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Modal approach to quantum temporal imaging
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We consider the problem of quantum temporal imaging in the case where the time lens is implemented by
a sum frequency generation nonlinear process, in particular when the device is operated in high conversion
efficiency regimes. In the general case where the time lens also presents a finite aperture and a nonperfect phase
matching, the relevant figures of merit, as for example the temporal resolution, do not have an explicit expression.
As a consequence, the performances of the imaging scheme are difficult to assess. We show that this problem can
be solved for conversion efficiencies up to 80% in terms of the eigenmodes of the imaging scheme, approximated
by chirped Gauss-Hermite functions, and we show how its relevant figures of merit can be extracted from the
modal description of the imaging scheme. As a consequence, we obtain criteria allowing one to design imaging
schemes with high efficiencies.
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I. INTRODUCTION

Optical spectrotemporal degrees of freedom of single pho-
tons provide a reliable platform for quantum information
encoding [1,2]. Quantum applications enabled by this type
of encoding include linear optics quantum computation [3,4],
boson sampling [5,6], quantum communications [7,8], and
quantum sensing [9,10]. Noiseless manipulation of a single-
photon waveform plays an important role in the processing of
quantum information and communication networks [11]. In
order to cope with the great heterogeneity of technologies that
are used in a quantum network [12], it is important to opti-
mize mode matching between the nodes: to match the carrier
frequency and to match the temporal scale. For this purpose,
a plethora of strategies has been proposed such as translation
of the carrier frequency [13–16], bandwidth compression or
stretching at the same carrier frequency [17–19], simultane-
ous carrier frequency translation and bandwidth manipulation
[20,21], and mode-selective operations such as waveform
conversion [22], quantum pulse gating [23–28], and shaping
[29,30].

Another approach to the manipulation of optical pulses is
based on the formal space-time analogy between the prop-
agation of a diffracting beam and that of a short pulse in
dispersive media [31]. For classical beams, this led to the
formulation of temporal imaging [32–36] and the demonstra-
tion of ultrafast waveform magnification and reversal [37,38],
temporal compression [39], spectral magnification [40], spec-
tral phase conjugation [41], or ultrafast waveform detection
[42,43]. On the other side, quantum temporal imaging (QTI)
aims at the manipulation of the time-frequency degrees of
freedom of a quantum state without destroying it. This has
been considered for single photons [17,18,44–47] and for
squeezed light [48–52].

*Corresponding author: giuseppe.patera@univ-lille.fr

The key element of a temporal imaging system is the
time lens, a device that imprints a quadratic temporal phase
modulation on an input pulse, like a thin lens induces
a quadratic phase modulation on a spatially extended in-
put wave front. Optical time lenses are presently based on
electro-optical phase modulation [17,19,32], sum-frequency
generation (SFG) [37,38], or four-wave mixing (FWM)
[39–42], and provide a temporal magnification above 100
times. Time lenses based on nonlinear processes, as discussed
in [44,48–50], need to be operated in high conversion effi-
ciency regimes in order to process an input quantum state
without destroying its quantum properties. This case has been
considered in the limit of infinite aperture and perfect phase
matching [44,45,48,49], and in the limit of finite aperture
but still perfect phase matching [51,52]. Here we consider
the most general case of QTI with finite aperture and in the
presence of nonperfect phase matching, developing the idea
expressed in Ref. [53]. This case has been considered in [35],
but only in the low conversion efficiency limit, a regime suit-
able for classical protocols only. On the contrary, in the high
conversion efficiency regime, this problem does not admit a
closed-form solution, and thus an explicit expression for the
impulse response function (IRF) is not possible. The IRF rep-
resents the response of the system to a point object and plays
an important role for extracting the relevant figures of merit—
temporal resolution, temporal and spectral fields of view,
etc.—and for assessing the system performances. Having a
reliable estimation of these figures of merits is particularly
important because they can be significantly different from
the regime of low conversion efficiency usually considered in
classical temporal imaging.

In this work, we show that for an SFG-based time lens
with a conversion efficiency up to 80%, the problem can
be solved in terms of the singular values and vectors of the
temporal imaging system and its relevant figures of merit can
be extracted from the modal description even if the IRF does
not have an explicit expression. Our approach also allows
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us to make clear the multimode nature of QTI, a character
that is important for processing an image without distor-
tions, thus enabling the design of schemes with close to unit
efficiencies. Modal field decompositions from plane waves
to resonator modes represent a versatile tool in optics [54].
The modal description of a spatial imaging system has been
known for several decades for classical [55] and quantum
[56] imaging and was used for the demonstration of optical
super-resolution [57]. A direct transfer of this description into
the temporal domain is, however, impossible because it is
based on prolate spheroidal modes creating an eigenbasis of
a diffraction-limited 4 f system with circular or rectangular
apertures. In contrast, the temporal aperture of a parametric
time lens is determined by the temporal shape of the pump
pulse, typically Gaussian, which results, as we show, in an
eigenbasis of chirped Gauss-Hermite functions of frequency.

The basis of temporal Gauss-Hermite functions is being
successfully used for the description of a device known as
quantum pulse gate [23,25–27], also based on SFG with
imperfect phase matching. However, this device is mode se-
lective; its aim is to reach a unit conversion efficiency for
one mode and zero for all other modes. In contrast, a tem-
poral imaging system is intended to be mode nonselective
and provide, in the ideal case, the unit conversion efficiency
for all modes. Partial mode selectivity appears in a temporal
imaging system because of finite aperture and imperfect phase
matching, but is treated as an aberration.

The paper is structured as follows. In Sec. II, we review
the formalism for the description of the two elements of a
temporal imaging system, i.e., a dispersive medium and an
SFG-based time lens, introducing a modal decomposition for
the IRF of the latter. In Sec. III, we put these two elements
together and develop a modal decomposition for the IRF of
the entire temporal imaging system. The figures of merit are
calculated from the characteristics of the modes in Sec. IV in
different regimes of interest. The Conclusion in Sec. V sum-
marizes the results. Appendix A reviews the decomposition
of a complex double Gaussian into chirped Gauss-Hermite
functions. Some properties of the latter, not found in the liter-
ature, are explored in Appendix B. The traditional approach to
temporal imaging, based on the Fourier transform, is reviewed
in Appendix C.

II. THE FORMALISM

In this paper, we consider the simplest imaging scheme
that can be realized with a single time lens, as depicted in
Fig. 1(a): it consists of a first dispersive medium followed by
a time lens, then followed by a second dispersive medium.
This scheme is the temporal equivalent of a thin lens that
performs the imaging of a spatially extended object. In the
following, we will refer to the first (second) medium as the
input (output) dispersive medium. Without loss of generality,
we will focus on a SFG-based time lens even if our approach
also remains valid for FWM-based time lenses. The SFG
process [see Fig. 1(b)] is mediated by a short chirped pump
pulse of carrier frequency ωp. Hence a pulse at signal fre-
quency ωs after a dispersive propagation through the input
medium is up-converted in a nonlinear crystal to a new pulse
at the idler frequency ωi, such that ωs + ωp = ωi. Finally, the

FIG. 1. (a) The imaging scheme: input dispersive line of total
GGD, Din, is followed by a time lens of focal GDD, Df , and by an
output dispersive line of total GDD, Dout . The input field Âin (τ ) is
imaged at the output on the field Âout (τ ). (b) SFG-based time lens
scheme: the signal field (red) is mixed together with a strong classical
pump (blue) in order to produce the idler field (purple).

