the USC regime

The thermalization exponential slow-down pointed out by
the spectral analysis of the Liouvillian L can be understood as
an interplay between the USC spectral properties and transi-
tion rates in Eq. (5) (due to the dressing of the jump operators
in the USC regime [53,54]; see Appendix D). Here we analyze
in detail the symmetric case, when ε = 0, which will provide
the basic tools to understand the whole phase diagram of
Fig. 2(a).

We start by transforming the original Rabi Hamilto-
nian through the unitary transformation Upol = exp[g/ωc(a −
a†)sx], and obtaining the Rabi polaron Hamiltonian (h̄ = 1)

H̃Rabi = ωca†a + εsx + ωd

2
[D(g/ωc)s̃+ + D†(g/ωc)s̃−].

(8)

Here s̃± = sz ± isy are the raising and lowering operators
along the sx axis, while D(g/ωc) = exp[g/ωc(a − a†)] is the
usual displacement operator.

Since both cavity and dipole dissipative operators are unaf-
fected by the polaron transformation Upol(a − a†)U †

pol = (a −
a†), UpolsxU

†
pol = sx, the general master equation defined in

Eqs. (2), (3), and (4) is still valid, with the only difference
that the eigenstates |n〉, |m〉 appearing in the transition rates
in Eq. (5) are now replaced with the eigenstates of the Rabi
polaron Hamiltonian in Eq. (8).

FIG. 3. (a) Spectrum of the Rabi model as a function of the
light-matter coupling g at fixed ε = 0. The solid lines are the result
of full diagonalization, and the red and blue are meant only to match
the color code in (c). The yellow dots are given by the analytic (F6)
in Appendix F. (b) cos θn/2, sin θn/2 given by Eq. (F8) for each n
block as a function of the light-matter coupling g. (c) Scheme of the
relaxation mechanism. The cavity relaxes jumping mainly between
++ or −− dressed states, while for the dipole it is mainly between
+− states. The orange curly arrows represent the decay of the photon
from an upper state to a lower one, while the blue curly arrows
represent the decay of the dipole. In the USC limit the dipole does
not relax anymore. Parameters: ε = 0, ωc = ωd .

As reported in [55] and detailed in Appendix F, the po-
laron Rabi Hamiltonian supports a generalized rotating-wave
approximation (gRWA) and thus follows the structure of the
Jaynes-Cummings model, with the approximated conserva-
tion of the polaron excitation number N̂z

exc = a†a + sz. Its
eigenstates are then given by the usual dressed states

|+, n〉 = cos
θn

2
|↓, n〉 + sin

θn

2
|↑, n − 1〉,

|−, n〉 = − sin
θn

2
|↓, n〉 + cos

θn

2
|↑, n − 1〉,

(9)

where θn is given in Appendix F. The ground state of the
system is simply the uncoupled vacuum state

|GS〉 = |↓, 0〉. (10)

To appreciate the quality of this approximation, in Fig. 3(a)
we compare the spectrum obtained from the exact diagonal-
ization (solid lines) and from the gRWA analytical formula
reported in Appendix F (yellow dots), from which is quite
clear that the gRWA gives very good results. Relaxation can
then be understood from the dressed state perspective [56],
and in Appendix G we explicitly compute the transition rate
in Eq. (5).

From the explicit expression for the Hopfield coefficients
sin, cos (presented in Appendix F), we find that in the infinite-
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coupling limit

lim
g/ωc→∞

cos
θn

2
= 1,

lim
g/ωc→∞

sin
θn

2
= 0. (11)

This is clearly shown in Fig. 3(b), where we plot the Hopfield
coefficient analytically computed through the gRWA for a few
lowest eigenstates. Using this observation together with the
matrix element computed in Appendix G we can build the
transition rates in Eq. (5), arriving at the conclusion that the
only non-negligible transitions in the USC regime are

lim
g/ωc→∞

�c
(+,n)(+,n−1) = γ

ω+,n − ω+,n−1

ωc
≈ γ ,

lim
g/ωc→∞

�c
(−,n)(−,n−1) = γ

ω−,n − ω−,n−1

ωc
≈ γ ,

lim
g/ωc→∞

�
dip
(−,n)(+,n−1) = κ

(
ω−,n − ω+,n−1

ωc

)3

≈ 0. (12)

The fact that the dipole transition rate goes to zero
�

dip
(−,n)(+,n−1) ≈ 0 follows from the approximate degener-

acy of the states |−, n〉, |+, n − 1〉 in the USC limit, for
which ω−,n − ω+,n−1 ≈ 0, while ω+,n − ω+,n−1 ≈ ω−,n −
ω−,n−1 ≈ ωc.

Here we realize that the USC Liouvillian gap suppression
observed in Figs. 2(a) and 2(b) is due to only a suppression
of the dipole transition rates only, while the cavity transition
rates return to their bare uncoupled values when the USC
regime is reached. In the infinite coupling limit the exponen-
tial slowdown becomes a proper cavity-induced breakdown
of the relaxation of the dipole, resulting in a localization
transition similar to what happens in the so-called spin-boson
model [5]. The schematic representation of the remaining
relaxation channels is shown in Fig. 3(c). It is important to
stress that what described above holds only in the infinite
coupling limit, and for finite values of the light-matter cou-
pling g, the long-time dynamics is always given by the finite
Liouvillian gap, for both the dipole and the cavity. However,
if we consider the relaxation of a single photon (in the po-
laron frame) in the USC regime, initializing the system in
the state ρ0,ph = |1ph,↓〉〈1ph,↓| we observe a transient dy-
namics where the system relaxes as a bare cavity photon as
exp[−γ t], and arriving progressively closer to the equilibrium
state before entering in the long-time dynamics settled by the
suppressed Liouvillian gap. On the other hand, initializing
the state in a pure dipole excitation (in the polaron frame)
ρ0,d = |0ph,↑〉〈0ph,↑|, the system enters almost immediately
in the long-time dynamics, remaining frozen there. This is
well seen from the time evolution of the infidelity with respect
to the thermal state (or, at T = 0, the ground state) 1 − F =
1 − Tr[

√√
ρ(t )ρT

√
ρ(t )] [49], which is shown in Fig. 4. In

particular in Figs. 4(a) and 4(b) we show, for comparison,
the time evolution at weak and intermediate coupling. It is
well seen the slower relaxation at higher coupling, but the two
different states still decay to the ground state in a similar way.
In Fig. 4(c) on the contrary there is a strong asymmetry in the
dipole and photon state decay, and it is clear that asymptoti-
cally a single polaron photon decays with its bare decay rate,

FIG. 4. Infidelity time evolution. (a), (b) Weak and intermediate
coupling regime, the infidelity is calculated starting with the initial
density matrix ρ0,d (blue solid line) and ρ0,ph (red solid line). The
black dashed line highlights the bare decay scaling s0 exp[−γ t],
while the green dot-dashed line marks the scaling given by the Liou-
villian gap s′

0 exp[2λt] (s0, s′
0 are arbitrary offsets). The light-matter

coupling is given in the panels. (c) USC regime, the infidelity is
calculated starting with the initial density matrix ρ0,d (weak blue,
middle blue, deep blue solid lines) and ρ0,ph (orange, red, dark
red solid lines). For both initial state the couplings are g/ωc =
2.5, 3.5, 4.5 going from the lighter to the darker color. The middle
blue and deep blue lines representing the infidelity starting from
ρ0,d are almost overlapping and not well distinguishable. Parameters:
ωc = ωd , ε = 0, γ = κ/4 = 0.1ωc, T = 0.

while a polaron dipole excitation is completely frozen and
does not decay. This behavior is not specific for the infidelity
only, but it is common for most of the observables and states
of this system.

