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Spontaneous emission spectrum from a V-type artificial atom in a strong-coupling regime:
Dark lines and line narrowing
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We employ a time-dependent variational approach with the multiple Davydov D2 ansatz and two approximate
analytical methods to study the spontaneous emission of a V-type artificial atom in the strong-coupling regime,
where the decay rate of the emitter becomes a considerable fraction of its transition frequencies, and focus
on quantum-interference-induced effects. The variational approach is found to be accurate in certain strong-
coupling regimes and is used as the benchmark to address the validity of the analytical methods: the rotating-
wave approximation (RWA) and the transformed RWA (TRWA). It is found that the TRWA is fairly accurate in
the strong-coupling regime where the RWA breaks down. By using the numerical and analytical methods, we
illustrate that there are dark lines and line narrowing in the emission spectra in the strong-coupling regime and
in a wide accessible range of the emitter parameters. We also illustrate how the emission spectrum is altered
by the counter-rotating couplings. The present results offer insights into the experimental observation of the
quantum-interference-induced effect in the strong-coupling regime and in the context of artificial atoms.
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I. INTRODUCTION

Multilevel emitters have attracted much attention in both
theoretical and experimental studies in quantum optics be-
cause of quantum interference and coherence. Such effects
play a vital role in the emission and absorption processes
of multilevel emitters and lead to a variety of interesting
phenomena such as electromagnetically induced transparency
[1–5], spontaneous emission cancellation [6], and lasing
without inversion [7]. On the other hand, the study of the
multilevel system reveals also a need for the realization
of quantum information processing, which is relevant to
quantum gates [8], quantum state transfer [9], quantum en-
tanglement [10], etc.

One of the simplest multilevel systems, the three-level
systems have been considered in many works [11–21]. Owing
to quantum interference and coherence, the time evolution of
the excited-state population is not a simple exponential decay.
The emission spectrum exhibits intriguing structures that are
absent in the case of a two-level atom, the spectrum of which
is a simple Lorentzian line. Zhu et al. have shown that there
are dark lines and line narrowing in the emission spectrum of
a V-type three-level atom due to the interference between the
two transitions [11]. However, it has been pointed out by the
authors that these effects are found to be significant in a very
limited range of atom parameters, that is, the separation of
the two upper levels of the atom is required to be comparable
with the natural decay rate and thus it is far smaller than the
transition frequencies between the lower state and the upper
states, which is not a realistic situation in real atoms. It is
therefore difficult to experimentally observe such effects with
real atoms.

*yiyingyan@zust.edu.cn

As is known, artificial atoms realizable with supercon-
duction circuits enable the realization of a broad range
of light-matter coupling from weak to ultrastrong regimes
[22,23]. Reference [24] reports that the interaction between
a superconducting qubit and one-dimensional transmission
line is so strong that the spontaneous decay rate of the
qubit becomes comparable with its transition frequency, in
contrast with real atoms. It becomes interesting to explore
whether quantum-interference-induced effects such as dark
lines and line narrowing exist in the strong-coupling regime
and in a wide accessible range of parameters. In addi-
tion, counter-rotating couplings which are neglected in the
rotating-wave approximation (RWA) become important in the
strong-coupling regime. Few efforts have been devoted to
studying how those couplings influence the emission spectra
of the multilevel emitter in the strong-coupling regime.

In this paper, we study the spontaneous emission spectrum
of a V-type artificial atom coupled to a radiation reservoir by
using a variational approach and two approximate analytical
methods in the strong-coupling regime where the decay rate
of the emitter becomes a considerable fraction of its transition
frequency. The variational approach is based on the Dirac-
Frenkel time-dependent variational principle and the multiple
Davydov D2 (multi-D2) ansatz [25–27], which goes beyond
the RWA and Born-Markovian approximation and is shown to
be accurate in certain strong-coupling regimes. One analytical
method is based on a unitary transformation [28] which allows
us to derive a RWA-like effective Hamiltonian and is named
the transformed RWA (TRWA) method; the other analytical
method is based on the widely used RWA. By comparing the
survival probabilities of the excited state and emission spectra
calculated by the three methods, we show that the TRWA
method is capable of providing a fairly accurate description
of the spontaneous emission of the V-type artificial atom in
the strong-coupling regime while the RWA breaks down. We

2469-9926/2023/108(4)/043712(15) 043712-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4396-7265
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.043712&domain=pdf&date_stamp=2023-10-16
https://doi.org/10.1103/PhysRevA.108.043712


YIYING YAN PHYSICAL REVIEW A 108, 043712 (2023)

illustrate that in the strong-coupling regime significant dark
lines and line narrowing can be observed in the emission
spectra in a wide range of parameters. Particularly, it is fea-
sible to observe such effects in the case of a relatively large
separation of the two upper states of the three-level emitter,
which is accessible with artificial atoms in the circuit-QED
setups. This paves the way for experimental observation of
such phenomena in artificial atoms.

This paper is organized as follows: In Sec. II, we intro-
duce the theoretical model and the methodologies including
the time-dependent variational approach, the TRWA, and the
RWA. In Sec. III, we compare the survival probabilities of the
excited state calculated by the three methods and study the
steady-state emission spectra in the strong-coupling regime.
In Sec. IV, the conclusions are drawn.

II. MODEL AND METHODOLOGIES

We consider that a V-type artificial atom is strongly cou-
pled to a multimode radiation field, which is described by the
Hamiltonian (h̄ = 1)

H = HS + HR + HI, (1)

where

HS =
2∑

j=0

� j | j〉〈 j|, (2)

HR =
∑

k

ωkb†
kbk, (3)

HI =
∑

k

λk

2
L(bk + b†

k ). (4)

Here, HS is the free Hamiltonian of a V-type three-level ar-
tificial atom, where |0〉 is the ground state with the energy
h̄�0 ≡ 0, and |1〉 and |2〉 are the excited states. � j ( j = 1, 2) is
the transition frequency between the excited state | j〉 and the
ground state |0〉. HR is the free Hamiltonian of the multimode
radiation field. bk (b†

k) is the annihilation (creation) operator of
the kth bosonic mode with frequency ωk . HI is the interaction
Hamiltonian between the three-level artificial atom and the
reservoir, where λk is the coupling constant. L = L† is the
transition operator of the V-type artificial atom and reads

L =
2∑

j=1

r j (|0〉〈 j| + | j〉〈0|) ≡
2∑

j=1

Vj, (5)

where r j is the matrix element for the transition: |0〉 ↔ | j〉.
The dissipation effect of the reservoir is characterized by

the Ohmic spectral density

J (ω) =
∑

k

λ2
kδ(ωk − ω) = 2αω�(ωc − ω), (6)

where α is the dimensionless coupling constant, �(·) is the
Heaviside function, and ωc is the cutoff frequency. This spec-
tral density is frequently used for the circuit QED [29–31].
For the Ohmic reservoir, when α is close to 0.1, the usual
second-order master equation or the RWA is inadequate and
a strong-coupling regime is achieved [24,32].