idler pulse is dispersed through the output medium. In the
plane-wave and quasimonochromatic approximation, we
write the positive-frequency electric field operator as

Ê (+)
m (t, z) = Em ei(k0

mz−ωmt )Âm
(
t − β (1)

m z, z
)
, (1)

Âm(τ, z) =
∫ +∞

−∞

d�

2π
e−i�τ ei δm (�)zâm(�, z), (2)

where the index m = {s, i, p} identifies the signal, idler, or
pump waves, respectively, Em is the single-photon amplitude,
� is the detuning from the carrier frequency of the wave,
k0

m = km(ωm) with km(ω) the wave vector of the corresponding
wave at frequency ω, and δm(�) = k(ωm + �) − k0

m − β (1)
m �

with β (1)
m = (dkm/dω)ωm the inverse of group velocity of the

corresponding wave. Equation (2) is written in the traveling-
wave frame of reference (τ, z) propagating with the wave at
pulse group velocity 1/β (1)

m and τ has a meaning of delayed
time. Note that when a wave passes through several media, the
reference frame is delayed by the total group delay, summed
up over all media [52].

A. Linear dispersion

In the quadratic dispersion approximation, the evolution of
the Âm(τ, z) fields through a dispersive medium of length L is
given by

Âm(τ, z0 + L) =
∫ +∞

−∞

d�

2π
e−i�τ G(�)âm(�, z0), (3)

where

G(�) = e
i
2 Dm�2

, (4)

β (2)
m = (d2km/dω2)ωm is the group velocity dispersion (GVD),

and Dm = β (2)
m L is the group delay dispersion (GDD) accumu-

lated by the wave during its dispersive propagation through
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the medium. Also, Eq. (3) can be rephrased as

Âm(τ, z0 + L) =
∫ +∞

−∞
dτ ′ ei�τ G(τ − τ ′)Âm(τ ′, z0), (5)

with

G(τ ) = e−iτ 2/2Dm

√−i2πDm
. (6)

Notice that Eqs. (3) and (5) induce a unitary transformation
on the field operators, thus preserving their commutators.

B. Time lens

For a SFG-based time lens, the object pulse enters in the
nonlinear medium through the input signal channel and is up-
converted in the output idler mode [see Fig. 1(b)]. The input
idler mode is in a vacuum state and the process is mediated
by a strong undepleted pump. The evolution equations for the
signal (âs) and idler (âi) fields through the nonlinear crystal,
in the plane-wave and undepleted pump approximations, are
given by the spatial Heisenberg equation [58],

∂

∂z
âm(�, z) = i

h̄
[âm(�, z), Ĥ (z)], (7)

where the spatial Hamiltonian Ĥ (z) is given by the momentum
transferred through the plane z [59],

Ĥ (z) = χ

∫ +∞

−∞
E (−)

p (t, z)Ê (−)
s (t, z)Ê (+)

i (t, z)dt + H.c., (8)

with χ the nonlinear coupling constant and Ê (−)
m (t, z) =

Ê (+)†
m (t, z) the negative-frequency part of the field. Substi-

tuting Eqs. (1), (2), and (8) into Eq. (7), performing the
integration over time, and using the canonical equal-space
commutation relations [59,60],

[âm(�, z), â†
m(�′, z)] = 2πδ(� − �′), (9)

we obtain the spatial evolution equations,

∂

∂z
âs(�, z) = g

∫
d�′ f ∗(�′,�, z)âi (�

′, z), (10)

∂

∂z
âi(�, z) = −g

∫
d�′ f (�,�′, z)âs(�

′, z), (11)

where

f (�,�′, z) = αp(� − �′)e−i�(�,�′ )z, (12)

αp(�) is the amplitude of the pump classical field at the input
of the crystal (since we assumed it does not evolve along
z), g = iχEpEsEi/2π h̄ is a new coupling constant assumed
to be real for simplicity, and the function �(�,�′) is the
phase mismatch between the signal, idler, and pump spectral
components defined as

�(�,�′) = ki(ωi + �) − ks(ωs + �′) − kp(ωp + � − �′).
(13)

In the general case of plane waves that are noncollinear with
the longitudinal axis z, the wave vector of each wave has a
transverse component qs, qi, and qp for the signal, idler, and
pump fields, respectively. In this case, km(ω) in Eqs. (1), (2),

and (13) should be replaced by

km,z(ω, qm) =
√

k2
m(ω) − q2

m. (14)

The solution of Eqs. (10) and (11) can be obtained as a lin-
ear symplectic integral transformation for the field operators
using the Magnus perturbative approach [61,62]. We will use
the first-order Magnus approximation because, in this case,
the modal quantities of our problem have analytic expres-
sions. This approximation allows one to correctly describe
conversion efficiency regimes around 80% [24,63], which are
high enough for applications to quantum states. For regimes
much closer to 100%, higher-order correction terms in the
Magnus expansion should be considered. In this case, the
modal approach still remains valid, but the expressions can
now only be obtained by numerical methods. At the first order,
we have(

âs(�, lc/2)

âi(�, lc/2)

)
= eglcM1(�)

(
âs(�′,−lc/2)

âi(�′,−lc/2)

)
, (15)

where M1(�) is an integral transform operator whose action
on any column vector v(�) = [v1(�), v2(�)]T is

M1(�)v(�′)

=
∫

d�′
(

0 K∗(�′,�)

−K (�,�′) 0

)(
v1(�′)

v2(�′)

)
, (16)

lc is the length of the nonlinear medium, and

K (�,�′) = 1

lc

∫ +lc/2

−lc/2
dz f (�,�′, z)

= αp(� − �′) Sinc

[
�(�,�′)

lc
2

]
. (17)

Notice that the function K (�,�′) is not symmetric with re-
spect to the exchange � ↔ �′ since the function �(�,�′) is
not either.

Then, by using the singular-value decomposition (SVD) of
K (�,�′) that reads

K (�,�′) =
∑

m

λmψm(�)φ∗
m(�′), (18)

the solution (15) can be put in the following form:(
âs(�, lc/2)

âi (�, lc/2)

)
=

∫
d�′ B(�,�′)

(
âs(�′,−lc/2)

âi(�′,−lc/2)

)
, (19)

where

B(�,�′) =
(

Us(�,�′) Vs(�,�′)

−Vi(�,�′) Ui(�,�′)

)
(20)

and

Us(�,�′) =
∑

m

cos(glcλm)φm(�)φ∗
m(�′), (21)

Vs(�,�′) =
∑

m

sin(glcλm)φm(�)ψ∗
m(�′), (22)

Ui(�,�′) =
∑

m

cos(glcλm)ψm(�)ψ∗
m(�′), (23)

Vi(�,�′) =
∑

m

sin(glcλm)ψm(�)φ∗
m(�′). (24)
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Hence the transformation induced by the time lens does not
have a closed-form expression, but is given as an expansion in
terms of the singular values λm and singular functions {ψm}
and {φm} of the idler and signal waves, respectively. Notice
that if a signal waveform entering the crystal has the shape φm,
then its output shape will remain unchanged, though part of its
energy will be transmitted to the idler waveform having the
shape ψm. The coincidence of input and output modal bases is
a property of SFG in the first order of the Magnus expansion.
In the general case, above 80% conversion efficiency, the
output modes differ from the input ones for both interacting
waves [16].