This result can be physically interpreted from a polaronic
perspective: the USC cavity vacuum heavily dresses the dipole
with virtual photons, which inhibit its ability to tunnel from
one side to the other of its double-well potential. Because of
the radiative nature (but in the Ohmic case as well) of its dis-
sipation mechanism, the dipole can loose energy moving only
between the two wells (i.e., tunneling), and the faster it moves
the stronger it dissipates. In this regime of heavy dressing by
virtual-photon, tunneling becomes extremely slow and so it
becomes the dipole’s rate to release energy in the bath.

IV. USC MULTIPHOTON RESONANT TUNNELING

In this section we are going to explore more in detail the
nature of the gaps between the relaxation-slowdown lobes in
Fig. 2(a). In these narrow regions the system can relax, as
it is almost unaffected by the USC suppression of tunneling
described in the previous section. However, if we artificially
remove the cavity dissipation, γ = 0, we see that these narrow
gaps disappear. This suggests that the suppression of tunneling
described above is still present for ε �= 0, but a new resonant
mechanism appears, allowing the dipole to tunnel again by
exchanging photons with the cavity. This effect is the cavity
analogous of resonant tunneling in electronic setups interact-
ing with vibrational degrees of freedom, and thus establishing
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a connection between USC cavity QED and Franck-Condon
physics in molecular-electronic setups [37,39,40].

After analyzing the relaxation properties from the spectral
features of the system, as in the previous section, we show that
the signature of this physics is also present in quantities that
are not strictly related to relaxation and real-time dynamics,
such as transmission spectra.

A. Diagonalization of the asymmetric Rabi Hamiltonian

As in the symmetric case ε = 0, also the asymmetric Rabi
model, ε �= 0 is approximately block-diagonal, as a conse-
quence of the general form of the displacement operators.
However, here the situation is more complicated, and we
cannot find a unique formula that fits the whole spectrum for
every (ε, g), but we can have analytic expressions valid only
near each resonance.

We start by noticing that Eq. (8) is written in a form that
calls for the gRWA, provided that the system has an asym-
metric resonance ε 
 ωc × k, with k = 1, 2, . . .. Differently
from the usual Jaynes-Cummings model, and the gRWA of
the symmetric Rabi model, here we need to take the dipole
basis as an eigenstate of sx. Moreover, considering higher
resonances at ε = ωc, 2ωc, 3ωc . . . is well motivated by the
fact that the displacement operator contains all powers of cre-
ation and annihilation operators, giving access to multiphoton
processes with higher frequencies. This is indeed well seen
considering the normal-order expansion [57]

D(x) = e−x2/2
∑

n,m=0

(xa†)n

n!

(−xa)m

m!
. (13)

From this expression is also clear that the nonlinear interaction
term in the polaron Hamiltonian in Eq. (8) is exponentially
suppressed by the factor ∼ωd e−g2/(2ω2

c ). As a consequence,
when

ε, ωc > ωd e−g2/(2ω2
c ) (14)

the polaron light-matter interaction becomes perturbative, and
we can adopt the gRWA. Notice that this correspond to keep
only the terms n < m with ωc(m − n) 
 ε in Eq. (13), so, even
if the interaction is perturbative, it is still multiphoton and thus
highly nonlinear.

The asymmetric polaron Rabi Hamiltonian can then be
approximately diagonalized around each k resonance by pro-
jecting it on the states {|←, n〉, |→, n − k〉} and the ground
state is simply given by |GS〉 ≈ |←, 0〉. As for the symmetric
case explained in Appendix F this treatment is equivalent to a
quasidegenerate perturbation theory on a polaron interaction
Hamiltonian

The Hamiltonian then can be expressed succinctly in a
matrix form as the sum of 2 × 2 blocks

H̃k
Rabi ≈

∞∑
n=1

ωck − ε

2
σ (n,k)

x + ωd

2
Dn n−k σ (n,k)

z

+ 2ωcn − ωck

2
1(n,k), (15)

FIG. 5. Spectrum of the Rabi model as a function of the dipole
asymmetry ε for various g/ωc = 0.1, 1, 2.5, 3.5 light-matter cou-
plings. The solid lines are the result of exact diagonalization, while
the yellow dots are given by the analytical formula in Eq. (17).
For k > 1 the yellow dots do not cover the lower lines because
our approximation treats these eigenstates as a bare photon state
for which the energy is trivially nωc. To highlight the part of the
spectrum where cavity and dipole are effectively coupled we do not
put the yellow dots on these trivial eigenvalues. Parameters: ωd = ωc.

where σ (n,k)
x,y,z are the Pauli matrices for each n = 1, 2, . . . block

for the k resonance, while

Dn n−k = gk

ωk
c

e
− g2

2ω2
c L(k)

n−k

(
g2/ω2

c

)√ (n − k)!

n!
(16)

is the n, n − k matrix element of the displacement operator
[57]. Here L(l )

m (x) is the special Laguerre polynomials. The
excited eigenfrequencies are then given by

ωR
k,n,± = ωc

(
n − k

2

)
± 1

2

√
(ωck − ε)2 + ω2

dD2
n n−k . (17)

Since the displacement operator has a diagonal matrix ele-
ment different from zero Dnn �= 0, one should consider the
dipole basis states composed by dipole states oriented along
∼ cos φsx + sin φsz, with a certain angle φ given by Dnn.
Including these corrections makes the analytical formula in
general quite complicated, having a simple expression only
for the ground state, which is

ωR
0,0 = −

√
ε2 + ω2

d e−g2/ω2
c

2
. (18)

However, in the USC regime φ ∼ 0 is a small angle and we
can thus neglect it, proceeding with the simple sx picture
developed above.

In Fig. 5 we compare the real spectrum to the one obtained
from the gRWA at each resonant point. In the USC limit, when
g/ωc � 1 the agreement is very good.

