
PHYSICAL REVIEW A 108, 043711 (2023)

Localization-delocalization transition in an electromagnetically induced photonic lattice
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We investigate the localization-delocalization transition (LDT) in an electromagnetically induced photonic
lattice. A four-level tripod-type scheme in atomic ensembles is proposed to generate an effective photonic
moiré lattice through the electromagnetically induced transparency (EIT) mechanism. By taking advantage of
the tunable atomic coherence, we show that both periodic (commensurable) and aperiodic (incommensurable)
structure can be created in such a photonic moiré lattice via adjusting the twist angle between two superimposed
periodic patterns with square primitive. Furthermore, we also find that by tuning the amplitudes of these two
superimposed periodic patterns, the localization-delocalization transition occurs for the light propagating in the
aperiodic moiré lattice. Such localization is shown to link the fact that the flat bands of moiré lattice support
quasi-nondiffracting localized modes and thus induce the localization of the initially localized beam. It would
provide a promising approach to control the light propagation via the electromagnetically induced photonic
lattice.
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I. INTRODUCTION

Localized light waves can be used as a versatile tool
for various types of manipulation and processing in opti-
cal information. It thus can be considered as a foundation
for information dissemination. Past studies show that many
promising methods, such as designing the optical localiza-
tion propagation in optical fibers, utilizing artificial periodic
structures in photonic crystals, and constructing random struc-
tures with Anderson localization effect, can implement light
localization [1–5]. In particular, one of the key ingredients of
these schemes is to engineer the spatial characteristics of the
optical medium, which shows unprecedented capabilities in
controlling the flow of light as well as matter waves [6–10].

Recently, another distinct approach to generating spa-
tially periodic structures via the electromagnetically induced
transparency (EIT) scheme [11], in either hot atomic vapors
[12–14] or ultracold atoms [15], has attracted considerable
attention. Various electromagnetically induced photonic lat-
tices have been studied in previous works [13–21]. Many
interesting physics, such as photonic Bloch oscillations [16],
electromagnetically induced Talbot effect [17,18], topological
defects in photonic graphene [19], optical edge-state solitons
[20], and Klein paradox [21], have been explored.

In this work, we propose a four-level tripod-type scheme in
atomic ensembles to generate an electromagnetically induced
photonic moiré lattice [22,23] through the EIT mechanism.
Since one can take advantage of the tunable atomic coher-
ence in the EIT scheme, distinct from other schemes, such as
utilizing the photorefractive crystal [22,23], it could provide
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new opportunities for exploring unveiled physics, such as
the non-Hermition effect [24,25] and electromagnetically in-
duced phase grating [26]. In the following, we will show
that through changing the twist angle between two superim-
posed periodic patterns with square primitive in our proposed
four-level tripod-type EIT scheme, the moiré pattern is highly
flexible. Both periodic (commensurable) and aperiodic (in-
commensurable) structure can be achieved. Interestingly, we
find a localization-delocalization transition (LDT) of the light
propagating in the aperiodic photonic moiré lattice, which
manifests the typical flat-band feature of the moiré lattice.

II. EFFECTIVE MODEL

Let us take the 87Rb atomic system as an example to
show our proposed four-level tripod-type scheme, which
is schematically presented in Fig. 1(a). The signal, cou-
pling, and pump fields drive the transitions |1〉 → |4〉, |2〉 →
|4〉, and |3〉 → |4〉, respectively, where |1〉, |2〉, and |3〉 can be
chosen from the 52S1/2 state of 87Rb, such as |F = 1, mF =
±1〉 and |F = 2, mF = 1〉, while |4〉 can be selected from the
52P1/2 state, such as |F ′ = 1, mF = 0〉. Here we consider that
both the signal and pump beams are injected into atomic en-
semble along the z axis. The coupling field is consisted of two
groups of orthogonalized paired beams paraxially propagating
along the z direction.

Under the rotating-wave approximation, the density-matrix
equations for our proposed four-level tripod-type atomic
system can be expressed as [27]
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where �nm is the natural decay rate between levels |n〉
and |m〉 and � = �41 + �42 + �43. �s = μ41Es/h̄, �c =
μ42Ec/h̄, and �p = μ43Ep/h̄ are Rabi frequencies of the sig-
nal, coupling, and pump fields, where μi j is the electric dipole
matrix element related to the atomic transition between |i〉 and
| j〉. Es(c,p) is the strength of the corresponding electric field.
�s = ωs − ω14, �c = ωc − ω24, and �p = ωp − ω34 denote
the frequency detunings. Since the signal field is much weaker
than both the coupling and pump fields, from Eq. (1) we can
obtain the following relations:

ρ21 = −�∗
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�s − �c
ρ41

ρ31 = −�∗
p/2

�s − �p
ρ41. (2)

Substituting Eq. (2) into Eq. (1), ρ41 can be solved as
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The susceptibility of atomic medium can be determined
through the following formula:

χ = 2Nμ14ρ41/ε0Es

= −N |μ14|2
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where N is the atomic density. In this work, we consider
the case with �s �= �c,p to avoid the transparency window