1. SFG configurations

The SFG process can be configured in different ways ac-
cording to the chosen parameters for the pump and phase
matching.

For what concerns the pump, a time lens is obtained when
using a chirped Gaussian pulse. For this, a short Fourier-
limited pulse of duration τp and spectral bandwidth �p is
dispersed through a medium of GDD, Dp = β (2)

p Lp, with
Lp the length and β (2)

p the group velocity dispersion of the
medium. After the propagation, in the Fraunhofer dispersion
limit, the pulse is stretched to a duration τ ′

p � τp,

τ ′
p = Dp�p. (25)

In the Fourier domain, the chirped pulse is

αp(�) = Ap e− 1
2 �2/�2

p e− i
2 Df �

2
, (26)

where we define Df = −Dp as the focal GDD of the time lens.
For what concerns the phase matching, we can Taylor

expand expression (13) up to first order in � and �′,

�(�,�′)
lc
2

≈ �0
lc
2

+ (k′
i − k′

p)
lc
2

� + (k′
p − k′

s)
lc
2

�′, (27)

where �0 = k0
i − k0

s − k0
p and k′

m are, respectively, the phase
mismatch and the group velocity at the carrier frequency ωm,
for m = {s, i, p}. We restrict our treatment to processes that
are perfectly phase matched at the central frequencies of the
three waves so that �0 = 0. We can then distinguish three
configurations that are qualitatively different:

(i) Ideal. In this case, not only is the phase matching perfect
at carriers, but also for every � and �′ so that �(�,�′)lc/2 =
0. This condition would require one to simultaneously satisfy
(k′

i − k′
p)lc = 0 and (k′

p − k′
s)lc = 0. The pump is assumed to

be infinitely long.
(ii) Perfect phase matching and finite aperture. In this

case, the aperture of the time lens is determined only by the
(finite) pump duration τ ′

p and it corresponds to the physi-
cal situation where the temporal walk-off between the pump
and the signal and idler is much smaller than the inverse of
the pump bandwidth, �−1

p = τp. The conditions to be sat-
isfied are now |k′

i − k′
p|lc � τp and |k′

p − k′
s|lc � τp. From

an experimental point of view, these conditions could be
implemented by using symmetric group velocity matching
k′

i − k′
p = k′

p − k′
s (this condition is also known, in the case of

parametric down-conversion, as “extended phase matching”
[64]). Notice, however, that it is challenging to assure for
the corresponding temporal walk-off to be larger than the

reciprocal of the pump bandwidth. When these conditions
are not respected, the temporal aperture is determined not
only by the pump duration, but also by the spectral filtering
induced by the phase matching. As a consequence, the time
aperture would be smaller than that determined by the pump
only. From a classical point of view, one could tune the other
free parameter, the crystal length lc, to be sufficiently small
in order to satisfy those conditions. On the other hand, in the
quantum regime, a small lc would reduce the conversion effi-
ciency that should be compensated by higher pump intensities.
A different implementation could be via asymmetric group ve-
locity matching, as discussed in [35,50], a configuration that is
similar to that adopted for quantum pulse gates [23,29]. In the
case where the pump and signal group velocities are matched
(k′

p = k′
s), the spectral filtering of the phase matching does not

limit the time lens aperture that is solely determined by the
pump duration. However, the temporal walk-off between the
idler and the pump introduces a spectral filtering that would be
challenging to make negligible. As in the case of symmetric
group velocity matching, one could, for example, use shorter
crystals.

(iii) Finite phase matching and finite aperture. This is the
most general case where no restrictions are required on the
temporal walk-off and the pump duration. As discussed in
[35,50], we consider the asymmetric group velocity dispersion
matching k′

p = k′
s.

2. SVD in the Gaussian kernel approximation

In the configurations discussed above, the integral kernel
K (�,�′) can be approximated by a double Gaussian. This
allows one to obtain an analytic form for the singular values
and the corresponding eigenvectors. When the group velocity
of the pump is matched either to that of the signal or to that
of the idler wave (asymmetric group velocity matching), the
phase-matching function can be characterized by two band-
widths, �h (along the horizontal direction) and �v (along the
vertical direction), so that (17) can be written as

K (�,�′) ≈ Ape− 1
2 (�−�′ )2/�2

p e− i
2 Df (�−�′ )2

× e− 1
2 �′2/�2

h e− 1
2 �2/�2

v , (28)

where the two characteristic bandwidths are given by the
inverse of the temporal walk-off between the pump and signal
waves (�−1

h = lc|k′
p − k′

i |/2σ0), or between the pump and the
idler waves (�−1

v = lc|k′
p − k′

s|/2σ0), with σ0 = 1.61 deter-
mined by approximating Sinc(x) with a Gaussian function
exp(−x2/2σ 2

0 ) having the same width at half maximum.
In this case, the SVD of K (�,�′) leads to the following

analytic results (see Appendix A):

λm = Ap

[
2π�̃h�̃v

F1 + F2

(
F1 − F2

F1 + F2

)m
]1/2

, (29)

ψm(�) = √
σie

− i
2 Df (1−�̃2

h/�
2
p )�2+iθm um(σi�), (30)

φm(�) = √
σse

i
2 Df (1−�̃2

v/�
2
p )�2−iθm um(σs�), (31)
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FIG. 2. (a) Modulus and (b) phase of K (�,�′) as described in Eq. (28). The parameters are �p = 10 a.u., �h = 10�p, �v = 0.2�p, and
Df = 500 �−2

p .

where um(x) = (2mm!
√

π )−
1
2 Hm(x)e−x2/2 is the Gauss-

Hermite function, Hm(x) the Hermite polynomial, and

F1 =
√

1 + D2
f �̃

2
h�̃

2
v, (32)

F2 =
√

1 − �̃2
h�̃

2
v/�

4
p, (33)

σi = √
F1F2/�̃v, (34)

σs = √
F1F2/�̃h, (35)

with 1/�̃2
h = 1/�2

h + 1/�2
p and 1/�̃2

v = 1/�2
v + 1/�2

p. Each
mode has an order-dependent phase θm = (θ0 + mθ )/2, where
θ0 and θ are defined in Appendix A. The functions (30) and
(31) belong to the family of chirped Gauss-Hermite functions,
introduced first for studying propagation of optical pulses in
fibers [65]. Some general properties of these functions have
been established [66]. Some of their other properties, not met
in the literature, are explored in Appendix B.

In the typical situation where �v 	 �p 	 �h, the integral
kernel K (�,�′) looks like the one depicted in Fig. 2, and
�̃h ≈ �p and �̃v ≈ �v . In Figs. 3(a)–3(e), we trace the
first 200 singular values, i.e., the first two signal (blue) and
idler (green) eigenvectors for the indicated values of the
parameters.

As a final remark, we observe that the multimode character
of the time lens is grounded in the spectral correlations that
come with the chirped pump phase profile [see Fig. 2(b)]
and make K (�,�′) not separable. On the contrary, when the
pump is not chirped (Df = 0), K (�,�′) is almost separable
for �v 	 �p 	 �h and the process is single mode, as in the
case of a quantum pulse gate [23,29].

III. MODAL APPROACH TO QUANTUM
TEMPORAL IMAGING

In the case of perfect phase matching, the imaging con-
dition, 1/Din + 1/Dout = 1/Df , and the Goodman-Tichenor

approximation lead to a closed-form transformation for the
scheme of Fig. 1(a) and to explicit expressions for the corre-
sponding IRFs. We review these results in Appendix C.