The eigenstates are now given in terms of a multipho-
ton version of the sx-polarized Jaynes-Cummings dressed
states, fully characterized by the Hopfield coefficients
cos θ(k,n)/2, sin θ(k,n)/2, generalizing the symmetric case in
Appendix F. When the resonance condition ε = ωc × k is
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FIG. 6. (a) Schematic view of the resonant tunnel mechanism.
In the USC regime, the dipole can switch well by exchanging k
photons with the cavity. (b) Rabi oscillation data collapse. Each curve
is labeled by its resonant index k and represents 〈s̃x〉 = ekγ /2t (〈sx〉 +
1/2) − 1/2. For each k curve the time is normalized on its respective
k-Rabi frequency, �(k,k)/(2π ). In this way it is clear how our analyti-
cal description fits very well the full numerics. Parameters: ωd = ωc,
g/ωc = 3, γ = κ/4 = 0.002ωc.

satisfied, the system eigenstates become

|+(k,n)〉 = 1√
2

(|←, n〉 + |→, n − k〉),

|−(k,n)〉 = 1√
2

(|←, n〉 − |→, n − k〉),

(19)

and the ground state is |GS〉 = |←, 0〉.
Repeating the analysis on the matrix elements in Ap-

pendix G, we realize that the sx operator can connect only
dressed states of the same (k, n) block, for which the only
nondiagonal nonzero matrix element is

〈+(k,n)|sx|−(k,n)〉 = cos
θ(k,n)

2
sin

θ(k,n)

2
. (20)

Each block is disconnected by the others, and the ground state
is disconnected from all other states. Therefore relaxation
toward equilibrium is still suppressed from the USC also when
ε �= 0.

On other hand, the cavity is still able to efficiently dis-
sipate. So, when hitting a k resonance, the dipole also can
lose energy by exchanging k photons with the cavity, which
are consequently flushed out. This resonant tunneling effect
provides a relaxation channel for the dipole, as depicted in
Fig. 6(a), and gives the proper explanation for the gaps be-
tween the lobes observed in Fig. 2(a).

We conclude this subsection by highlighting that, in the
polaron frame, the USC open dynamics is mainly given by
a polaronic version of the standard textbook dressed state
master equation dynamics [56].

B. Multiphoton oscillations and cavity-mediated relaxation

Here we illustrate how the polaronic dressed state picture
emerges clearly in the full time-dependent dynamics. As a
striking example we show that the system undergoes damped
Rabi oscillations, as in traditional cavity QED systems de-
scribed by the Jaynes-Cummings model. However, here,
depending on the resonance condition, the Rabi oscillations
involve multiple photons [58–60] and must be interpreted as
tunneling oscillations for the dipole.

From the block Hamiltonian in Eq. (15) we can derive the
Rabi frequency of the k-resonance multiphoton Rabi oscilla-
tions reading

�(k,n) = ωd
gk

ωk
c

e
− g2

2ω2
c L(k)

n−k

(
g2/ω2

c

)√ (n − k)!

n!
, (21)

where n � k is the total number of photons involved.
Differently from usual Rabi oscillations in cavity QED,

here the dipole oscillates between the right and left states of
its asymmetric double-well potential, for which we can call
them tunneling oscillations. The relevant quantity to follow
is then 〈sx〉 (t ) [as opposed to traditional Rabi oscillations,
visible looking at 〈sz〉 (t ), in standard notation].

We then numerically simulate 〈sx〉 (t ) starting from the
initial state |ψ0〉 = | →, 0〉 (in the polaron frame). When γ <

�(k,k), we observe a very good fit on the curve,

〈sx〉 (t ) ≈ e− kγ

2 t cos (�(k,k)t ) + 1

2
− 1

2
. (22)

Notice that the overall decay rate is given by ∼k × γ /2,
with a factor k. This takes into account that the photon de-
cay increases linearly with the number of photons involved,
which in this case is properly k. In Fig. 6(b) we show
the Rabi oscillations data collapse for various resonant val-
ues ε = ωc, 2ωc, 3ωc, 4ωc. For each k the curve is plotted
against its normalized time t̃ = �(k,k)t/(2π ) and is normal-
ized to remove the exponential decay accordingly to 〈s̃x〉 =
ekγ /2t (〈sx〉 + 1/2) − 1/2.

C. Response functions and higher-order processes

Here we take a quick detour from the investigation of the
relaxation properties of the system, and we focus our attention
more specifically on how the spectral features analyzed so far
manifest themselves through standard transmission measure-
ments.

This is particularly important because current experi-
ments, for instance, in circuit QED, cannot easily probe the
time-dependent dynamics and thus have no direct access to
measuring how the light-matter coupling affects relaxation.
Nevertheless, since we have seen that relaxation is in the end
determined by the eigenstates of the system, measuring some
specific spectral features can be an indirect indication that the
system follows the physics described in the previous sections.

We start considering a weak probe current entering in the
LC circuit, and we look for the transmitted current. With the
help of linear response theory (see Appendix H), the current
response is mainly given by the cavity structure factor

Sc(ω) = h̄ZLC

2

∑
n,m

e−h̄ωn/(kbT )

Z |〈n|a − a†|m〉|2δ(ω − ωmn).

(23)

Here Z = ∑
n e−h̄ωn/(kbT ) is the thermal equilibrium partition

function of the system, and ZLC is the characteristic cavity
impedance parameter defined in Appendix B. The system
circuit impedance is then defined as

Zsys(ω) = − iωSc(ω)

h̄
, (24)
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FIG. 7. Current transmission |T (ω)| as a function of the dipole
asymmetry ε and the probe frequency ω, for various g/ωc =
0.1, 0.5, 2, 2.5 light-matter couplings. Parameters: ωd = ωc, kbT =
0.2h̄ωc, Q = ωc/γ = 102.

and consequently the current transmission function

Iout

Iin
= T (ω) = Q−1

Q−1 + ZLC/Zsys(ω)
. (25)

Here Q = ωc/γ is the LC cavity quality factor.
In Fig. 7 we show the current transmission |T (ω)| as a

function of the dipole asymmetry ε and the probe frequency
ω. To mimic experimental conditions, we consider a fixed
temperature kbT 
 0.2h̄ωc.

For coupling strength up to g/ωc � 0.5 the transmission
spectrum exhibits the usual Jaynes-Cummings polaritonic (or
dressed state) behavior. At ε �= 0 the response mainly follows
the bare LC circuit response, while the maximum hybridiza-
tion is at ε = 0, with maximum Rabi splitting between the
upper and lower dressed state branches. This is well seen in
the first panel of Fig. 7.

For increasing coupling strength, as in the second panel of
Fig. 7, where g/ωc = 1, the upper branch of the transmission
spectrum starts to vanish exactly at ε = 0, signaling that we
are entering the USC regime.

At even larger couplings the transmission is drastically
changed. This is well seen from the two lower panels in Fig. 7,
where g/ωc = 2.5, 3. In the region around ε = 0 the trans-
mission becomes much smaller, and the two branches related
to the Jaynes-Cummings dressed states are gone. Instead the
k = 1 avoided crossing due to the resonant tunneling is well
seen around |ε|/ωc = 1. The k > 1 higher resonances, on
contrary, are not well seen, since they are covered by the bare
photon resonance between the lower levels n < k. It is worth
noticing that the ultrastrong-coupling spectral features shown
here, and in particular the k = 1 resonance, are already visible
in recent experiments with superconducting circuits [51,61–
63].