Note that the present model can be physically realized with
superconducting circuits [24]. A key feature of such systems

is that their potentials can be manipulated to have a strong
anharmonicity. This makes it possible to isolate the few lowest
levels from other higher levels [24,33,34]. In this scenario,
transitions from the lower-level subspace to the higher-level
subspace should be negligible even in the strong-coupling
regime. Consequently, a few-level model is still applicable to
artificial atoms in the presence of a strong atom-field interac-
tion [22,23].

A. Time-dependent variational approach

In this section, we use the Dirac-Frenkel time-dependent
variational principle with the multi-D2 ansatz to solve the
time-dependent Schrödinger equation. To simplify the formal
calculation, we use the interaction picture governed by the free
Hamiltonian of the reservoir HR, i.e.,

i
d

dt
|ψ̃ (t )〉 = H̃ (t )|ψ̃ (t )〉, (7)

where

H̃ (t ) = HS +
∑

k

λk

2
L(b†

keiωkt + bke−iωkt ). (8)

The Dirac-Frenkel time-dependent variational principle states
that with a given trial state |ψ̃ (t )〉 the optimal solution to the
Schrödinger equation can be found via [35]

〈δψ̃ (t )|i∂t − H̃ (t )|ψ̃ (t )〉 = 0, (9)

where 〈δψ̃ (t )| is a variation of 〈ψ̃ (t )|. In this paper, we use
the multi-D2 ansatz, which is more feasible to treat the “off-
diagonal” coupling than the multi-D1 ansatz (which requires
a diagonalized system operator L) [27,36]. The former reads

∣∣DM
2 (t )

〉 = M∑
n=1

2∑
j=0

(An j | j〉)| fn〉. (10)

Here | fn〉 is the multimode coherent state,

| fn〉 = exp

[∑
k

( fnkb†
k − f ∗

nkbk )

]
|0〉, (11)

where |0〉 is the multimode vacuum state of the reservoir. In
the trial state, the amplitudes An j and the displacements fnk

are the time-dependent variational parameters.
The equations of motion for the variational parameters can

be obtained via Eq. (9) and read

i〈 j|〈 fl

∣∣ḊM
2 (t )

〉 = 〈 j|〈 fl |H̃ (t )
∣∣DM

2 (t )
〉
, (12)

i
2∑

j=0

A∗
l j〈 j|〈 fl |bk

∣∣ḊM
2 (t )

〉 = 2∑
j=0

A∗
l j〈 j|〈 fl |bkH̃ (t )

∣∣DM
2 (t )

〉
.

(13)

These equations of motion can be written in a matrix form and
be integrated with the fourth-order Runge-Kutta algorithm
[26,32]. We present the technique details in Appendix A.

To perform the simulation, we use a finite number of
bosonic modes and specify the initial state as follows. The
coupling constants λk and the frequencies ωk are obtained by
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the linear discretization of the spectral density, that is, they are
determined by the following integrals [37]:

λ2
k =

∫ xk

xk−1

J (x)dx, (14)

ωk = λ−2
k

∫ xk

xk−1

xJ (x)dx, (15)

where xk = kωc/Nb (k = 0, 1, . . . , Nb) and Nb is the total
number of modes. In addition, we should also specify the
initial state of the whole system, which is chosen to be a
product state |
(0)〉|0〉, where

|
(0)〉 = cos θ |1〉 + eiϕ sin θ |2〉 (16)

is the initial state for the V-type artificial atom.
On solving the equations of motion, we can calculate the

physical quantities of interest such as the survival probabil-
ities of the interested states and the emission spectrum. For
the V-type artificial atom, we mainly calculate the survival
probability of the state |10〉 ≡ |1〉 ⊗ |0〉, which is relevant to
the spontaneous emission process and is given by

P10(t ) = ∣∣〈10
∣∣DM

2 (t )
〉∣∣2

=
∣∣∣∣∣

M∑
n=1

An1 exp

(
−1

2

∑
k

| fnk|2
)∣∣∣∣∣

2

. (17)

This time-dependent quantity will be used as a benchmark for
addressing the validity of the analytical approaches developed
in the following. For the field dynamics, we calculate photon
numbers of each mode at time t , which are obtained as fol-
lows:

N (ωk, t ) = 〈DM
2 (t )

∣∣b†
kbk

∣∣DM
2 (t )

〉
=

M∑
n,l=1

2∑
j=0

A∗
l j f ∗

lkSlnAn j fnk, (18)

with

Sln = 〈 fl | fn〉

= exp

{∑
k

[
f ∗
lk fnk − 1

2
(| flk|2 + | fnk|2)

]}
. (19)

It is evident that N (ωk ) ≡ limt→∞ N (ωk, t ) as a function of
ωk is just the steady-state spontaneous emission spectrum.

The accuracy of the variational results is measured by the
scaled squared norm of the deviation vector [38]

σ 2(t ) =
∣∣[i∂t − H̃ (t )]

∣∣DM
2 (t )

〉∣∣2
ω2

0

=
〈
DM

2 (t )
∣∣H̃2(t )

∣∣DM
2 (t )

〉− 〈ḊM
2 (t )

∣∣ḊM
2 (t )

〉
ω2

0

, (20)

where ω0 = min{�1,�2}. The detailed calculation of this
quantity is presented in Appendix A. Typically, the variational
results are numerically accurate as long as σ 2(t ) < 10−2 [32].
More specifically, in the benchmark calculation for the well-
known spin-boson model, we find that provided σ 2(t ) < 10−2

the present variational approach is able to yield the accurate
results predicted by other methods such as the hierarchical

equations of motion [32] and the quasiadiabatic propagator
path integral [25].

B. Unitary transformation

In this section, we analytically calculate the survival prob-
ability of the excited state and the steady-state emission
spectrum by making use of the unitary transformation [28] and
resolvent-operator formalism [39]. The former allows us to
go beyond the RWA and the weak-coupling regime while the
latter allows us to calculate the transition amplitudes easily.

We begin by transforming the Hamiltonian with a polaron-
like unitary transformation [28],

H ′ = eSHe−S,

= H + [S, H] + 1
2 [S, [S, H]] + · · · , (21)

where

S =
∑

k

2∑
j=1

λk

2ωk
(b†

k − bk )ξk, jVj, (22)

with ξk, j being the parameters to be determined later. By
neglecting the higher-order terms, we derive an effective
Hamiltonian in the transformed frame

H ′ ≈ H ′
0 + H ′

1, (23)

where H ′
0 and H ′

1 are the free and interaction Hamiltonian,
respectively. The free Hamiltonian H ′

0 is given by

H ′
0 =

2∑
j=0

�̃ j | j〉〈 j| +
∑

k

ωkb†
kbk, (24)

where

�̃0 =
2∑

i=1

αr2
i

2

[
�i

(
ln

�i + ωc

�i
− ωc

ωc + �i

)
− ω2

c

ωc + �i

]
,

(25)

�̃ j = � j

[
1 − αr2

j

2

(
ln

� j + ωc

� j
− ωc

ωc + � j

)]

− αr2
j ω

2
c

2(ωc + � j )
( j = 1, 2). (26)

Note that the transition frequencies of the excited states have
been renormalized due to the system-reservoir coupling.