For a nonideal phase matching [see configuration (iii) in
Sec. II], it is not possible to analytically solve the propagation
of field amplitudes through the time lens [Eqs. (10) and (11)]
and a perturbative approach is required. In Sec. II B, we used
the first order of the Magnus expansion that is suitable for high
conversion efficiency regimes. This analysis leads to solutions
(19) that are expressed in terms of the singular values and
eigenfunctions of the kernel K (�,�′) [see Eq. (18)]. This ex-
plains the necessity of a modal approach to quantum temporal
imaging.

The imaging transformation is obtained by applying, one
after the other, the transformations given by Eq. (3) for the
input dispersive propagation, Eq. (19) for the time lens, and
Eq. (3) for the output dispersive propagation,

Âout
i (τ ) =

∫
d�

2π
e−i�τ âout

i (�), (36)

âout
i (�) =

∫
d�′ [hi(�,�′)âin

s (�′) + qi(�,�′)âin
i (�′)

]
,

(37)

where hi(�,�′) and qi(�,�′) are the two transfer functions
given by

hi(�,�′) = −Gout (�)Vi(�,�′)Gin(�′), (38)

qi(�,�′) = Gout (�)Ui(�,�′). (39)

The classical IRF that allows one to quantify the system
performances is then obtained by a Fourier transform of ex-
pression (38). We note that this is not a difficult task in the
Gaussian kernel approximation since we deal with the Fourier
transform of chirped Gauss-Hermite functions.
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FIG. 3. For parameter choice �p = 10 a.u., �h = 10�p, �v = 0.2�p, Df = 500 �−2
p : (a) singular values of K (�,�′), (b),(c) modulus and

argument of first two output eigenvectors m = 0 and m = 1, (d),(e) modulus and argument of first two input eigenvectors m = 0 and m = 1.
For comparison, we trace the quadratic phase Df�

2 induced by the time lens (dashed-black lines).

Since the functions (38) and (39) satisfy the relation∫
d�′′ [hi(�,�′′)h∗

i (�′,�′′) + qi(�,�′′)q∗
i (�′,�′′)]

= δ(� − �′), (40)

Eq. (36) is unitary and the field commutators are preserved at
the output of the scheme,

[
Âout

i (τ ), Âout
i

†
(τ ′)

] = δ(τ − τ ′). (41)
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By using expressions (23) and (24), it is possible to write (38)
and (39) in diagonal form,

hi (�,�′) =
∑

m

(−sm)ξm(�)ζ ∗
m(�′), (42)

qi(�,�′) =
∑

m

cmξm(�)ψ∗
m(�′), (43)

where sm = sin(glcλm), cm = cos(glcλm), and

ξm(�) = Gout (�)ψm(�), (44)

ζm(�) = G∗
in(�)φm(�). (45)

Notice that the family of functions {ξm} and {ζm} still forms
two complete sets of orthonormal functions.

Even if it is not interesting from the point of view of quan-
tum temporal imaging, for completeness, we also consider
below the unitary transformation describing the output signal
mode. The result is

Âout
s (τ ) =

∫
d�

2π
e−i�τ âout

s (�), (46)

âout
s (�) =

∫
d�′ [hs(�,�′)âin

i (�′) + qs(�,�′)âin
s (�′)

]
,

(47)

where, after using expressions (21) and (22),

hs(�,�′) =
∑

m

smφm(�)ψ∗
m(�′), (48)

qs(�,�′) =
∑

m

cmφm(�)ζ ∗
m(�′). (49)

The ensemble of expressions (42), (43), (48), and (49) repre-
sents the decomposition of the full transformation associated
to the imaging scheme in terms of singular values and eigen-
vectors.

Because of the completeness of {ζm}, an input quantum
object can be decomposed as

âin
s (�) =

∑
m

âin
s,mζm(�), (50)

and hence the functions ζm can be regarded as degrees of
freedom of the input object. Also, the input vacuum field can
be decomposed as

âin
i (�) =

∑
m

âin
i,mψm(�). (51)

Then, because of the completeness of {ξm}, we can write the
expansion

âout
i (�) =

∑
m

(−smâin
s,m + cmâin

i,m

)
ξm(�). (52)

Typical experimental implementations, such as those dis-
cussed in Sec. II B, are far from the ideal situation since the
signal-to-idler conversion efficiencies sm fall off for increasing
values of m. Therefore, in a general situation, the higher
modal components of the signal object will be mixed with
vacuum fluctuations at the output of the imaging scheme. As
mentioned in Sec. II B, the present model is limited to a con-
version efficiency of about 80%. However, had we extended
its validity to the unit efficiency, it would not have predicted
a noiseless imaging because the unit conversion efficiency

FIG. 4. Plot of sm = sin(glcλm ) (blue circles and green trian-
gles) and cm = cos(glcλm ) (red squares and magenta diamonds) for
glcλ0 = π/2 and ρ = F1−F2

F1+F2
∈ {0.8, 0.9}.

would have not been possible for all modes. Since the singular
values (29) of the process depend on the pump amplitude
Ap, it would have been possible to choose this value such
that a particular sm would have been equal to one, but this
condition could not have been satisfied for all the rest of the
eigenspectrum. For instance, let us consider, in the framework
of the present model, a pump amplitude such that the fun-
damental modal component m = 0 presents 100% conversion
efficiency in the firs-order Magnus perturbation theory (s0 = 1
and c0 = 0); this condition is reached when

glcλ0 = π/2, (53)

with λ0 the most important singular value.
In Fig. 4, we trace the values of coefficients sm and cm

for an experimental situation corresponding to condition (53).
From this figure, it is clear that while for the first eigenmode
the situation is ideal, it rapidly gets worse for all the other
modes: the higher the order m of the eigenmode, the higher
the contribution cm of the input vacuum fluctuations in the
idler channel.

The modal analysis we have performed shows that the
properties of the imaging transformation (37) are completely
described by the set of coefficients sm and cm and by the
family of eigenmodes, {φm, ψm, ξm, ζm}. This fact allows one
to design optimal experimental configurations. Notice indeed
that for a setup corresponding to larger values of the ratio

ρ = F1 − F2

F1 + F2
, (54)

the roll-off of the sm coefficients is less important so that a
larger number of modes is not corrupted by vacuum noise.
One can appreciate this difference in Fig. 4, where the co-
efficients sm for a ρ = 0.9 (green triangles) are compared
to those corresponding to a smaller value ρ = 0.8 (blue
dots). Since the parameters F1 and F2 depend on experimen-
tally controllable parameters [see Eqs. (32) and (33)], highly
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FIG. 5. (a) Modulus and (b) phase of Vi (�, �′) as described in Eq. (24). The parameters are �p = 10 a.u., �h = 10�p, �v = 0.2�p, and
Df = 500 �−2

p .

multimode setups that are not dominated by quantum noise
could be designed.

IV. QUANTIFICATION OF SYSTEM PERFORMANCES

While the performances of a temporal imaging scheme can
be easily quantified in the case of perfect phase matching for
any conversion efficiency regime, as soon as one wants to
include the limitations induced by the finite phase matching,
the quantification of performances becomes a difficult task.
Despite the fact that the expressions (38) and (39) do not allow
for an analytic evaluation of the transfer functions hi(�,�′),
qi(�,�′), we show in this section that a quantitative assess-
ment of the performances can be realized from the singular
values and eigenvectors discussed in the previous section,
thus showing the interest of the modal approach for temporal
imaging.