Another interesting quantity to probe the spectrum of the
system is provided by the dipole structure factor

Sdip(ω) = 2h̄Zdip

∑
n,m

e−h̄ωn/(kbT )

Z |〈n|sx|m〉|2δ(ω − ωmn).

(26)

FIG. 8. Dipole radiation impedance |Zrad (ω)| as a function of the
dipole asymmetry ε and the probe frequency ω for various g/ωc =
2, 2.5 light-matter couplings. Parameters: ωd = ωc, kbT = 0.5h̄ωc.
In this plot we assumed a linewidth γSdip = 0.05ωc.

The characteristic dipole impedance Zdip is defined in Ap-
pendix A. From the linear response theory perspective,
Sdip(ω) quantifies the dipole radiation response to a direct
drive of the dipole. Because of the consideration done in
Sec. IV A, is clear that this quantity is strongly suppressed
in the USC regime, at low temperature. If we stick only to the
dressed state picture we should observe vanishing transitions
for T → 0, due to the fact that the dipole matrix element
between the ground state and the first block is zero

〈±(k,1)|sx|GS〉 = 0. (27)

Thus in this framework only transitions beyond the dressed
state picture are visible. It is important to stress that these
transitions are also present in the cavity transmission, but,
since they are much weaker, they are much better visualized
without the presence of the dressed state transitions which are
dominant in the cavity transmission.

Similarly to the system circuit impedance we can define a
dipole radiation impedance as

Zrad(ω) = − iωSdip(ω)

h̄
. (28)

In Fig. 8 we show the radiation impedance Zrad(ω) in logscale,
as a function of the dipole asymmetry ε and the probe fre-
quency ω [with an artificial linewidth γSdip to smear out the
delta function in Eq. (26)]. Contrary to the previous case of the
cavity response, at frequencies ω ∼ ωc the dipole response is
strongly suppressed in favor of higher frequencies transitions
that emerge with a diamond-like pattern.

The dipole matrix elements giving the amplitude for these
transitions are much weaker than the cavity-current matrix
elements for the k-resonant transitions between dressed states,
since are given by beyond gRWA corrections. They are the
USC cavity equivalent of the vibronic transitions responsi-
ble of the Coulomb diamond structure in the Franck-Condon
blockade voltage and current characteristics [37].

V. CASCADED RELAXATION IN A MULTIWELL DIPOLE

Finally we comment on the possibility to extend our results
to the case of a multiwell dipole. The relaxation dynamics
of this system is particularly interesting because it can be
interpreted as a prototype of a transport problem through an
extended system: intuitively, in a tilted multiwell potential a
particle would relax from a higher well to the lowest one,
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but this means that this particle is also transported from side
to side in the system. Despite that a full coverage of cavity-
modified relaxation or transport in an extended system is well
beyond the scope of this paper, we can still use the concepts
developed above to give an initial intuition which sets the
basis for future investigations.

A. The extended Dicke model

We model the multiple-well dipole generalizing the two-
level approximation to (N + 1)-level, where each level
represents a potential well. In this way, the dipole is simply
described by spin-N/2 operators, Sx,y,z that generalize the spin
description of Appendix A. In particular the eigenvalues of Sx,
|mx〉 are interpreted as localized states in the mxth well, while
the Sz operator creates some tunneling between them. This
model is very similar to the well-known Wannier-Stark ladder
model, where the only difference is in the nonhomogeneous
hopping rates, settled by the Sz matrix element between Dicke
states along the Sx direction.

While the dissipations, and the master equation, are de-
rived in the same way as before, just replacing sx,y,z �→ Sx,y,z

everywhere, the light-matter Hamiltonian is no longer given
by the Rabi model of Eq. (1). Indeed, when taking the two-
level approximation of Eq. (B5) we had discarded the x2

term, which is only a constant within the two-level subspace,
x2 ≈ 4x2

10s2
x = 4x2

101. For a multilevel dipole, described by a
spin-N/2 system if N > 1 we have that S2

x �= 1/4, and thus the
correct cavity QED Hamiltonian within the (N + 1)-level sub-
space is given by the so-called extended Dicke model (EDM)
[15,41]

HEDM = ωca†a + ωd Sz + g(a + a†)Sx + g2

ωc
S2

x + εSx. (29)

Performing the polaron transformation in the same way as
for the Rabi model, we arrive at the polaron (EDM) [15]:

H̃EDM = ωca†a + εSx + ωd

2
[D(g/ωc)S̃+ + D†(g/ωc)S̃−],

(30)

where, again, S̃− = Sz − iSy. In the USC regime g � ωc, and
for non-negligible asymmetry ε �= 0, in the limit of large spin,
N � 1, we can use the Holstein-Primakoff approximation
[64] in the Sx direction, for which Sx ≈ −N/2 + b†b, and
S̃− ≈ √

Nb. The polaron EDM can then be approximated by

H̃EDM ≈ H̃HP
EDM

= ωca†a + εb†b + ωd

√
N

2
[D(g/ωc)b† + D†(g/ωc)b].

(31)

B. Relaxation dynamics of the EDM

The considerations done for the Rabi model in Sec. IV A
are still valid, in particular regarding the possibility of discard-
ing the counter-rotating terms in the displacement operators
and the suppression of tunneling. It is then clear that one
can use the same dressed state approach to diagonalize the
polaron EDM as well. In particular, considering the relaxation
from the initial state |0, m〉 = (b†)m/

√
m!|0, 0〉 the resonant

tunneling effect gives rise to a cavity-mediated cascaded
dynamics to the ground state, where, depending on the
resonance condition ε = k × ωc, nph ≈ k × m photons are
released.

To have a more quantitative understanding we consider
the limit of strong cavity dissipations with respect to the
k-resonance splitting, γ � �(k,k). In this regime we can adia-
batically eliminate the cavity in favor of an effective master
equation for the dipole only [45]. Following the previous
analysis on cavity and dipole transition rates, we completely
neglect the dipole dissipations, while we take as a jump oper-
ator of the cavity its bare annihilation operator c = a. Again,
this is well motivated by the analysis performed above. Using
the approximated form of the EDM in Eq. (31) and assum-
ing that each time the total density matrix of the system is
ρ(t ) ≈ ρd (t ) ⊗ ρ th

c (here ρ th
c is the thermal density matrix for

the bare cavity at temperature T ) we have that

∂tρd = −i[εb†b, ρd ] + �T (ε)

2
(2bρd b† − [b†b, ρd ]+)

+ �T (−ε)

2
(2b†ρd b − [bb†, ρd ]+). (32)

Similarly to nonlinear optomechanics setups [65,66], the cool-
ing and heating rates are given by

�T (ω) = ω2
d N

2
Re

[ ∫ ∞

0
dt (〈D(t, x)D†(x)〉 − 〈D(x)〉2)eiωt

]
,

(33)

where Hc = ωca†a, x = g/ωc and D(t, x) = eiHctD(x)e−iHct .
Since that the average 〈·〉 is intended over the cavity thermal
state ρ th

c , we can explicitly compute this quantity [52,65,66]

�T (ω) = ω2
d N

γ
e−x2[1+2NT (ωc )]

×
∑

q,r �=0

x2rNr
T (ωc)

r!

x2q[1 + NT (ωc)]q

q!