The interaction Hamiltonian H ′
1 reads

H ′
1 =

∑
k

2∑
i=1

λ̃k,i
(
b†

k|0〉〈i| + bk|i〉〈0|)
−W (|1〉〈2| + |2〉〈1|), (27)

where

λ̃k,i = ri�iλk

ωk + �i
, (28)
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W = αr1r2

4

⎧⎨
⎩2ωc + 1

�2 − �1

⎡
⎣3�1�2 ln

�1(�2 + ωc)

�2(�1 + ωc)

+
2∑

j=1

(−1) j�2
j ln

� j + ωc

� j

⎤
⎦
⎫⎬
⎭. (29)

Clearly, λ̃k,i is the effective coupling constant between the
state |i〉 and the bosonic mode k, and W is the reservoir-
induced exchange coupling strength between the two excited
states. It is worthwhile to note that the system-field interaction
takes the rotating-wave form and the renormalized parameters
are responsible for incorporating the effects of the counter-
rotating couplings. The present treatment is referred to as the
TRWA since we have constructed a RWA-like Hamiltonian in
the transformed frame. The detailed derivation of the above
effective Hamiltonian is presented in Appendix B.

Although the unitary transformation used resembles the
well-known polaron transformation [40–43], there are three
differences between them. First, in the transformation gen-
erator S, we have introduced parameters ξk, j and they are
determined by requiring the first-order system-reservoir cou-
pling to take the RWA-like form and are found to be less
than 1. When ξk, j = 1, the unitary transformation becomes
the same as the standard polaron transformation. Second,
the operator Vj in the TRWA treatment is not required to
be diagonal while it is taken to be diagonal in deriving the
polaron-transformed master equation [41–43]. Third, we use
the transformation to reformulate the interaction term HI

while the polaron transformation eliminates the interaction
term HI. In addition, we should point out the fact that the
standard polaron-transformed master equation is not applica-
ble to the spin-boson model with the Ohmic spectral density
due to the infrared divergence; however, a variational master
equation may be used to study the present problem [44]. Nev-
ertheless, since we are interested in the spontaneous emission
and there are only few states involved in the problem, it is
much easier to use the resolvent-operator formalism or wave-
function approach than the master-equation approach because
the latter captures only the reduced dynamics and should be
combined with the quantum regression theory to calculate the
emission spectrum [45], which is not as convenient as the
resolvent-operator formalism.

We use the effective Hamiltonian and resolvent-operator
formalism to calculate the survival probability of the state
|10〉 when the initial state is given by |
(0)〉|0〉. The survival
probability is found to be given by

P10(t ) = |〈10|U (t )|
(0)〉|0〉|2

≈
∣∣∣∣cos θ

π

∫ ωc

0
Im

[
Ã2(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)

]
e−iωt dω

+ eiφ sin θ

π

∫ ωc

0
Im

[
B̃(ω)

Ã1(ω)Ã2(ω)−B̃2(ω)

]
e−iωt dω

∣∣∣∣
2

,

(30)

where U (t ) = exp(−iHt ) and

Ã j (ω) = ω − (�̃ j − �̃0) − �̃ j j (ω) + i�̃ j j (ω), (31)

B̃(ω) = −W + �̃12(ω) − i�̃12(ω), (32)

�̃ j j (ω) = 2αr2
j �

2
j

(ω + � j )2

[
ω ln

∣∣∣∣ω(ωc + � j )

� j (ω − ωc)

∣∣∣∣− ωc
ω + � j

ωc + � j

]
,

(33)

�̃ j j′ (ω) = π
r j� j

(ω + � j )

r j′� j′

(ω + � j′ )
J (ω), (34)

�̃12(ω) = 2αr1r2�
2
1�

2
2

(ω + �1)(ω + �2)(�2 − �1)

⎡
⎣ln

�1(ωc + �2)

�2(ωc + �1)

+ ω

�1�2

2∑
j=1

(−1) j� j ln

∣∣∣∣ω(ωc + � j )

� j (ω − ωc)

∣∣∣∣
⎤
⎦. (35)

Moreover, the steady-state emission spectrum can be calcu-
lated as follows:

N (ωk ) = lim
t→∞ |〈01k|U (t )|
(0)〉|0〉|2

≈
∣∣∣∣cos θ

[
λ̃k,1Ã2(ωk ) + λ̃k,2B̃(ωk )

Ã1(ωk )Ã2(ωk ) − B̃2(ωk )
+ λ̃k,1

2�1

]

+ eiϕ sin θ

[
λ̃k,1B̃(ωk ) + λ̃k,2Ã1(ωk )

Ã1(ωk )Ã2(ωk ) − B̃2(ωk )
+ λ̃k,2

2�2

]∣∣∣∣
2

,

(36)

where |01k〉 represents that the emitter is in the ground state
and a photon appears in the kth mode. The detailed derivation
of Eqs. (30) and (36) can be found in Appendix C.

The TRWA spectrum (36) is too complicated to offer
insights into the spectral features. We acquire a simpli-
fication of the TRWA spectrum by using the following
approximation:

Ã j (ω) → ω − (�̃ j − �̃0) − �̃ j j + i�̃ j j ≡ ω − ã j, (37)

B̃(ω) → −W + �̃12 − i�̃12 ≡ b̃, (38)

where �̃ j j′ and �̃ j j′ are the values of �̃ j j′ (ω) and �̃ j j′ (ω)
at ω = ω12, respectively, and ω12 = 1

2 (�̃1 + �̃2) − �̃0 is the
average transition frequency between the upper levels and the
lower level. The above approximation is equivalent to replac-
ing H ′

0 + PR(z)P in Eqs. (C5)–(C8) with H ′
0 + PR(ω12 +

�̃0 + i0+)P , which corresponds to Markovian approximation
and can be justified when �̃ j j′ (ω) and �̃ j j′ (ω) are slowly
varying functions of ω [39]. Furthermore, we also neglect the
constant terms 1/(2� j ) in Eq. (36). In doing so, we obtain a
simplified TRWA spectrum

N (ωk ) = |v(+)
k |2 1

|ωk − z+|2 + |v(−)
k |2 1

|ωk − z−|2 + 2Re

[
v

(+)
k v

∗(−)
k

1

(ωk − z+)(ωk − z∗−)

]
, (39)

v
(±)
k = ± cos θ [λ̃k,1(z± − ã2) + λ̃k,2b̃] ± eiϕ sin θ [λ̃k,1b̃ + λ̃k,2(z± − ã1)]

z+ − z−
, (40)
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where v
(±)
k are the weight factors, and z± are the solutions of

the equation (z − ã1)(z − ã2) − b̃2 = 0 for the variable z and
read

z± = ω12 + 1

2
(�̃11 + �̃22) ∓ √

ρ cos

(
φ

2

)

− i

[
1

2
(�̃11 + �̃22) ± √

ρ sin

(
φ

2

)]
. (41)