As discussed by Bennett and Kolner in [35], a finite group
velocity mismatch (GVM) between the three waves involved
in the SFG process results in a spectral filtering that limits
the bandwidth of the transmitted field amplitude and modi-
fies the ideal impulse response h̃(τ ). The resolution is now
determined by the width of the effective IRF, h̃′(τ ), that can
be obtained, in two simplifying cases, as the convolution of
the ideal IRF, h̃(τ ), with the inverse Fourier transform of a
spectral filtering function F (τ ): when the group velocity of
the pump matches that of the signal, the GVM between pump
and idler has the effect equivalent to a filter at the output.
Hence, the total IRF is

h̃′(τ ) ∝ Fout (τ ) ∗ h̃(τ ), (55)

where the asterisk denotes the convolution product. On the
other side, when the group velocity of the pump matches that
of the idler, the GVM between pump and signal has the effect
equivalent to an input filter such that the total IRF is

h̃′(τ ) ∝ h̃(τ ) ∗ Fin(τ/M ), (56)

with M = −Dout/Din the magnification factor of the imaging
scheme.

In the low conversion efficiency regime, as the one con-
sidered by Bennett and Kolner, the filtering functions have
an analytic expression, and therefore the bandwidth of their
inverse Fourier transform can be obtained as |k′

p − k′
s|lc

(respectively, |k′
p − k′

i |lc). In the high conversion efficiency
regimes, the time lens transformation (24) is significantly
different from that in the low efficiency regime (17), and
therefore the approach of [35] is less precise. This difference
can be appreciated by comparing Figs. 2 and 5: at the first
order of the Magnus expansion, the phase matching no longer
has the profile of a double Gaussian as K (�,�′) and the spec-
tral region where it is maximal is larger and flatter [compare
Figs. 2(a) and 5(a)]. Also, this difference can be observed in
Fig. 6 where the horizontal (� = 0) and the vertical (�′ = 0)
sections of K (�,�′) and Vi(�,�′) are compared. On the
other side, the phase profile of Vi(�,�′) [see Fig. 5(b)] shows
that the linear chirp induced by the pump is still present. This
fact ensures that the scheme still works as a time lens in the
high conversion efficiency regime.

The starting point of the modal approach consists in esti-
mating the extension of the spectrum of the singular values
{sm} by means of the Schmidt number S, which is defined as

S =
(∑

m s2
m

)2∑
m s4

m

, (57)

and characterizes the amount of degrees of freedom of the
transformation (37). We assume below that this number is
rounded to the nearest integer.

Spectral field of view. By the knowledge of the Schmidt
number S, we can also get an estimate of the bandwidths of
the horizontal (�s) and vertical (�s) sections of |Vi(�,�′)|.
Notice that these bandwidths also characterize the transfer
function hi(�,�′) by virtue of expression (38). These band-
widths can be approximately obtained as the variances of
the eigenfunctions ζm(�) and ξm(�) of order m = S. In the
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FIG. 6. For parameter choice �p = 10 a.u., �h = 10�p, �v = 0.2�p, Df = 500 �−2
p : (a) Comparison between the horizontal section (� =

0) of K (�,�′) (green dash-dotted line) and that of Vi (�,�′) (yellow dashed line); the full width at half maximum of the horizontal section of
Vi (�, �′) is close to the FWHM of the eigenmode φm(�) with m = S (in this case, S = 100). (b) Comparison between the vertical section (�′ =
0) of K (�,�′) (green dash-dotted line) and that of Vi (�, �′) (yellow dashed line); the full width at half maximum of the vertical section of
Vi (�, �′) is close to the FWHM of the absolute value of eigenmode |ψm(�)| with m = S (with S = 100).

Gaussian model, the eigenfunctions are chirped Gauss-
Hermite functions; therefore, we get the analytic expressions
(see Appendix B)

�2
s = (

S + 1
2

)
σ−2

s , (58)

�2
i = (

S + 1
2

)
σ−2

i . (59)

Temporal resolution. The Schmidt number and the eigen-
functions can be used for obtaining an analytic expression—in
the case of the Gaussian approximation—of the resolution r
of the imaging scheme. The resolution of an imaging scheme
is the smallest detail that can be transferred; hence, by follow-
ing [55], we can estimate r as the average distance, in the time
domain, of the zeros of the Sth eigenfunction of the IRF: the
smaller is r, the better is the resolution of the scheme. In the
general case of nonideal phase matching, the transfer function
hi(�,�′) is characterized by the two families of eigenfunc-
tions {ξm} and {ζm} [see (42)]. In the time domain, the first
family of eigenfunctions determines the characteristic time ri

of the system in the image plane, while the second family
determines the characteristic time rs in the object plane. Then
the resolution of the system, at the image plane, is given by

r = max{|M|rs, ri}, (60)

where rs and ri are evaluated as the average distance of the
zeros of the inverse Fourier transform of ζm(�) and ξm(�) for
m = S. This distance is given by the temporal width of the
eigenfunction divided by the number of its semi-oscillations.
By using the inverse Fourier transform of {ξm} and {ζm},
we find that the temporal widths (see Appendix B) for the
eigenfunctions m = S are

Ts = σs

√(
S + 1

2

)(
1 + (Din − D1)2

σ 4
s

)
, (61)

Ti = σi

√(
S + 1

2

)(
1 + (Dout − D2)2

σ 4
i

)
, (62)

with D1 = Df (1 − �̃2
v/�

2
p) and D2 = Df (1 − �̃2

h/�
2
p). No-

tice that in Ts and Ti, the parameters σs, σi, and S depend on
the details of the phase-matching profile of the SFG process,
while the parameters Din and Dout depend on the imaging
scheme and are related to each other via the imaging condition
[see Eq. (C14) in Appendix C].

Since the number of semi-oscillations for an Sth-order
Gauss-Hermite function is given by S,

rs = Ts/S, (63)

ri = Ti/S. (64)

Temporal field of view (FOV). This figure of merit is defined
as the temporal duration over which an object can be viewed.
By following [35], let us assume that the input signal modes
are made up of short classical features fin(τ ; τ0) centered at
τ0 and that, at the output, they are transformed as fout (τ ; τ0).
Then the FOV is defined as the width of the energy profile
U (τ0) outgoing the system as a function of the input τ0 of this
feature,

U (τ0) ∝
∫ +∞

−∞
dτ | fout (τ ; τ0)|2. (65)

The estimation of this quantity in the case of a nonideal phase-
matching profile requires a numerical calculation. However,
the modal approach allows one to simplify expression (65).
Indeed, by using (36) and the classical part of (52), we obtain

fout (τ ; τ0) =
+∞∑
m=0

(−sm) fin,m(τ0), (66)

043716-9



G. PATERA et al. PHYSICAL REVIEW A 108, 043716 (2023)

with

fin,m(τ0) =
∫ +∞

−∞
dτ ζ ∗

k (τ ) fin(τ ; τ0), (67)

where ζ ∗
k (τ ) is the Fourier transform of ζ ∗

k (�). As a conse-
quence, one has

U (τ0) ∝
+∞∑
m=0

s2
m| fin,m(τ0)|2. (68)

Expression (68) can be considered a generalization of ex-
pression (28) in [35] for high conversion efficiency regimes
and when the phase matching is nonideal. The FOV of the
system can be estimated, then, by considering that the width
of U (τ0) is given by the width of the element um(τ0) with
m = S. As an example, consider an object pulse having in-
finitely small details such that fin(τ ; τ0) → δ(τ − τ0). In this
case, fin,m(τ0 ) = ζ ∗

m(τ0) and the FOV is approximately given
by the time duration of the input eigenvector corresponding to
m = S; hence, FOV ≈ Ts.