× γ 2/4

[ω − ωc(q − r)]2 + γ 2

4

. (34)

Here NT (ωc) = 1/(eh̄ωc/(kbT ) − 1) is the cavity thermal pop-
ulation. From this expression it is particularly evident the
multiphoton character of this cavity assisted relaxation mech-
anism, where the dipole can relax by emitting q photons into
the cavity and, at the same time, can be reexcited by absorb-
ing r photons from the cavity (if the temperature is nonzero
T > 0).

As in the standard theory of laser cooling the total relax-
ation rate is given by

�tot
T = �T (ε) − �T (−ε). (35)

At T = 0 and close to resonance ε 
 ωc × k, the total re-
laxation rate is approximately given by �tot

T =0 ≈ �2
(k,k)N/γ ,

which is the USC version of the Purcell effect. In Fig. 9 we
show some examples of the total relaxation rate for T = 0
and for T > 0 at different coupling strengths. Interestingly a
higher temperature may help in activating the higher k reso-
nances even in the non-USC regime, g/ωc � 1, resembling
the behavior of optomechanical laser cooling setups [67]. We
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FIG. 9. Total relaxation rate �tot
T (ω) defined in Eq. (35) as a

function of frequency ω for various g/ωc = 0.1, 0.5, 1, 2 coupling
strengths (normalized over �d = ω2

d N/γ ). The blue line corre-
sponds to T = 0, and the red line is for kbT = 2 h̄ωc. Parameters:
γ /ωc = 0.1.

highlight the fact that at weak coupling this description does
not hold, since it is based on the assumption that dipole tun-
neling is suppressed by the USC regime. However, we found
it interesting to show the total relaxation rate �tot

T also in this
regime for completeness.

As anticipated in the beginning of this section, the re-
laxation dynamics of this multiwell setup can be seen as a
way to study how the incoherent transport is modified by the
cavity. Staying at the single-particle level we can interpreted
an excitation produced by the dipole operator b† as the particle
moving one well up in energy, and the dipole ground state
as the state where only the lowest energy well is occupied.
Following this line of thought, we can say that the system has
good transport properties if it rapidly thermalizes sufficiently
close to its ground state. Since the saturation number of the
steady state of Eq. (32), 〈b†b〉ss = N0, around each k reso-
nance ε = ωc × k is the dipole thermal occupation

N0 = �T (−ε)

�T (ε) − �T (−ε)
≈ NT (ωc × k), (36)

we also need that the temperature T is small enough so ther-
mal photons cannot push the particle (the dipole excitation) to
an upper energy level.

In summary, the cavity USC suppresses tunneling also in
a multiwell dipole scenario, inhibiting the dipole’s relaxation
and its ability to transport excitations from one well to the
other. Fast relaxation (and transport) is possible only when
the tilted multiwell dipole is resonant with the cavity having
access to the multiphoton resonant tunneling process.

VI. CONCLUSION

In conclusion, we studied the relaxation properties of a
simple (but paradigmatic) cavity QED setup in the ultrastrong
coupling regime described by the asymmetric quantum Rabi
model. Here the bosonic cavity mode is provided by an LC
resonant circuit, while the two-level atom is given by an
asymmetric dipole inside the capacitor of the LC circuit. We

introduce dissipation by considering the cavity coupled to a
Ohmic transmission line, while the dipole dissipates into radi-
ating modes with super-Ohmic spectral density. The system’s
dynamics is thus described by a thermalizing master equation,
valid at arbitrary light-matter coupling strengths and arbitrary
dipole asymmetry. From the Liouvillian gap we obtained the
longest relaxation rate of the system that we can also consider
its asymptotic thermalization rate. From this quantity emerges
clearly that the effect of the USC is to slow the system’s ther-
malization by an exponential suppression of the Liouvillian
gap. However, for special values of the dipole asymmetry the
standard relaxation is restored and the system can thermalize
accordingly to its bare relaxation rates.

To understand this behavior of the Liouvillian gap and
to link it to the physical observables of the system, we em-
ployed a generalized rotating-wave approximation (gRWA)
[55], valid in the so-called polaron frame. Within this approx-
imation we showed that is possible to analytically diagonalize
the asymmetric Rabi model, even in the USC regime, where
the eigenstates are given by a polaronic multiphoton version
of the usual Jaynes-Cummings dressed states. In this way we
were able to compute the relaxation rates in the USC regime
analytically, explicitly showing the exponential slow-down of
thermalization due to an effective suppression of the dipole
tunneling dynamics, while the cavity, remaining effectively
uncoupled from the dipole, can still efficiently relax.

When the dipole asymmetry is resonant with the cavity, the
dipole dynamics is revitalized, by a cavity-assisted tunneling,
where the dipole resonantly tunnels from one well to the other
by releasing multiple photons. Since photons can then relax
out of the cavity, this process gives an effective relaxation
channel also for the dipole.

After showing that these phenomenon can be observed in-
directly from the cavity transmission or the dipole impedance,
we highlight a link to the Franck-Condon physics of electronic
transport through a molecular dot [9,37].

At the end, we commented on the possibility of extending
this nonlinear resonant processes to a multiwell dipole. A
simple toy model to describe this situation is provided by
the extended Dicke model, introduced originally to study a
multiple qubit ultrastrongly coupled to a single LC cavity
[15,41]. From this setup it is clear that the USC resonant
tunnel dynamics can affect also a multiwell system, giving rise
to a resonant cascaded multiphoton process. We argue that this
cascaded effect could be observed in cavity-modified transport
experiments with multiple electronic quantum dots, or in su-
perconducting circuit devices with only minor modifications
of the already existing platforms [9,51]. This suggests that
these findings could thus provide an interesting playground to
study an implementation for cascaded-laser electronic devices
operating in the USC regime in the GHz or THz range.
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APPENDIX A: A DIPOLE IN A ASYMMETRIC
DOUBLE WELL POTENTIAL

The dipole dynamics is described as a single particle with
mass m in a potential

Hdipole = p2

2m
+ V (x). (A1)

The dipole has charge +q on an extreme and −q on the other
extreme, and qx is its dipole moment. So the dipole displace-
ment x is its main dynamical variable and p its canonical
momentum.

As depicted in Fig. 1(b), we consider only the paradigmatic
case of a dipole described by a double-well potential, very
similarly to Refs. [68,69]. Considering only its low-energy
dynamics we are basically studying the electromagnetism of
quantum tunneling.

Differently from Ref. [15] here we introduce a linear tilt
that makes the height of the two wells asymmetric. The total
dipole’s potential is then given by

V (x) = −μ2
2

2
x2 + μ4

4

4
x4 + qEx. (A2)

The linear tilt ∼qEx is physically implemented by a bias static
external electric field of amplitude E and has no influence on
the LC resonator dynamics.