FIG. 1. (a) The schematic plot of our proposed four-level tri-
pod scheme. Here �s(p,c) stands for the Rabi frequencies of the
signal, pump, and coupling fields, respectively. �s(p,c) labels the
corresponding frequency detuning. (b) Two groups of orthogonalized
paired-standing waves marked by the solid and dashed lines, respec-
tively, which can form two superimposed square patterns. θ labels
the twisted angle between them.

in the EIT scheme. The refractive index can be obtained via
the relation n = √

1 + χ ≈ 1 + χ/2. From Eq. (4), one can
notice that the spatial profile of the susceptibility is highly
dependent on the distribution of the coupling fields, and thus
can produce various structures by shaping them. To show that,
here we consider that the coupling fields are consisted of two
groups of orthogonalized paired standing waves paraxially
propagating along the z axis (captured by a small angle φ to
the z axis), as depicted in Fig. 1(b) by the solid and dashed
lines, respectively. Distinct from the previous studies [13–21],
the key idea here is to design the spatial structure of the
coupling fields. Two groups of orthogonalized paired standing
waves can form two superimposed square patterns. And the
total spatial pattern is highly tunable through changing the
twisted angle as shown in Fig. 1(b). To be more specific, the
four standing waves as shown in Fig. 1(b) can be expressed as

	Ec1(	r, t ) = E ′
c cos k0x

[
ei(kzz−ωct )x̂ + ei(kzz−ωct−π/2)ŷ

]
	Ec2(	r, t ) = E ′

c cos k0y
[
ei(kzz−ωct+π/2)x̂ + ei(kzz−ωct )ŷ

]
	Ec3(	r, t ) = E ′′

c cos k0x′[ei(kzz−ωct )x̂′ + ei(kzz−ωct−π/2)ŷ′]
	Ec4(	r, t ) = E ′′

c cos k0y′[ei(kzz−ωct+π/2)x̂′ + ei(kzz−ωct )ŷ′], (5)

where kz = kc cos φ and k0 = kc sin φ. Unit vectors x̂′, ŷ′
are related to x̂, ŷ via the relation [x′, y′]T = S[x, y]T,
where S = [cos θ,− sin θ ; sin θ, cos θ ] is the operator of two-
dimensional (2D) rotation. Therefore, the intensity of the
coupling field can be expressed as

|Ec(x, y)|2 = 2E ′2
c |[cos(k0y)x̂ + cos(k0x)ŷ]

+ α[cos(k0y′)x̂′ + cos(k0x′)ŷ′]|2, (6)

where α = E ′′
c /E ′

c. As shown in Fig. 2, when varying the
twisted angle θ and amplitude ratio α, the interference of
coupling fields will produce different spatial patterns and
induce an effective 2D photonic lattice in the xy plane. For
instance, the periodic structure of refractive index lattice is
produced when θ is a Pythagorean angle, e.g., θ = arctan 4/3
[see Figs. 2(b) and 2(d); otherwise, the aperiodic structure is
induced, e.g., θ = π/6 [see Figs. 2(a) and 2(c)].
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FIG. 2. Spatial structure of the refractive index lattice. (a) and
(c) show the real and imaginary part of the refractive index lattice
with θ = π/6, which forms an aperiodic moiré pattern. For compar-
ison, a periodic structure is also shown in (b) and (d) for the real
part and imaginary part with θ = arctan 4/3. Here a0 = λc/ sin φ

and α = 1. The detunings are chosen as �s �= �c,p to avoid the
transparency window in the EIT scheme.

III. LOCALIZATION-DELOCALIZATION TRANSITION

In the following, we will demonstrate the effect of the
spatial profiles of our proposed refractive index lattice through
investigating the light propagation within it. The propagation
of signal beam 	Es(	r, t ) in the atomic medium is governed by
the following electric field wave equation:

∇2 	Es + ω2
s

c2
ε(	r) 	Es = 0, (7)

where ε = 1 + χ is the relative dielectric constant. We
then rewrite 	Es(	r, t ) as 	Es(	r, t ) = ψ (	r)[exp (iksz − iωst )x̂ +
exp (iksz − iωst + π/2)ŷ], with ψ (	r) being the field ampli-
tude. Then, from Eq. (7) a Schrödinger-type equation of ψ (	r)
can be obtained,

i
∂

∂z
ψ = − 1

2ks

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − ks�n(x, y)

n0
ψ, (8)

where �n(x, y) ≈ χ/2 and ks = 2πn0/λs is the wave vector
of the signal beam. n0 is the ambient refractive index.