The quantities ρ and φ are given by

ρ2 =
[
δ̃2

12 + (W − �̃12)2 − �̃2
12 − 1

4
(�̃11 − �̃22)2

]2

+ [2�̃12(W − �̃12) − δ̃12(�̃11 − �̃22)]2, (42)

φ = arctan
2�̃12(W − �̃12) − δ̃12(�̃11 − �̃22)

δ̃2
12 + (W − �̃12)2 − �̃2

12 − 1
4 (�̃11 − �̃22)2

,

(43)

where

δ̃12 = 1
2 (�̃1 − �̃2 + �̃11 − �̃22). (44)

We now discuss the physical implications of the simpli-
fied TRWA spectrum. It is clear that the first two terms in
the spectrum formally contribute to two peaks, the positions
and widths of which are determined by the real and imagi-
nary parts of z±, respectively. The last term in the simplified
TRWA spectrum is the interference term. It turns out that z±
play a fundamental role in the formation of the spectrum.
The physical significance of z± can be understood by noting
that z± + �̃0 are the eigenvalues of the effective Hamiltonian
H ′

0 + PR(ω12 + �̃0 + i0+)P of the resolvent operator in the
subspace. This suggests that the formation of the spectrum
should be understood as a consequence of transitions from
two corresponding eigenstates of the effective Hamiltonian
in the subspace instead of the two bare upper states to the
ground state. The two eigenstates mathematically arise from
the superposition of the two bare upper states due to the
indirect coupling between them, which is fully captured by
the numerator in Eq. (C12). The indirect coupling phys-
ically results from the exchange of either real or virtual
photons.

C. RWA emission spectrum

To examine the effects of the counter-rotating couplings as
well as the improvement of the TRWA over the RWA, we also
analytically calculate the survival probability of the excited
state and the steady-state emission spectrum with the RWA
Hamiltonian, which is obtained by replacing HI in Eq. (1) with
the following one:

HRWA
I =

∑
k

2∑
i=1

riλk

2
(b†

k|0〉〈i| + bk|i〉〈0|). (45)

By using the RWA Hamiltonian and the resolvent-operator
formalism, we derive the survival probability of the state |10〉,

which is given by

P10(t ) =
∣∣∣∣cos θ

π

∫ ωc

0
Im

[
A2(ω)

A1(ω)A2(ω) − B2(ω)

]
e−iωt dω

+ eiϕ sin θ

π

∫ ωc

0
Im

[
B(ω)

A1(ω)A2(ω)−B2(ω)

]
e−iωt dω

∣∣∣∣
2

,

(46)

where

Aj (ω) = ω − � j − r2
j [�(ω) − i�(ω)], (47)

B(ω) = r1r2[�(ω) − i�(ω)], (48)

�(ω) = P
∑ λ2

k/4

ω − ωk
= α

2

(
ω ln

∣∣∣∣ ω

ωc − ω

∣∣∣∣− ωc

)
, (49)

�(ω) = π
∑

k

λ2
k

4
δ(ωk − ω) = π

4
J (ω). (50)

The RWA steady-state emission spectrum is

N (ωk ) = λ2
k

4

∣∣∣∣cos(θ )r1(ωk − �2) + eiϕ sin(θ )r2(ωk − �1)

A1(ωk )A2(ωk ) − B2(ωk )

∣∣∣∣
2

.

(51)

It follows from Eq. (51) that N (ωk ) = 0 may occur under
certain conditions. For instance, when θ = 0, N (ωk = �2) =
0; when θ = π/2, N (ωk = �1) = 0. In other words, when the
V-type artificial atom is initially prepared in one of the excited
states, N (ωk ) becomes zero at the transition frequency of the
other excited state [11]. This may result in a dark line in the
emission spectrum. It is interesting to examine the influence of
the counter-rotating couplings on such dark lines in the strong-
coupling regime.

III. DYNAMICS AND STEADY-STATE EMISSION SPECTRA

In this section, we use the aforementioned three methods to
calculate the spontaneous emission dynamics and spectrum of
the V-type artificial atom in the strong-coupling regime. In nu-
merical calculation, we set the cutoff frequency as ωc = 5�1.
We will first address the validity of the analytical methods
by comparing the survival probabilities of the excited state
calculated by the three methods, which also provides insights
into the spontaneous emission dynamical process. We then
illustrate the dark lines and line narrowing of the emission
spectra from the V-type artificial atom in the strong light-
matter coupling regime and explore how such phenomena are
affected by the counter-rotating couplings, which are expected
to have non-negligible effects in the strong-coupling regime.

A. Time evolution of the survival probability of the excited state

We first discuss the validity of the variational multi-D2 re-
sults, which is measured by the deviation σ 2(t ). It is found that
the deviation σ 2(t ) of the present variational approach with
the multi-D2 ansatz takes on a relatively small magnitude,
i.e., σ 2(t ) ≈ 10−3, as long as M is large enough and α ≈ 0.1.
More details on the behaviors of σ 2(t ) with the variation of
time are presented in Appendix A. It is therefore reasonable
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FIG. 1. Survival probability as a function of t calculated by the three methods for α = 0.05. The other parameters used are shown in each
panel. “4-D2” represents the variational results with the multiplicity M = 4.

to choose the variational results to be the benchmark in this
paper. In addition, the convergence of the variational results
has been carefully tested by increasing M for fixed Nb and by
increasing Nb for fixed M. The number of bath modes used in
the numerical simulation is Nb = 300. The multiplicity M is
shown in the legend of each plot.

Figure 1 shows the survival probability of the excited state
|10〉 as a function of time calculated by the three methods
for α = 0.05 and various configurations of the other param-
eters. It is evident that the deviation between the TRWA and
the multi-D2 results is much smaller than that between the
RWA and the multi-D2 results, suggesting that the TRWA has
a much better performance than the RWA and the counter-
rotating couplings have a non-negligible contribution to the
short-time dynamics in the strong-coupling regime. In addi-
tion, we should emphasize that in the long-time limit the three
methods coincide, that is, the survival probability tends to zero
due to the fact that the excited state dies out because of the
spontaneous emission.

Figure 2 shows the survival probability of the excited state
|10〉 as a function of time calculated by the three methods for
α = 0.1 and various configurations of the other parameters.
We note that the deviation among the three kinds of results
becomes significant for the larger α. Nevertheless, the TRWA
provides approximate results with acceptable deviation from
the multi-D2 results. In contrast, the RWA results significantly
differ from the multi-D2 results, suggesting the inadequacy of
the RWA.

To summarize, it turns out that the TRWA is applicable to
the strong-coupling regime and has a considerable improve-
ment over the RWA when α ≈ 0.1. On the other hand, Figs. 1
and 2 show that the spontaneous decay of the excited state is
not the simple exponential decay, which possesses oscillatory
behaviors and can be attributed to the bath-induced exchange
interaction between the two upper levels and quantum inter-
ference [12]. Moreover, it is worthwhile to note that Figs. 1(i)
and 2(i) show that the spontaneous decay of the excited state
is relatively slow, indicating that the decay rate is relatively
small in spite of the strong system-reservoir coupling and thus
the emission spectrum may exhibit a narrow line even in the
strong-coupling regime.