Whenever μ2/μ4 � 1 and qE/μ2 � 1, the two lowest
levels are below the central barrier and well separated from
the other energy levels. We can then truncate the dipole’s
Hilbert space keeping only these two lowest energy levels
[15]. We perform the two-level approximation (TLA) on the
dipole Hamiltonian projecting on the eigenstates without tilt
E = 0, and we obtain

HTLA
dipole = h̄ωd sz + h̄εsx. (A3)

Here we have introduced the pseudospin operators sa = σa/2
(σa are the usual Pauli matrices). The dipole frequency ωd is
the energy difference between the two lowest states without
the tilt E = 0, and ε = 2qEx10/h̄, where x10 = 〈1|x|0〉 is the
dipole matrix element between the two lowest dipole states.
The dipole operator now is given by x ≈ x10σx.

When the tilt is on, the energy splitting between the two
eigenstates of Eq. (A3) is given by ωε = √

ω2
d + ε2, while the

eigenfunctions are partially localized on the left or right well,
with a small, but non-negligible, overlap with the opposite
well [Fig. 1(b)]. In the two-level language these states are
given by

|Lε〉 = cos
θε

2
|↓〉 + sin

θε

2
|↑〉,

|Rε〉 = − sin
θε

2
|↓〉 + cos

θε

2
|↑〉,

(A4)

where tan(θε ) = ε/ωd .
We can also associate a characteristic impedance with

the dipole by considering Zdip = h̄/q2 f10, and f10 =
2mω0|x10|2/h̄ is the oscillator strength of the two-level dipole
transition. Introducing this parameter is particularly conve-
nient when discussing the linear response theory and creates a
nice parallelism with the circuit description of the cavity given
in what follows.

APPENDIX B: GENERAL CAVITY QED HAMILTONIAN

The Hamiltonian of the full cavity QED system can be
written summing up the dipole energy and the total energy
stored in the electromagnetic field

HcQED = Hem + Hdipole. (B1)

For an LC-resonant system, the electromagnetic energy is
described by

Hem = CU 2

2
+ �2

2L
, (B2)

where U is the total voltage drop across the capacitor C, and
� is the magnetic flux through the inductance L.

When the dipole is inside the capacitor the total voltage
U is no longer the right canonical variable conjugate to �.
In order to have the correct canonical description we need
to introduce the total capacitor charge variable Q, such that
[�, Q] = ih̄. Without the presence of the dipole the total
charge and the voltage drop are directly proportional through
the usual relation U = CQ. When the dipole is inside the ca-
pacitor the charge responsible for the voltage drop is modified
by the presence of the charge induced by the dipole on the
metallic plates. This induced charge does not contribute to any
voltage drop and must be removed [15,41]. The voltage drop
becomes

U = C(Q − Qind ). (B3)

For an ideal capacitor we have Qind 
 qx/d [15], where d is
the distance between the capacitor plates.

We introduce now the cavity creation and annihilation op-
erators through the relations

� = i
�0√

2
(a − a†),

Q = Q0√
2

(a + a†). (B4)

Here �0 = √
h̄ZLC, Q0 = √

h̄/ZLC, and ZLC = √
L/C. The

cavity QED reads

HcQED = h̄ωca†a + Hdipole + F0x(a + a†) + F 2
0

h̄ωc
x2, (B5)

where ωc = 1/
√

LC and we introduced the zero-point electric
force F0 =

√
h̄ωc/(2Cd2)q2.

As detailed in Refs. [68,69], implementing the TLA de-
scribed in Appendix A, we can now approximate the cavity
QED Hamiltonian with the so-called quantum Rabi model
(h̄ = 1)

HcQED ≈ HRabi = ωca†a + ωd sz + εsx + g(a + a†)sx, (B6)

where the light-matter coupling is given by g = 2F0x10.
We will see in particular that the transverse term ∼εsx,

which breaks the Z2 symmetry of the usual Rabi model, is
fundamental in our development, becoming a switch between
slow and fast dissipation of the dipole. In circuit QED this
term emerges quite naturally through a bias in the external
magnetic flux and is typically used in the observation of the
spectral features of the USC regime [51,62].
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APPENDIX C: LINEAR DAMPING

This Appendix reviews the standard derivation of the
Langevin equation for open quantum systems as is developed
in standard textbooks [45,70], which sets the basis for the
formalism that we use through the whole paper.

We consider a generic system, described by the Hamilto-
nian Hsys, coupled to a bath of harmonic oscillators (which
may represent the electromagnetic field outside of a cavity, or
a resistance in a circuit):

H = Hsys +
∑

k

[
P2

k

2mk
+ 1

2
mkω

2
k

(
Yk − ck

mkω
2
k

X

)2
]
. (C1)

The equations of motion for a generic system operator A are
given by

∂t A = −i[A, Hsys] + i
∑

k

ck

2
(Yk[A, X ] + [A, X ]Yk )

− i
∑

k

c2
k

2mkω
2
k

[A, X 2], (C2)

∂tYk = Pk

mk
, ∂t Pk = −mkω

2
kYk + ckX. (C3)

The formal solution of the bath’s equations is given by

Yk (t ) = Y homg.
k (t ) + ck

mkωk

∫ t

t0

dt ′ sin[ωk (t − t ′)]X (t ′), (C4)

where

Y homg.
k (t ) = Yk (t0) cos[ωk (t − t0)] + Pk (t0)

mkωk
sin[ωk (t − t0)].

(C5)

Plugging back this solution into (C2), and integrating by part,
we get the quantum Langevin equation, describing the whole
open-dissipative dynamics of our quantum system

∂t A(t ) = −i[A(t ), Hsys]

+ i

2
{ξ (t )[A(t ), X (t )] + [A(t ), X (t )]ξ (t )}

− i

2

[∫ t

t0

K (t − t ′)∂t ′X (t ′) dt ′ , [A(t ), X (t )]

]
+
.

(C6)

Here [·, ·]+ is the anticommutator, and

ξ (t ) =
∑

k

ck

(
Y homg.

k (t ) − ck

mkω
2
k

X (t0) cos[ωk (t − t0)]

)

K (t ) =
∑

k

c2
k

mkω
2
k

cos(ωkt ) (C7)

are, respectively, the quantum noise term and the dissipative
kernel. We notice that the last term in (C2) is exactly canceled
by the term proportional to K (t ) coming out by the integration
by part. From the fluctuation-dissipation theorem we obtain
the specific value of the quantum noise correlator [70]. In the
high-temperature limit it reads

1
2 〈[ξ (t ), ξ (t ′)]+〉 
 2kbT K (t − t ′). (C8)

The in and out relations are given by [70]

Y out(t ) = Y in(t ) −
∫ +∞

−∞
K (t − t ′)Ẋ (t ′) dt ′, (C9)

where Y in(t ) = ∑
k ckY

homg.
k (t ).