To investigate the light propagation in the refractive index
lattices as shown in Fig. 2, we initialize the signal beam as a
Gaussian wave packet and numerically simulate its propaga-
tion. As shown in Fig. 3, when θ is chosen as a Pythagorean
angle—for instance, θ = arctan 4/3—the refractive index lat-
tices possess a spatially periodic structure and the initial
Gaussian wave packet displays the delocalization behavior

FIG. 3. The propagation of light in moiré photonic lattice. In (a) and (b), it is shown that when θ is chosen as a Pythagorean angle
θ = arctan 4/3, the initial Gaussian wave packet (top row) displays the delocalized behavior for any amplitude ratio α of two superimposed
periodic patterns. Here, we choose α = 0.1 and α = 1 in (a) and (b), respectively. Such delocalized behavior can also be captured by the
vanished IPR with the long propagation distance, as shown in the bottom row of (a) and (b). In (c) and (d), when θ = π/6, we find that there
is a threshold of α. Below that threshold, as shown in the middle panel of (c) (α = 0.1), the light propagation still shows the delocalized
behavior, while above that threshold, as shown in the middle row of (d) (α = 1), the light propagation will still keep being localized, which
can be verified by the nonzero IPR as shown in the bottom row of (d). In the middle row, the propagation distance is chosen as z/ksa2

0 = 10.
Other parameters are chosen as the same as in Fig. 2.
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FIG. 4. IPR as a function of the amplitude ratio α of two super-
posed patterns for aperiodic moiré lattice. A threshold of amplitude
ratio α can be determined by the nonzero point of IPR. Other param-
eters are chosen as the same as in Fig. 3(d)

for arbitrary amplitude ratio α of the two superimposed pe-
riodic patterns. When the refractive index lattices possess a
spatial aperiodic structure—for instance, θ = π/6—we find
that there is a threshold of α. Below that threshold, as shown
in Fig. 3(c), the light propagation still shows the delocalization
behavior. However, if α exceeds the threshold, as shown in
Fig. 3(d), the signal beam turns out to be localized. There-
fore, there is a LDT in aperiodic moiré lattice when tuning
the amplitudes of the two superimposed periodic patterns.
To quantitatively analyze the LDT here, we introduce the
factor inverse participation ratio (IPR) [28] defined as η(z) =∫ |ψ (	r)|4dxdy/[

∫ |ψ (	r)|2dxdy]2. The localized behavior can
be captured by the nonzero IPR. As shown in Fig. 4, the
threshold of amplitude ratio in the aperiodic moiré lattice
separating two distinct regimes in the LDT can be determined
by the nonzero point of IPR when varying α. Actually, the
transition point of α is dependent on the initial state, which
is distinct from the analysis of the localized properties of the
equilibrium eigenmodes in the previous studies [22,23].

To understand the localization of light in aperiodic moiré
lattice, we calculate its single-particle dispersion relation
through approximating the non-Pythagorean twist angle by
a Pythagorean one [22]. For instance, here we use θ =
arctan (120/209) to approximate θ = π/6. Under such an ap-
proximation, the single-particle dispersion of aperiodic lattice
can be obtained by the plane-wave expansion method through
introducing the Bloch basis ψn	k = ∑

	G un	k, 	G|	k + 	G〉 with the

Bloch vector 	k and reciprocal lattice vector 	G. Here n labels
the band index. Then, the single-particle dispersion relation
can be obtained through solving the eigenproblem via the
following relation:

(	k + 	G)2

2ks
un	k, 	G − ks

n0

∑
	G′

〈	k + 	G|�n(x, y)|	k + 	G′〉un	k, 	G′

= βn	kun	k, 	G, (9)

FIG. 5. [(a), (b)] The single-particle dispersion relation of aperi-
odic lattice with θ = π/6 under the Pythagorean approximation via
choosing θ = arctan 120/209 for α = 0.1 and α = 1.0, respectively.
[(c), (d)] The band occupation probability cn defined in the main text
for the case with α = 0.1 and α = 1.0, respectively. In (a) and (b), the
red bands are the occupied bands of the chosen initial wave packet.

where βn	k is the dispersion relation of 2D Bloch waves.
As shown in Fig. 5, when the amplitude ratio α increases,
more lower bands become extremely flat. Since the flat bands
support quasi-nondiffracting localized modes, the initially lo-
calized beam launched into such moiré lattice will remain
localized. To show that, we define a quantity cn ≡ 〈ψn|ψ0〉,
with |ψ0〉 labeling the initial Gaussian wave packet and |ψn〉
standing for the eigenstates solved from Eq. (9), to decompose
the initial state into the eigenstates of aperiodic lattice. It can
capture the band occupation probability of the chosen initial
state. For instance, as shown in Figs. 5(a) and 5(c), when the
amplitude ratio α is below the threshold, the occupied bands
of the initial wave packet (cn �= 0) are dispersive. Therefore,
the light propagator presents the delocalized behavior. While
increasing α above the threshold, the occupied bands of the
initial wave packet are flat. Therefore, such flat bands drive
the LDT in aperiodic moiré lattice, since the flat bands support
quasi-nondiffracting localized modes.

IV. CONCLUSION

In summary, we propose a four-level tripod-type EIT
scheme in atomic ensembles to induce a photonic moiré lat-
tice. Such a lattice shows great tunability of changing the
spatial structure. Both periodic and aperiodic structures can be
achieved. We further explore the LDT behavior in the aperi-
odic moiré lattice through investigating the light propagation.
A threshold of amplitude ratio of two superposed patterns has
been found. Such a phenomenon can be understood through
analysis of the flat-band physics of moiré lattice. Our pro-
posal would provide a promising approach to manipulate
the light propagation through electromagnetically induced
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photonic lattices and thus have potential applications in op-
tical information techniques.
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