B. Dark lines in the emission spectrum

Having compared the short-time evolution of the survival
probability of the excited state, we move to study the emis-
sion spectra of the V-type artificial atom in the long-time
limit. For the variational approach, we propagate the equa-
tions of motion for the variational parameters to a final time
of t = 350�−1

1 and use N (ωk, t )|t=350�−1
1

to approximate the
steady-state emission spectrum. This treatment is found to be
sufficient in most cases except for some intractable cases. For
instance, in the case of a spectrum exhibiting a significant dark
line or line narrowing, the field may need a long time to reach
a steady state, which becomes quite numerically demanding.
Nevertheless, the quantity N (ωk, t )|t=350�−1

1
provides a good
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FIG. 2. Survival probability as a function of t calculated by the three methods for α = 0.1. The other parameters used are shown in each
panel.

approximate description of the steady-state spectrum without
essential error.

In Fig. 3, we calculate the steady-state emission spectrum
by using the three methods for θ = 0, φ = 0, and r1 = 2r2 = 1,
the two values of α, and the three values of �2. The multi-D2

spectra and the TRWA spectra agree well with each other,
which further confirms the validity of the TRWA. When com-
paring the RWA spectra with the other ones, we see the two
consequences of the RWA on the spectra. One is that the RWA
spectra are significantly shifted from the multi-D2 spectra.

FIG. 3. Emission spectra calculated by the three methods for r1 = 2r2 = 1 and θ = ϕ = 0. “Sim. T.” represents the simplified TRWA
spectrum (39). The other parameters used are shown in each panel.
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FIG. 4. Emission spectra calculated by the three methods for r2 = 1, θ = π/4, and ϕ = 0. The other parameters used are shown in each
panel.

The other is that the RWA peak is narrower than the multi-D2

one. This means that the counter-rotating couplings signifi-
cantly contribute to the peak positions and the linewidths of
the spectrum. On the other hand, it is clear to see that the
spectra exhibit Fano-type dark lines irrespective of the RWA.
More importantly, the present results suggest that the dark line
of the V-type artificial atom can be observed in the strong-
coupling regime and in the case of a relatively large separation
of the two upper levels, i.e., |�2 − �1| ∼ �1. This is in sharp
contrast with the previous work in the weak-coupling regime
[11], where the dark lines and line narrowing are found to be
significant only in the small separation of the two upper levels,
i.e., |�2 − �1| ∼ κ � �1 where κ is the spontaneous decay
rate of the natural atom.

We now illustrate the dark lines of the emission spectra
from the V-type artificial atom when it is initially prepared in
the superposition of the two upper states with equal weights,
i.e., θ = π/4 and ϕ = 0. Figures 4(a)–4(c) display the spectra
calculated by the three methods for α = 0.05, �2 = 1.1�1,
and r2 = 1 and the three values of r1. The TRWA and multi-D2

spectra are overall consistent with each other in spite of a
discrepancy in the intensities of the dark lines. Such a dis-
crepancy between the TRWA and multi-D2 spectra can be
ascribed to the fact that the latter are obtained at a finite time,
i.e., N (ωk, t )|t=350�−1

1
, and they have not reached a steady

state for the parameters used in Fig. 4 and can be simply
verified by plotting N (ωk, t ) as a function of time t (the results
are not shown here). We will discuss why the variational
spectrum does not reach a steady state at t = 350�−1

1 under
certain conditions in the next section. Nevertheless, the two
methods on the existence of dark lines are qualitatively the
same. Specifically, when r1 = r2/2, there exists a Fano-type
dark line in the spectrum, which is similar to that found in the
weak-coupling regime [11]. As r1 increases, the dark line pro-
file changes into a dip. When r1 = r2, the dark line becomes
a Fano-type curve again. Figures 4(d)–4(f) display the spectra
for α = 0.1 and �2 = 1.2�1, the other parameters being the

same as Figs. 4(a)–4(c), respectively. We see that the profiles
of the dark lines in the case of α = 0.1 and �2 = 1.2�1

are similar to those in the case of α = 0.05 and �2 = 1.1�1

except that the dark line broadens.
In Figs. 3 and 4, we see that the simplified TRWA spectrum

is qualitatively and acceptably quantitatively correct. There-
fore, we can use the simplified TRWA spectrum to further
analyze the spectral features due to the quantum-interference
effects. It is easy to verify that the dark lines originate from
the interference term. To clarify the interference effects that
are accessible in a wide parameter regime, in Fig. 5(a), we
calculate the interference term in Eq. (39) as a function of ωk

and α for �2 = 1.2�1, 2r1 = r2 = 1, θ = π/4, and ϕ = 0; in
Fig. 5(b) we calculate the interference term as a function of ωk

and �2 for α = 0.1, 2r1 = r2 = 1, θ = π/4, and ϕ = 0. We
see that there are two blue areas where the interference term
takes on considerable negative values, indicating a signifi-
cant modification to the spectrum. The present results suggest
that the dark lines may be feasible to be observed in the
strong-coupling regime and in the presence of a relatively
large separation of the upper levels, which is realizable in
superconducting circuit-QED setups.

C. Line narrowing in the emission spectrum

In this section, we illustrate the line narrowing of the V-
type artificial atom in the strong-coupling regime. Figure 6
displays the spectra obtained by the three methods for r1 =
r2 = 1, �2 = 1.2�1, and θ = π/4, the two values of α, and
the three values of ϕ. It is evident that the spectrum depends
on the relative phase ϕ of the upper states. Interestingly, there
exist a narrow peak and a broad peak in the spectrum. For the
special initial state |
(0)〉 = (|1〉 − |2〉)/

√
2 (θ = π/4 and

ϕ = π ), the spectrum just exhibits a single narrow peak. In
addition, we should point out that the line narrowing can also
be illustrated when the V-type artificial atom is initially in one
of the upper states for a relatively large separation of the upper
levels.
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FIG. 5. (a) Interference term in Eq. (39) as a function of ωk and
α for �2 = 1.2�1. (b) Interference term in Eq. (39) as a function
of ωk and �2 for α = 0.1. The other parameters are 2r1 = r2 = 1,
θ = π/4, and ϕ = 0.

Similarly, we use the simplified TRWA spectrum to an-
alyze the origin of the narrow peak as well as the effects
of quantum interference on it. To this end, we calculate
the emission spectrum and its three components by using
the simplified TRWA spectrum (39) for the parameters in
Figs. 6(a)–6(c). It can be seen from Fig. 7 that the peak as-
sociated with z− itself has a narrow width and the interference
term does not play a fundamental role in the line narrowing.
Instead, the interference term may significantly modify the
height of the narrow peak. More importantly, in Fig. 7(c), we
see that the interference term is weak, and the narrow peak
is barely modified by the interference term. We find that a
similar situation occurs for α = 0.1. This leads us to draw
the conclusion that the line narrowing in the strong-coupling
regime is due to the behavior of the imaginary part of z− and
fundamentally arises from the photon-mediated interaction
between the two upper levels.