A useful way to treat the dissipation without having all the
details of the bath is to introduce the bath spectral density

J (ω) = π

2

∑
k

c2
k

mkωk
δ(ω − ωk ), (C10)

and recast the dissipator in the form

K (t ) =
∫ ∞

0

dω

π

J (ω)

ω
cos(ωt ). (C11)

Now all bath properties are encoded in the spectral density
J (ω).

APPENDIX D: THERMALIZING MASTER EQUATION

We consider here the master equation suitable for study-
ing relaxation and thermalization processes in cavity QED
under the ultrastrong coupling regime. For this purpose we
consider the treatment used in [54]. We do not repeat the
derivation here, but we stress that the physical assumptions are
almost the same as used in deriving the Langevin equation in
Appendix C, with the further assumption that the coupling
between the system and the bath is very small. In particular
this latter one ensures that we can implement the rotating wave
approximation between the system and the bath, proceeding
with the standard textbook derivation.

The crucial step here is to isolate the components of
the system coupling operator X that rotates with positive
(negative) frequencies. This can be done as follows: given
an Hamiltonian Hsys and a (or multiple) system opera-
tor(s) X , we express them on the system eigenbasis X =∑

n,m 〈n|X |m〉 |n〉〈m|. The jump operators are then given
by the set {cnm = 〈n|X |m〉 |n〉〈m| , such that n < m}. In the
Heisenberg picture these jump operators evolve with positive
frequencies. This allows us to implement the rotating wave
approximation in the standard system-bath linear Hamiltonian
in Eq. (C1).

The master equation is then given by

∂tρ = LH (ρ) + LD(ρ), (D1)

where the conservative time evolution is generated by

LH (ρ) = −i[Hsys, ρ], (D2)

while dissipations are given by

LD(ρ) =
∑
n<m

[1 + NT (ωmn)]�nmD(|n〉〈m|, ρ)

+
∑
n<m

NT (ωmn)�nmD(|m〉〈n|, ρ). (D3)

Here

D(c, ρ) = c ρ c† − 1
2 [c†c , ρ]+ (D4)

is the usual dissipator super-operator [45], and

NT (ω) = 1

eω/(kBT ) − 1
(D5)
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is the bosonic thermal population, where kB is the Boltzmann
constant. The thermalization rates are given by

�nm = J (|ωmn|)|〈n|X |m〉|2. (D6)

It is important to keep in mind here that there is another
implicit assumption to correctly use this master equation:
the energy levels are well resolved with respect to the bath-
induced linewidth, meaning that �nm � ωnm. Considering
only weak losses and not too weak nor not too strong cou-
pling, we can consider it always satisfied in our development.

Considering the thermal density matrix ρss =
e−Hsys/(kBT )/Z , where Z = Tr[ρss], one can easily prove
that is the steady state of the system.

APPENDIX E: PHYSICAL DISSIPATORS

1. Cavity dissipation

A standard way to introduce dissipation in an LC circuit is
to couple it to a transmission line [45]. When it is traced out
from the dynamics, the transmission line plays the role of a
resistive element, effectively realizing the scheme described
in Fig. 1(c). An input voltage can inject current in the system,
and the resistance dampens the excited oscillations of the LC
circuit. This scheme provides a basic input and output theory
describing the system’s readout from the energy dissipated
into the resistance.

The formal description of this setup assumes a linear cou-
pling to a multimode bath of harmonic modes, as shown in
Eq. (C1) of Appendix C. To realize the resistive circuit, since
� = LI is linked to the current passing through the inductor
(and so through the whole circuit) the system operator coupled
to the bath is [45,52,71]

X̂ = � = i
�0√

2
(a − a†). (E1)

To reproduce a standard Ohmic resistance we assume the
standard linear spectral density (neglecting for now the correct
dimensional units)

JOhm(ω) ∼ γω. (E2)

Eliminating the bath’s dynamics, we obtain the equa-
tions of motion of the circuit in terms of the Langevin
equation in Eq. (C6), and, considering A = �̇ in Eq. (C6), we
have that

�̈ ∼ −γ �̇, (E3)

correctly matching the standard Kirchhoff equations of a re-
sistive circuit.

To implement the thermalizing master equation used in the
main text, we introduce the jump operators corresponding to
this decay channel as

cc
nm = 〈n|a − a†|m〉 |n〉〈m|, (E4)

where m > n and |n〉 are the eigenstates of the whole system,
in such a way that they correctly describe the relaxation pro-
cess from higher to lower energy states, even when the system
is ultrastrongly coupled; see Appendix D.

Since in our theory the coefficient γ is a free parameter,
we absorb the dimensional quantity �0/

√
2 in the definition

of the spectral density, such that

ωc|�0|2
2

JOhm(ω) �−→ JOhm(ω). (E5)

2. Dipole dissipation

In our simplified picture, the main source of dissipation of
an oscillating electric dipole is given by radiative emission
into free space electromagnetic modes. Indeed, even if the
dipole is strongly coupled to the subwavelength mode of the
LC cavity, it still interacts with all the other transverse elec-
tromagnetic modes. These have typically a small effect on the
coherent dynamics [36], but they provide a decay channel for
the dipole.

Because of the harmonic dynamics of the electromagnetic
field, and its general linear coupling with the dipole, we can
again model the dipole dissipation as a linear damping, as
described in Appendix C. In this case the system operator
coupled to the dissipative bath is given by the dipole moment

X̂ = x ≈ 2x10sx. (E6)

The bath spectral function is given from the spectral func-
tion of the transverse electromagnetic modes. In free space
this would be given approximately by (neglecting the dimen-
sionality, the correct dimensional units will be reintroduced in
the next section)

Jrad(ω) ∼ κω3. (E7)

Considering the Langevin equation in Eq. (C6) for the dipole
moment velocity A = ẋ, using this spectral density we find

ẍ ∼ κ ˙̇ ˙x , (E8)

recovering the Abraham-Lorentz formula for a radiating
dipole [72].

More generally for our developments, one can choose any
spectral density for the dipole dissipative bath of the shape
Jrad ∼ ων , with ν � 1. Having ν > 1 gives particularly simple
results.

As for the cavity, the jump operators corresponding to this
decay channel are

cdip
nm = 〈n|sx|m〉 |n〉〈m|, (E9)

where m > n and |n〉 are the eigenstates of the whole system,
in such a way that they correctly describe the relaxation pro-
cess from higher to lower energy states, even when the system
is ultrastrongly coupled; see Appendix D.

Since also here κ is a free parameter, we absorb the dimen-
sional quantity 2x10 in the definition of the spectral density,
such that

4ωd |x10|2Jrad(ω) �−→ Jrad(ω). (E10)

APPENDIX F: DIAGONALIZATION OF THE
RESONANT-SYMMETRIC RABI HAMILTONIAN

In this section we perform the approximated diagonaliza-
tion of the Rabi model in the regime where

ωd 
 ωc,

ε = 0. (F1)
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We first transform the original Rabi Hamiltonian through the
unitary transformation Upol = exp[g/ωc(a − a†)sx], obtaining
the Rabi polaron Hamiltonian in the form

H̃Rabi = ωca†a + ωd{cosh[g/ωc(a − a†)]sz

+ i sinh[g/ωc(a − a†)]sy}. (F2)

Here cosh and sinh operators can be expressed in terms of the
displacement operator D(x) = exp[x(a − a†)].