As we discussed in [50], a time lens with a FOV designed
for classical images is not necessarily adapted for the manip-
ulation of a quantum image because while the degradation of
its classical part might be negligible, at the same time it will
be polluted by vacuum noise in a measure quantified by the cm

coefficients. The modal approach allows us to choose the level
of acceptable added noise by simply choosing the maximum
allowed, cmax. From this choice, then, one can extract the
order M such that cM � cmax. When cmax < 0.5, then M < S.
Hence, the quantum FOV corresponding to the chosen level
of added noise can be defined such as the time duration of

M∑
m=0

s2
m| fin,m(τ0)|2. (69)

Time-bandwidth product. An important figure of merit in
(temporal) imaging is the time-bandwidth product of the time
lens. It corresponds to the number of (temporal) features that
can be processed by a (time) lens and it is given by the ratio
FOV/r [35,36].

In order to improve the system performances, one has to
increase the Schmidt number. This can be done by choosing
the experimental parameters such that the ratio ρ = (F1 −
F2)/(F1 + F2) is as close as possible to one or, equivalently,
F1 � F2. As an example, in Fig. 4, we compare two cases
where the ratio ρ is changed from 0.8 to 0.9. This increment
allows a doubling of S (from 6 to 13). Notice, however, that
increasing the Schmidt number of the imaging scheme comes
at a cost. Indeed, for any choice, since optimal conversion
efficiency is obtained for s0 = 1 or, equivalently, glcλ0 = π/2,
increasing the value of S means increasing the value of glcAp.

A. Ideal situation

The ideal situation [see configuration (i) in Sec. II] is
reached when the phase matching is perfect over a very broad
bandwidth �h,�v → +∞, when the pump bandwidth tends
to infinity (faster than �h and �v), so that the pump pulse
has a very large duration, τ ′

p = Df�p → +∞, and when the
condition (53) for perfect conversion efficiency is satisfied.
In this case, F1 → Df�v�h, F2 → 1, λm = λ0 = Ap

√
2π/Df ,

sm ≈ 1, and cm ≈ 0 for all m so that, from Eq. (52), no noise
is introduced. The Schmidt number S → +∞ and, conse-
quently, the bandwidths �s and �i are arbitrarily large and
the parameters rs and ri are arbitrarily small.

Equation (42) in this case can be rewritten as

hi(�,�′) = −
∑

m

ξm(�)ζ ∗
m(�′). (70)

On the other hand, we obtain, from Eqs. (18), (28), (44), and
(45) in this limit,

λ0

∑
m

ξm(�)ζ ∗
m(�′) = ApGout (�)e− i

2 Df (�−�′ )2Gin(�′). (71)

When the imaging condition (C14) is satisfied, we obtain,
from Eqs. (70), (71), and (4),

hi(�,�′) = −
√

Df

2π
e− i

2 MDf (�−�′/M )2

, (72)

where the magnification M = −Dout/Din. In the temporal do-
main, this gives the well-known unitary transformation for
perfect quantum temporal imaging [48],

Âout (τ ) = − 1√
M

ei τ2

2MDf Âin(τ/M ). (73)

B. Perfect phase matching and finite aperture

In this section, we consider the case where the phase
matching is almost perfect (�h,�v � �p), but the imag-
ing scheme presents a finite aperture induced by the pump
pulse duration τ ′

p = Df�p [see configuration (ii) in Sec. II B].
Notice that in this case, the traditional approach to tempo-
ral imaging (classical [33] and quantum [52]) gives analytic
results as reviewed in Appendix C. The purpose of this sec-
tion is, then, to test the modal approach developed in this
paper by comparing its predictions to those obtained by the
traditional approach. In Fig. 7, we show the modulus and
argument of K (�,�′) as well as a comparison between the
eigenspectrum of two nonideal configurations as those in
Fig. 2 (blue solid and red dashed lines) and a configuration
where the phase matching tends to be ideal (green dot-dashed
line).

Here we have �̃h ≈ �p(1 − �2
p/�

2
h) and �̃v ≈ �p(1 −

�2
p/�

2
v ). Since, typically, the pump pulse is dispersed in

the Fraunhofer limit (Df�
2
p � 1), then F1 ≈ Df�

2
p and F2 ≈

�p/�hv , where

1/�2
hv = 1/�2

h + 1/�2
v. (74)

Also, we have σi ≈ √
Df�p/�hv and σs ≈ √

Df�p/�hv . The
Schmidt number of the imaging scheme is large, S � 1, a
consequence of the fact that the spectrum of sm falls off very
slowly. There is no explicit form for the expression of S in
the general case; however, an underestimated value can be
obtained in the low conversion regime (i.e., glcλ0 	 π/2) as
S ≈ F1/F2 or

S ≈ τ ′
p�hv. (75)

By using this expression in (63) and (64), we find that rs =
(1 + 1/|M|)Df/τ

′
p and ri = (1 + |M|)Df/τ

′
p. Hence, in the
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FIG. 7. (a) Modulus and (b) phase of K (�,�′) as described in Eq. (28) with parameters �p = 10 a.u., �h = 10�p, �v = 10�p, and
Df = 500�−2

p . (c) Comparison between the eigenspectrum of three configurations tending to the perfect phase-matching case: solid blue for
�v = 0.2�p, dashed red for �v = �p, and dot-dashed green for �v = 10�p. Notice that the case �v = 0.2�p corresponds to the one depicted
in Fig. 2.

limit of large magnification |M| � 1, the resolution r (60) is

r ≈ |M|Df/τ
′
p, (76)

and in the limit of large compression |M| 	 1,

r ≈ Df/τ
′
p, (77)

which corresponds to the resolution obtained in [33] and [52].
Connection with the traditional approach is obtained by

observing that in this limit [see (18)],∑
m

λmξm(�)ζ ∗
m(�′) ≈ Gout (�)αp(� − �′)Gin(�′). (78)

As a result, the IRF is the Fourier transform of the pupil
function of the scheme as described in [33,52] and detailed
here in Appendix C.

It is interesting to observe that from the expressions of
S, Ts, and Ti, the limit of �h,�v � �p gives arbitrary large
values. However, their ratios (63) and (64) remain finite, as
well as the system resolution.

C. Finite phase matching and finite aperture

This is the most general case [see configuration (iii) in
Sec. II B], and we assume the typical situation where the
group velocities of the pump and signal field are matched;
in this case, hence, we have �v 	 �p 	 �h. This situa-
tion corresponds to that depicted in Fig. 2. In this case, we
have �̃v ≈ �v and �̃h ≈ �p. This implies that F1 ≈ τ ′

p�v

and F2 ≈ 1 − (�v/
√

2�p)2. Then the Schmidt number (in
the low conversion regime) S ≈ τ ′

p�v is smaller than that in
the situation with perfect phase matching in Sec. IV B; we
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assume below that S � 1. We also have σs ≈ √
Df�v/�p and

σi ≈ √
Df�p/�v .