A numerical calculation of the real and imaginary parts
of z± as a function of α is shown in Fig. 8 for r1 = r2 = 1
and �2 = 1.2�1. We find that |Imz+| > |Imz−| and their de-
viation increases with α, resulting in a broad and a narrow

peak. Moreover, it is worthwhile to note that the magnitude
of |Imz−| is on the order of 10−2�1 and much smaller than
that of |Imz+|, being on the order of 10−1�1 when α > 0.03.
On the other hand, we note that Rez+ < Rez−, resulting in
the broad peak appearing at a lower frequency and the narrow
peak appearing at a higher frequency. These findings explain
the formation of the spectra shown in Fig. 6 and confirm that
the spectrum in the strong-coupling regime should be under-
stood as a consequence of transitions from the two eigenstates
of the effective Hamiltonian of the resolvent operator in the
subspace to the ground state. The present results suggest that
the line narrowing in the emission spectrum of the V-type
artificial atom can be observed in a wide accessible range
of parameters provided that the system-reservoir coupling is
moderately strong. In addition, the small decay rate from z−
is responsible for the fact that the time-dependent spectra
obtained by the variational approach do not reach a steady
state at t = 350�−1

1 since the emitter needs a fairly long time
to evolve into a steady state.

IV. CONCLUSIONS

In summary, we have studied the spontaneous emission
dynamics and spectrum of the V-type artificial atom in the
strong-coupling regime by using the variational approach,
TRWA, and RWA. The variational approach combines the
Dirac-Frenkel time-dependent variational approach with the
multi-D2 ansatz, which is found to be accurate in the strong-
coupling regime. The analytical TRWA method is based on
the RWA-like effective Hamiltonian derived from the uni-
tary transformation. The variational approach and TRWA are
found to be consistent with each other in predicting short-time
dynamics and steady-state emission spectra in the strong-
coupling regime, where the RWA breaks down. By using the
variational approach and the TRWA, we have shown that the
spectrum exhibits significant dark lines and line narrowing in
the strong-coupling regime when the separation of the two
upper levels is comparable with the transition frequencies of
the system, which is accessible in the circuit-QED setup. The
dark lines signify the quantum-interference effects. However,
the line narrowing is found to be significant even when the
quantum-interference effect is weak and physically originates
from the photon-mediated interaction between the two upper
levels. In addition, we have shown that the counter-rotating
couplings have a significant contribution to the peak position
and linewidth of the spontaneous emission spectrum in the
strong-coupling regime. The present results pave the way
for the experimental observation of the quantum-interference-
induced effects with artificial atoms in the strong-coupling
regime. The present variational approach as well as the TRWA
method provide theoretical tools for studying the dynamics,
emission spectrum, and quantum interference of the multilevel
systems in the strong-coupling regime from the numerical and
analytical views, respectively.
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FIG. 6. Emission spectra calculated by the three methods for r1 = r2 = 1, �2 = 1.2�1, and θ = π/4. The other parameters used are shown
in each panel.

APPENDIX A: EQUATIONS OF MOTION FOR THE
VARIATIONAL PARAMETERS AND THE SQUARED

NORM OF THE DEVIATION VECTOR

One readily differentiates the multi-D2 state with respect to
time t and obtains

∣∣ḊM
2 (t )

〉 = M∑
n=1

2∑
j=0

(
an j + An j

∑
k

ḟnkb†
k

)
| j〉| fn〉, (A1)

where

an j = Ȧn j − An jRe

(∑
k

ḟnk f ∗
nk

)
. (A2)

Using Eq. (A1), the explicit forms of the equations of motion
can be obtained and further be written in a matrix form,

i

⎛
⎜⎜⎜⎜⎝

S C (0)

S C (1)

S C (2)

C (0)† C (1)† C (2)† G

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�a0

�a1

�a2

�̇F

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

�I0

�I1

�I2

�IF

⎞
⎟⎟⎟⎟⎟⎠, (A3)

where S , C ( j), and G are M × M, M × MNb, and MNb × MNb

matrices. The elements of these matrices are defined as fol-
lows:

C ( j)
l,nk = An jSln flk, (A4)

Glq,nk =
2∑

j=0

A∗
l jAn j (δq,k + f ∗

lk fnq)Sln, (A5)

and Sln = 〈 fl | fn〉. The vectors �a j and �̇F are defined as follows:

�a j = (a1 j, a2 j, . . . , aM j )
T, (A6)

�̇F = (. . . , ḟ1k, ḟ2k, . . . , ḟMk, . . .)
T. (A7)

The components of the vectors in the inhomogeneous terms in
Eq. (A3) read

[�I j]l = 〈 j|〈 fl |H̃ (t )|DM
2 (t )〉

=
M∑

n=1

An j� jSln +
M∑

n=1

2∑
i=0

AniSln〈 j|L|i〉

×
∑

k

λk

2
( f ∗

lkeiωkt + fnke−iωkt ), (A8)

FIG. 7. Emission spectrum and its three components calculated by Eq. (39) for α = 0.05, r1 = r2 = 1, θ = π/4, �2 = 1.2�1, and the
three values of ϕ. “P±” and “I3” represent the emission lines from the three terms in Eq. (39), respectively. “Total” represents the sum of the
three components.
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[�IF
]

lq =
2∑

j=0

A∗
l j〈 j|〈 fl |bqH̃ (t )|DM

2 (t )〉

=
M∑

n=1

2∑
j=0

{
� jA

∗
l jAn j fnq +

∑
k

2∑
i=0

λk

2
A∗

l j〈 j|L|i〉Ani

× [δk,qeiωkt + ( f ∗
lkeiωkt + fnke−iωkt ) fnq]

}
Sln, (A9)

where �I j is an M × 1 vector and �IF is arranged as an MNb × 1
vector.

We state briefly how to numerically integrate the equa-
tions of motion. First, one solves the equations of motion
as a set of linear equations for the variable vector to obtain
the information of the derivatives of the variational param-
eters. Note that the derivatives of An j are calculated via
Eq. (A2). Second, the obtained derivatives are used to update
the variational parameters with the fourth-order Runge-Kutta
algorithm. Third, one can repeat the above two steps to obtain
the time evolution of the variational parameters.