In this frame one can then perform a generalized rotating
wave approximation [55], following from the fact that the
Hamiltonian in this basis is approximately block diagonal.
Each block is spanned by the states {|↑, n − 1〉, |↓, n〉}, where
n = 1, 2 . . ., and the ground state is given by the polaron
vacuum state |↓, 0〉.

This block-diagonal structure is ultimately linked to
the matrix elements of the displacements operators in
Eq. (F2), which are known to be exponentially suppressed
as 〈n|D(g/ωc)|m〉 ∼ e−g2/(2ω2

c ) [57]. Moreover because of par-
ity selection rule of the cosh[g/ωc(a − a†)]sz, sinh[g/ωc(a −
a†)]sy operators that are only second nearest-neighbor blocks
are coupled. Combining these two observations we have that
the most relevant transitions are within each block, for which
we need only two matrix elements of the displacement opera-
tor per block:

Dn n−1 = g

ωc

√
(n − 1)!

n!
e
− g2

2ω2
c L(1)

n−1

(
g2/ω2

c

)
,

(F3)

Dn n = e
− g2

2ω2
c L(0)

n

(
g2/ω2

c

)
,

where L(α)
n (x) are the special Laguerre polynomials. Notice

that, since L(α)
n (0) = (n + α)!/(n!), we have that L(1)

n−1(0) =
n, recovering the usual Jaynes-Cummings picture at weak
coupling.

We can then rewrite the polaron Rabi Hamiltonian as a
block-diagonal matrix, H̃Rabi ≈ ∑

n H̃n
Rabi, where each block

reads

H̃n
Rabi =

(
An Cn

Cn Bn

)
, (F4)

where

An = ωcn − ωd e−g2/(2ω2
c )

2
L(0)

n

(
g2/ω2

c

)
,

Bn = ωc(n − 1) + ωd e−g2/(2ω2
c )

2
L(0)

n−1

(
g2/ω2

c

)
,

Cn = g

ωc

ωd e−g2/(2ω2
c )

2

√
(n − 1)!

n!
L(1)

n−1

(
g2/ω2

c

)
. (F5)

The spectrum is

ω±,n = An + Bn

2
±

√
(An + Bn)2

4
+ C2

n − AnBn, (F6)

and the eigenstates are

|+, n〉 = cos
θn

2
|↓, n〉 + sin

θn

2
|↑, n − 1〉,

|−, n〉 = − sin
θn

2
|↓, n〉 + cos

θn

2
|↑, n − 1〉,

(F7)

where

cos
θn

2
= ±

√√√√√√1

2

⎛
⎜⎝1 + An − Bn√

(An − Bn)2 + 4C2
n

⎞
⎟⎠,

sin
θn

2
= ±

√√√√√√1

2

⎛
⎜⎝1 − An − Bn√

(An − Bn)2 + 4C2
n

⎞
⎟⎠. (F8)

This approximate solution of the symmetric Rabi model is
valid in all coupling regimes for each value of g. However, its
validity is restricted to the cases when ωd � ωc [55].

APPENDIX G: MATRIX ELEMENT AND TRANSITION
RATES OF THE SYMMETRIC RABI MODEL

As for standard dressed states, the allowed transitions are
only between states of neighboring blocks, with (n, n ± 1)-
excitations, and the only relevant matrix elements contributing
to the transition rates of the cavity are

〈+, n|(a† − a
)|−, n − 1〉

= √
n − 1 cos

θn−1

2
sin

θn

2
− √

n cos
θn

2
sin

θn−1

2
, (G1)

〈−, n|(a† − a
)|+, n − 1〉

= √
n − 1 sin

θn−1

2
cos

θn

2
− √

n sin
θn

2
cos

θn−1

2
, (G2)

〈+, n|(a† − a
)|+, n − 1〉

= √
n − 1 sin

θn−1

2
sin

θn

2
+ √

n cos
θn

2
cos

θn−1

2
, (G3)

〈−, n|(a† − a
)|−, n − 1〉

= √
n − 1 cos

θn−1

2
cos

θn

2
+ √

n sin
θn

2
sin

θn−1

2
, (G4)

and for the ground state

〈↓, 0|(a† − a
)|+, 1〉 = − cos

θ1

2
,

〈↓, 0|(a† − a
)|−, 1〉 = sin

θ1

2
. (G5)

For the dipole we have a complementary situation

〈+, n|sx|−, n − 1〉 = −1

2
sin

θn−1

2
sin

θn

2
, (G6)

〈−, n|sx|+, n − 1〉 = 1

2
cos

θn−1

2
cos

θn

2
, (G7)

〈+, n|sx|+, n − 1〉 = 1

2
cos

θn−1

2
sin

θn

2
, (G8)

〈−, n|sx|−, n − 1〉 = −1

2
sin

θn−1

2
cos

θn

2
, (G9)
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and the ground state

〈↓, 0|sx|+, 1〉 = sin
θ1

2
,

〈↓, 0|sx|−, 1〉 = cos
θ1

2
. (G10)

APPENDIX H: LINEAR RESPONSE
AND ABSORPTION SPECTRA

Exciting the cavity corresponds to inserting a current in
the circuit, which can be interpreted as a parallel LC filter.
We can then define a system circuit impedance Zsys(ω) for
the LC circuit, which takes into account the presence of the
dipole in the capacitor. By using the standard composition
of circuit impedance, we can derive the response input and
output relations from the current flowing in the resistance (the
transmission line)

Iout

Iin
= Zsys(ω)

R + Zsys(ω)
, (H1)

where R = ZLCQ is the Ohmic resistance of the transmission
line coupled to the LC cavity, and Q = ωc/γ is the LC cavity
quality factor. In Fig. 1(c) it is shown the general scheme of
our circuit approach.

The system impedance is defined by considering the rela-
tion between voltage and current flowing through the circuit,

V = ZI , which gives

Zsys(ω) = 〈�̇〉 (ω)

Iin(ω)
. (H2)

When the input current is very small we can invoke linear
response theory [73], for which we have

χV I = lim
Iin→0

〈�̇〉 (ω)

Iin(ω)
, (H3)

where χV I is the voltage-current linear response function [73].
From here it follows an operative definition of the system
impedance as

Zsys(ω) = −iωχII (ω), (H4)

where

χII = lim
Iin→0

〈�〉 (ω)

Iin(ω)
(H5)

is the current-current linear response function.
The current-current linear response function can be calcu-

lated in many ways, but the simplest one is to use the cavity
structure factor

Sc(ω) =
∑
n,m

e−h̄ωn/(kbT )

Z |〈n|�|m〉|2δ(ω − ωmn). (H6)

The system impedance is then given by Zsys(ω) = −iωSc(ω).
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