For large magnification |M| � 1, we need to distinguish
the cases |M| � �p/�v and |M| 	 �p/�v . In the first case,
the temporal durations of the eigenmodes ζS (τ ) and ξS (τ )
are Ts ≈ τ ′

p�v/�p and Ti ≈ τ ′
p|M|�v/�p, respectively. In this

case, the resolution of the system, evaluated from (60), is

r ≈ |M|rs ≈ ri ≈ |M|Df/τ
′
p. (79)

This result corresponds to Eq. (76) and to the resolution given
by the traditional approach—the input resolution is given by
the undispersed pump pulse width [35,52].

In the opposite case of |M| 	 �p/�v , we have Ts ≈
τ ′

p/|M| and Ti ≈ τ ′
p. In this case, the resolution is

r ≈ |M|rs ≈ ri ≈ Df

τ ′
p

�p

�v

, (80)

which differs from Eq. (79) by a factor �p/|M|�v � 1. This
means that the resolution is greatly degraded by the effects of
bandwidth filtering induced by the temporal walk-off between
the pump and idler waves, as discussed in Ref. [35].

On the other side, for a system designed for a large com-
pression |M| 	 1, we have Ts = τ ′

p/|M| and Ti = τ ′
p, and the

resolution results in

r ≈ Df

τ ′
p

�p

�v

. (81)

In this case, by comparison with (77), the resolution is always
worse than that obtained for the perfect phase-matching case
by a factor of �p/�v .

We see, thus, that the figures of merit calculated with the
help of the modal approach coincide in the limiting cases with
those obtained within the traditional approach based on the
Fourier transform. In the intermediate cases, in particular, in
a high conversion regime, these figures of merit can be eval-
uated by performing, analytically or numerically, the modal
decomposition (18) and calculating the Schmidt number (57).

V. CONCLUSIONS

In this work, we developed the modal approach for a
SFG-based quantum temporal imaging scheme in the high
conversion efficiency regime and for the general case of
nonperfect phase matching and finite temporal aperture. In
general, this problem does not admit a closed-form expression
for the IRF and for its Fourier transform, i.e., the transfer
function. However, by using the modal approach, we showed
that it is possible to express the transfer function in terms of its
expansion on the singular values and eigenmodes of the prob-
lem. Then we showed how to obtain the relevant figures of
merit of the imaging scheme and how to express them in
terms of the modal decomposition. This allows one to assess
the performances of the QTI scheme. We finally used these
results for comparing the relevant figures of merit to those
obtained in the regime of perfect phase matching and infinite
aperture and of perfect phase matching and finite aperture.
This comparison makes clear the necessity of a multimode
operation for implementing a QTI scheme working in high
conversion efficiency regimes and the physical parameters that
need to be adjusted in order to improve its performances. Our

results will allow, therefore, for better designs for noiseless
manipulation of the spectrotemporal degrees of freedom of
photonic nonclassical states.
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APPENDIX A: SINGULAR-VALUE DECOMPOSITION
OF THE KERNEL

We can use the general formula for SVD of a complex
double-Gaussian kernel [67],

e− 1
2 (μx2+νy2 )+(η+iξ )xy

=
√

πσxσy

v

∞∑
k=0

pqkuk (σxx)uk (σyy)eiζσ 2
x x2+iζσ 2

y y2+i(θ0+kθ ),

(A1)

where μ, ν, η, and ξ are real numbers, satisfying the re-
lations μ, ν > 0,

√
μν > |η|, necessary and sufficient for

this kernel to be square integrable. On the right-hand
side of Eq. (A1), uk (x) is the Gauss-Hermite function de-
fined in Sec. II B, σx = √

uv/ν, σy = √
uv/μ, ζ = ηξ/(2uv),

p = √
2v/(u + v), and q = √

(u − v)/(u + v), where u =√
μν + ξ 2 and v =

√
μν − η2. The phases are θ0 = arg(pc)

and θ = arg(qc), where

qc = η + iξ

1 + w + iηξ
, (A2)

pc =
√

2w

1 + w + iηξ
, (A3)

and w =
√

(1 + ξ 2)(1 − η2).
Identifying x = �, y = �′, μ = �̃−2

v , ν = �̃−2
h , η = �−2

p ,

ξ = Df , u = F1/�̃v�̃h, v = F2/�̃v�̃h, σx = σi, σy = σs, and
ζ = Df�̃

2
v�̃

2
h/2F1F2�

2
p, we obtain the decomposition of the

kernel (28) into the singular functions (30) and (31).

APPENDIX B: SPECTRAL AND TEMPORAL WIDTHS OF
CHIRPED GAUSS-HERMITE FUNCTIONS

We define a chirped Gauss-Hermite function as un(x, ζ ) =
uk (x) exp(iζx2), where un(x) is the Gauss-Hermite function
defined in Sec. II B and ζ is a real chirp parameter. Orthonor-
mality and completeness of chirped Gauss-Hermite functions
follow directly from the orthonormality and completeness of
the Gauss-Hermite functions,∫ +∞

−∞
um(x, ζ )u∗

n(x, ζ )dx =
∫ +∞

−∞
um(x)un(x)dx = δmn,

(B1)

∞∑
n=0

un(x, ζ )u∗
n(x′, ζ ) =

∞∑
n=0

un(x)un(x′)eiζ (x2−x′2 )

= δ(x − x′). (B2)
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For every function of this basis, we treat |un(x, ζ )|2 as a
probability density and define its moments

〈xk〉un =
∫ +∞

−∞
xk|un(x, ζ )|2dx, (B3)

and its standard deviation δxn =
√

〈x2〉un − 〈x〉2
un

. Using
the symmetry property of Hermite polynomials Hn(−x) =
(−1)nHn(x), which also holds for the Gauss-Hermite func-
tions, we arrive at a conclusion that |un(x, ζ )|2 is an even
function of x and therefore all its odd moments are zero.

From the recurrence relations for the Hermite polynomials
[68] xHn(x) = Hn+1(x)/2 + nHn−1(x), we obtain the recur-
rence relations for chirped Gauss-Hermite functions,

xun(x, ζ ) = 1√
2

[
√

n + 1un+1(x, ζ ) + √
nun−1(x, ζ )]. (B4)

Substituting Eq. (B4) into Eq. (B3) and using the orthonor-
mality of the chirped Gauss-Hermite functions, we obtain
〈x2〉un = n + 1

2 and

δxn =
√

n + 1
2 , (B5)

which, of course, does not depend on the chirp parameter
since the latter does not affect the modulus of a chirped Gauss-
Hermite function.