The scaled squared norm of the deviation vector depends
on the mean value of H̃2(t ) and the squared norm of |ḊM

2 (t )〉,
which can be straightforwardly calculated as follows:

〈H̃2(t )〉 = 〈DM
2 (t )

∣∣H̃2(t )
∣∣DM

2 (t )
〉

=
M∑

n,l=1

⎡
⎣ 2∑

j=0

A∗
l jAn j�

2
j +
∑

k

2∑
i=0

λk

2
A∗

l j〈 j|{HS, L}|i〉Ani( f ∗
lkeiωkt + fnke−iωkt )

⎤
⎦Sln

+
M∑

n,l=1

2∑
i, j=0

A∗
l j〈 j|L2|i〉Ani

⎧⎨
⎩
[∑

k

λk

2
( f ∗

lkeiωkt + fnke−iωkt )

]2

+
∑

k

λ2
k

4

⎫⎬
⎭Sln, (A10)

〈
ḊM

2 (t )
∣∣ḊM

2 (t )
〉 = (�aT

0 �aT
1 �aT

2
�̇F T
)
⎛
⎜⎜⎜⎜⎝

S C (0)

S C (1)

S C (2)

C (0)† C (1)† C (2)† G

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�a0

�a1

�a2

�̇F

⎞
⎟⎟⎟⎟⎟⎠. (A11)

In Fig. 9, we show the behaviors of σ 2(t ) as a function
of time t for the results shown in Figs. 1 and 2 in the main
text. One readily notes that σ 2(t ) < 10−2 is satisfied in each
variational result. This suggests that the present variational
results are numerically accurate. In addition, we have tried
to calculate the deviation in the case of α = 0.2 and find
that σ 2(t ) increases to a magnitude of about 0.02 for either
M = 12 or 14, indicating that the improvement of the ansatz
may be needed for a higher accuracy.

APPENDIX B: UNITARY TRANSFORMATION
FOR THE V-TYPE ARTIFICIAL ATOM

The unitary transformation can be done as follows:

eSHSe−S ≈ HS + [S, HS] + 1

2
[S, [S, HS]]

= HS +
∑

k

λk

2ωk
(b†

k − bk )

×
2∑

i=1

ξk,i�iri(|0〉〈i| − |i〉〈0|)

−
∑

k

λ2
k

4ω2
k

[
2∑

i=1

r2
i ξ

2
k,i�i(|i〉〈i| − |0〉〈0|)

+ 1

2

2∑
i �= j=1

rir j� jξk,iξk, j (|i〉〈 j| + | j〉〈i|)
]

+
∑
k,p

λkλp

4ωkωp
(b†

kb†
p + bkbp − b†

pbk − b†
kbp)

×
[

2∑
i=1

ξk,iξp,i�ir
2
i (|i〉〈i| − |0〉〈0|)

+ 1

2

2∑
i �= j=1

rir j� j (ξk,iξp, j |i〉〈 j| + ξp,iξk, j | j〉〈i|)
⎤
⎦,

(B1)

eSHRe−S ≈
∑

k

ωkb†
kbk −

∑
k

λk

2
(b†

k + bk )
2∑

i=1

ξk,iVi

+
∑

k

2∑
i, j=1

λ2
k

4ωk
ξk,iξk, jViVj

− 1

2

∑
k,p

λkλp

4ωp
(b†

kb†
p − b†

kbp + b†
pbk − bkbp)

×
2∑

i, j=1

ξk,iξp, j[Vj,Vi], (B2)

eSHIe
−S ≈ HI + [S, HI]

= HI −
∑

k

λ2
k

4ωk

2∑
i, j=1

ξk,i{Vi,Vj}
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FIG. 8. Real and imaginary parts of z± as a function of α for
r1 = r2 = 1 and �2 = 1.2�1. The absolute values are taken for the
imaginary parts.

+
∑
k,p

λkλp

4ωk
(b†

kb†
p + b†

kbp − b†
pbk − bkbp)

×
2∑

i, j=1

ξk,i[Vi,Vj]. (B3)

We construct the diagonal part of the effective Hamiltonian
by collecting the diagonal terms of the decoupled artificial
atom and the reservoir in Eqs. (B1)–(B3), which leads to

H ′
0 =

2∑
j=0

�̃ j | j〉〈 j| +
∑

k

ωkb†
kbk . (B4)

The energies of the three states are renormalized and given by

�̃0 =
2∑

i=1

∑
k

[
λ2

k

4ω2
k

ξ 2
k,i�ir

2
i + λ2

k

4ωk
r2

i

(
ξ 2

k,i − 2ξk,i
)]

, (B5)

�̃ j = � j

(
1 −

∑
k

λ2
k

4ω2
k

ξ 2
k, j r

2
j

)

+
∑

k

λ2
k

4ωk
r2

j

(
ξ 2

k, j − 2ξk, j
)

( j �= 0). (B6)

The parameters ξk,i can be determined by minimizing the
ground-state energy of H̃0, that is, ∂�̃0

∂ξk,i
= 0. This leads to

ξk,i = ωk

ωk + �i
(i = 1, 2). (B7)

The interaction Hamiltonian can be constructed by collecting
the off-diagonal terms associated with the zeroth- and first-
order bosonic processes, that is,

H ′
1 = HI −

∑
k

λk

2
(b†

k + bk )
2∑

i=1

ξk,iVi

+
∑

k

λk

2ωk
(b†

k − bk )
2∑

i=1

ξk,i�iri(|0〉〈i| − |i〉〈0|)

−
∑

k

2∑
i �= j=1

λ2
k

8ω2
k

rir j� jξk,iξk, j (|i〉〈 j| + | j〉〈i|)

−
∑

k

2∑
i �= j=1

λ2
k

4ωk
ξk,i{Vi,Vj}

+
∑

k

2∑
i �= j=1

λ2
k

4ωk
ξk,iξk, jViVj

=
∑

k

2∑
i=1

ri�iλk

ωk + �i
(b†

k|0〉〈i| + bk|i〉〈0|)

−W (|1〉〈2| + |2〉〈1|), (B8)

FIG. 9. Scaled squared norm of the deviation vector σ 2(t ) as a function of t for the variational results in Figs. 1 and 2 of the main text.
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where we have used Eq. (B7) to simplify the system-reservoir
interaction terms, and

W =
∑

k

λ2
k

4ωk
r1r2

[
ξk,1ξk,2

(
�1 + �2

2ωk
− 1

)
+ ξk,1 + ξk,2

]
.

(B9)

APPENDIX C: PROBABILITY AMPLITUDES AND
THE RESOLVENT-OPERATOR FORMALISM

Without loss of generality, we show how to use
the effective Hamiltonian and resolvent-operator formalism
to calculate the probability amplitudes 〈10|U (t )|10〉 and
〈01k|U (t )| j0〉 ( j = 1, 2). It is straightforward to derive the
relation between the probability amplitudes in the laboratory
frame and those in the transformed frame as follows:

〈10|U (t )|10〉 = 〈10|e−SeSU (t )e−SeS|10〉

≈ 〈10|U ′(t )|10〉 +
∑

q

λ̃q,1

2�1
[〈01q|U ′(t )|10〉

+ 〈10|U ′(t )|01q〉], (C1)

〈01k|U (t )| j0〉 ≈ 〈01k|U ′(t )| j0〉 +
∑

q

λ̃q, j

2� j
〈01k|U ′(t )|01q〉

−
2∑

i=1

λ̃k,i

2�i
〈i0|U ′(t )| j0〉, (C2)

where 〈10|U ′(t )|10〉 and 〈01q|U ′(t )|10〉 are the probability
amplitudes in the transformed frame. These quantities can
be calculated with the resolvent-operator formalism, which
relates the time evolution operator with the resolvent operator
via the following integral [39]:

U ′(t ) = 1

2π i

∫ −∞

+∞
G(ω + i0+)e−iωt dω, (C3)

where

G(z) = 1

z − H ′ (C4)

is the resolvent operator defined with the effective Hamilto-
nian H ′ and a complex variable z. To compute the probability
amplitudes, we should first calculate the corresponding matrix
elements of G(z). To this end, we introduce the projectors
P and Q, where P = |10〉〈10| + |20〉〈20| and Q = 1 − P .
We then use the algebra method to evaluate the projections
PG(z)P , PG(z)Q, QG(z)P , and QG(z)Q, which read [39]

PG(z)P = P
z − H ′

0 − PR(z)P , (C5)

QG(z)P = Q
Q(z − H ′)QH ′

1
P

z − H ′
0 − PR(z)P , (C6)

PG(z)Q = P
z − H ′

0 − PR(z)P H ′
1

Q
Q(z − H ′)Q , (C7)

QG(z)Q = Q
Q(z − H ′)Q + Q

Q(z − H ′)QH ′
1

× P
z − H ′

0 − PR(z)P H ′
1

Q
Q(z − H ′)Q , (C8)

where

R(z) = H ′
1 + H ′

1
Q

z − H ′
0

H ′
1 + · · · (C9)

is the level-shift operator.
The level-shift operator can be computed up to the second

order and leads to the matrix elements of PG(z)P:

〈20|G(z)|20〉 =
z − �̃1 −∑q

λ̃2
q,1

z−�̃0−ωq

D̃(z)
, (C10)

〈10|G(z)|10〉 =
z − �̃2 −∑q

λ̃2
q,2

z−�̃0−ωq

D̃(z)
, (C11)

〈20|G(z)|10〉 = 〈10|G(z)|20〉 =
−W +∑q

λ̃q,1λ̃q,2

z−�̃0−ωq

D̃(z)
,

(C12)

where

D̃(z) =
⎛
⎝z − �̃1 −

∑
q

λ̃2
q,1

z − �̃0 − ωq

⎞
⎠

×
⎛
⎝z − �̃2 −

∑
q

λ̃2
q,2

z − �̃0 − ωq

⎞
⎠

−
⎛
⎝W −

∑
q

λ̃q,1λ̃q,2

z − �̃0 − ωq

⎞
⎠

2

. (C13)

By using the above elements, we simply have the following
probability amplitudes:

〈10|U ′(t )|10〉 = 1

2π i

∫ −∞

+∞
〈10|G(ω + i0+)|10〉e−iωt dω

= 1

2π i

∫ −∞

+∞

Ã2(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)

× e−i(ω+�̃0 )t dω

= − 1

π

∫ ωc

0
Im

[
Ã2(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)

]

× e−i(ω+�̃0 )t dω, (C14)

〈10|U ′(t )|20〉 = 1

2π i

∫ −∞

+∞
〈10|G(ω + i0+)|20〉e−iωt dω

= 1

2π i

∫ −∞

+∞

B̃(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)

× e−i(ω+�̃0 )t dω

= − 1

π

∫ ωc

0
Im

[
B̃(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)

]

× e−i(ω+�̃0 )t dω, (C15)
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where we have used 1
x+i0+ = P 1

x − iπδ(x) and the Hilbert
transform, and we have defined Ã j (ω) and B̃(ω) in the main
text and the following functions of ω:

�̃ j j′ (ω) = P
∑

q

λ̃q, j λ̃q, j′

ω − ωq
, (C16)

�̃ j j′ (ω) = π
∑

q

λ̃q, j λ̃q, j′δ(ωk − ω). (C17)

It follows from Eqs. (C14) and (C15) that

〈i0|U ′(t )| j0〉 → 0 (t → ∞). (C18)

The element 〈01k|G(z)|10〉 can be calculated according to
Eq. (C6):

〈01k|G(z)|10〉 = 〈01k| Q
Q(z − H ′)QH ′

1PG(z)|10〉

=
∑

q

2∑
i=1

λ̃q,i〈01k| Q
Q(z − H ′)Q |01q〉

× 〈i0|G(z)|10〉

≈
2∑

i=1

λ̃k,i

z − �̃0 − ωk
〈i0|G(z)|10〉, (C19)

where we have used

〈01k| Q
Q(z − H ′)Q |01q〉 ≈ 1

z − �̃0 − ωk
δk,q. (C20)

It follows from Eqs. (C3) and (C19) that

〈01k|U ′(t )|10〉 = 1

2π i

∫ −∞

+∞
〈01k|G(ω + i0+)|10〉e−iωt dω

≈ 1

2π i

∫ −∞

+∞

1

ω − ωk + i0+

× λ̃k,1Ã2(ω) + λ̃k,2B̃(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)
e−i(ω+�̃0 )t dω.

(C21)

A similar calculation directly leads to

〈01k|U ′(t )|20〉 ≈ 1

2π i

∫ −∞

+∞

1

ω − ωk + i0+

× λ̃k,1B̃(ω) + λ̃k,2Ã1(ω)

Ã1(ω)Ã2(ω) − B̃2(ω)
e−i(ω+�̃0 )t dω.

(C22)

It is clear that the simple pole ω = ωk − i0+ leads to nonvan-
ishing values of the integrals (C21) and (C22) in the long-time
limit (t → ∞). By using the residue theory we simply have
the following asymptotic behaviors as t → ∞:

〈01k|U ′(t )|10〉 ≈ λ̃k,1Ã2(ωk ) + λ̃k,2B̃(ωk )

Ã1(ωk )Ã2(ωk ) − B̃2(ωk )
e−i(ωk+�̃0 )t ,

(C23)

〈01k|U ′(t )|20〉 ≈ λ̃k,1B̃(ωk ) + λ̃k,2Ã1(ωk )

Ã1(ωk )Ã2(ωk ) − B̃2(ωk )
e−i(ωk+�̃0 )t .

(C24)

According to Eq. (C8), we have

〈01k|G(z)|01q〉 ≈ 〈01k| Q
Q(z − H ′)Q |01q〉, (C25)

which simply leads to

〈01k|U ′(t )|01q〉 ≈ δk,qe−i(�̃0+ωk )t . (C26)

With Eqs. (C23)–(C25) at hand, we can obtain the tran-
sition amplitude 〈01k|U (t )| j0〉 ( j = 1, 2) in the laboratory
frame and in the long-time limit according to Eq. (C2):

〈01k|U (t )|10〉 ≈
[

λ̃k,1Ã2(ωk ) + λ̃k,2B̃(ωk )

Ã1(ωk )Ã2(ωk ) − B̃2(ωk )
+ λ̃k,1

2�1

]

× e−i(ωk+�̃0 )t , (C27)

〈01k|U (t )|20〉 ≈
[

λ̃k,1B̃(ωk ) + λ̃k,2Ã1(ωk )

Ã1(ωk )Ã2(ωk ) − B̃2(ωk )
+ λ̃k,2

2�2

]

× e−i(ωk+�̃0 )t . (C28)

Based on the above probability amplitudes, we can easily
derive the survival probability (30) and steady-state emission
spectrum (36) in the main text.
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