Now we define the inverse Fourier transforms of chirped
Gauss-Hermite functions,

ũn(y, ζ ) = 1√
2π

∫ +∞

−∞
un(x, ζ )e−ixydx. (B6)

These functions also create a complete orthonormal set of
functions, namely, the following relations hold:∫ +∞

−∞
ũm(y, ζ )ũ∗

n(y, ζ )dy = δmn, (B7)

∞∑
n=0

ũn(y, ζ )ũ∗
n(y′, ζ ) = δ(y − y′), (B8)

which can be proven by substituting Eq. (B6) and using
Eqs. (B1) and (B2). Similarly to Eq. (B3), we define moments
of Fourier-transformed functions,

〈yk〉ũn =
∫ +∞

−∞
yk|ũn(y, ζ )|2dy, (B9)

and their standard deviations, δỹn =
√

〈y2〉ũn − 〈y〉2
ũn

.
From Eq. (B6), we find

ũn(−y, ζ ) = 1√
2π

∫ +∞

−∞
un(−x, ζ )e−ixydx = (−1)nũn(y, ζ ),

(B10)

and conclude that the odd moments of |ũn(y, ζ )|2 are zero.
Recurrence relations for Fourier-transformed chirped Gauss-
Hermite functions can be found by integration by parts,
recurrence relations for Hermite polynomials written above,

and their differential relations [68] dHn(x)/dx = 2nHn−1(x):

yũn(y, ζ ) = i√
2π

∫ +∞

−∞

(
d

dx
e−ixy

)
un(x, ζ )dx

= −i√
2π

∫ +∞

−∞

dun(x, ζ )

dx
e−ixydx

= i√
2

[(1 − 2iζ )
√

n + 1ũn+1(y, ζ )

− (1 + 2iζ )
√

nũn−1(y, ζ )]. (B11)

Substituting Eq. (B11) into Eq. (B9) and using the orthonor-
mality of the Fourier-transformed chirped Gauss-Hermite
functions, we obtain 〈y2〉ũn = (n + 1

2 )(1 + 4ζ 2) and

δỹn =
√(

n + 1
2

)
(1 + 4ζ 2). (B12)

Thus, with growing chirp parameter, the width of the Fourier-
transformed chirped Gauss-Hermite function is growing and
its standard deviation grows almost linearly in the modulus of
the chirp parameter for sufficiently high values of the latter.

APPENDIX C: STANDARD APPROACH IN THE PERFECT
PHASE-MATCHING APPROXIMATION

Under the approximation of perfect phase matching, we get
the results of [52] that we review in this section for compari-
son. Since, in this case,

f (�,�′, z) ≈ αp(� − �′), (C1)

the right-hand side of Eqs. (10) and (11) becomes convoluted
and Eq. (15) reads(

âs(�, lc/2)

âi(�, lc/2)

)
= eglcM(�)∗

(
âs(�,−lc/2)

âi(�,−lc/2)

)
, (C2)

where ∗ denotes a convolution product and

M(�) =
(

0 α∗
p (�)

−αp(�) 0

)
. (C3)

Differently from the general case, solution (C2) is exact since
all the terms of the Magnus expansion higher than the first
order are all null, which is a well-known property of a per-
fectly phase-matched nonlinear process [61]. Then, by using
inverse Fourier transform, the transformation (C2) becomes a
standard matrix multiplication,(

âs(τ, lc/2)

âi(τ, lc/2)

)
= B(τ )

(
âs(τ,−lc/2)

âi(τ,−lc/2)

)
, (C4)

where

B(τ ) =
(

c(τ ) e−iφ(τ )s(τ )

−eiφ(τ )s(τ ) c(τ )

)
, (C5)

with φ(τ ) = Arg[α̃p(τ )], α̃p(τ ) is the inverse Fourier trans-
form of α̃p(�),

α̃p(τ ) ∝ Ap e−τ 2/2τ ′
p

2

eiτ 2/2Df , (C6)
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and

c(τ ) = cos[glc|α̃p(τ )|], (C7)

s(τ ) = sin[glc|α̃p(τ )|]. (C8)

In particular, the idler wave at the output (z = lc/2) of the SFG
process is given by

âi(τ, lc/2) = − eiφ(τ )s(τ )âs(τ,−lc/2) + c(τ )âi (τ,−lc/2).
(C9)

Equation (C4) represents a unitary transformation of the pho-
ton annihilation operators from the input of the nonlinear
crystal to its output, hence preserving the canonical com-
mutation relations. This equation has the same form as the
transformation induced by a beam splitter with the amplitude
transmission coefficient c(τ ) and the reflection coefficient
s(τ ) such that c(τ )2 + s(τ )2 = 1. The transmission coefficient
controls the amount of the input waves that remains in the
same mode and the reflection coefficient controls the amount
of the input waves that is converted in the other mode. The
phase factor eiφ(τ ) in front of the input signal amplitude is
determined by the phase of the pump wave. Therefore, a time
lens transformation is obtained by choosing a quadratic time
dependence in the pump phase, φ(τ ) = τ 2/2Df . Notice that
the second term on the right-hand side of (C9) is associated
to vacuum fluctuations entering the nonlinear process through
the input idler port of the time lens and mixing with the
input state. These fluctuations are, of course, detrimental for
the nonclassical input states and they need to be avoided.
They can be suppressed when the conversion efficiency of
the process |s(τ )|2 = 1. This situation can be reached when
glc|αp(τ )| = π/2. However, this condition cannot be satisfied
for all τ because of a finite duration of the pump pulse.
Typically, the pump pulse presents a maximum intensity at
τ = 0; then the conversion efficiency of the nonlinear process
can be optimized such as

glc|αp(0)| = π/2, (C10)

while for τ �= 0, the conversion efficiency will be smaller than
one: as a consequence, the time lens presents a finite aperture
of the imaging scheme.

The linear unitary transformation for the imaging scheme
considered in Fig. 1(a) can be obtained by applying, one
after the other, the transformation (3) for the input dispersive
propagation with GDD Din, then (C9) for the time lens, and,
finally, (3) for the output dispersive propagation with GDD,
Dout:

Âout
i (τ ) =

∫
dτ ′ [hi (τ, τ

′)Âin
s (τ ′) + qi(τ, τ

′)Âin
i (τ ′)

]
, (C11)

where

hi(τ, τ
′) = −

∫
dτ ′′ Gout (τ − τ ′′)s(τ ′′)eiτ ′′2/2Df

× Gin(τ ′′ − τ ′), (C12)

qi (τ, τ
′) = Gout (τ − τ ′)c(τ ′) (C13)

are the IRFs of the transformation. In [52], we showed that
under the Goodman-Tichenor approximation and when the
imaging condition

1

Din
+ 1

Dout
= 1

Df
(C14)

is satisfied, then the IRFs become

hi(τ, τ
′) = −i

√
|M|e −iτ2

2|M|Df

∫
d�

2π
ei�(τ−Mτ ′ )s(Dout�), (C15)

qi(τ, τ
′) = i

√
|M|e −iτ2

2|M|Df

∫
d�

2π
ei�(τ−Mτ ′ )c̃(Dout�), (C16)

where M = −Dout/Din is the magnification factor of the imag-
ing scheme and c̃(τ ) = c(τ )exp(−iτ 2/2Df ).

Notice that the response hi(τ, τ ′) corresponds to the clas-
sical IRF and is given, as in standard imaging, by the Fourier
transform of the pupil function that in our case is the func-
tion s(τ ). On the other side, the response qi(τ, τ ′) has no
classical correspondence and is responsible for the vacuum
fluctuations entering the scheme because of a finite pupil
function.

When the pump pulse is infinitely long, and hence the tem-
poral aperture of the lens is arbitrarily large, and the condition
(C10) is satisfied, then s(τ ) = 1 and c(τ ) = 0. In this case, the
response functions become ideal,

hi(τ, τ
′) = −i

√
|M|e −iτ2

2|M|Df δ(τ − Mτ ′), (C17)

qi(τ, τ
′) = 0, (C18)

such that the transformation (C11)

Âout
i (τ ) = −i

e
−iτ2

2|M|Df√|M| Âin
i (τ/M ) (C19)

describes an ideal imaging scheme such as that considered in
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