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In this work we develop a theory of fractional stimulated Raman adiabatic passage (FSTIRAP) using
frequency-chirped pulses (CFSTIRAP). We analyze the CFSTIRAP as a method to create a coherent super-
position state maximizing coherence between the initial and the target state in the presence of the two-photon
detuning. We demonstrate that the pulse chirping permits relaxation of the condition of the two-photon resonance
required for adiabatic passage in STIRAP and FSTIRAP. The choice of the chirp rate |α| = |δ|/(tp − ts ) enables
adiabatic passage to a predetermined state between two nearly degenerate final states within a broad range of
values of the two-photon detuning and the chirp rate. The proposed schemes will expand the scope of quantum
control methods and contribute to the further improvement of quantum imaging, sensing, and metrology.
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I. INTRODUCTION

Since its discovery, stimulated Raman adiabatic passage
(STIRAP) has developed into a prominent method of quantum
coherent control [1]. Owing to its robustness, STIRAP has
been used in a variety of research fields, as detailed in the
road-map provided in [2]. The applications of STIRAP
continue to expand, advancing state control in solid-state
materials, e.g., nitrogen-vacancy (NV) centers [3] and
silicon-vacancy centers in the diamond [4], creating ultracold
molecules using mixed intermediate states [5], performing
geometric gates in superconducting qubits by implementing
shortcuts to adiabaticity [6,7], mastering nuclear coherent
population transfer to the 229mTh isomer using x-ray pulses
[8], efficiently swapping population from an arbitrary initial
state [9], designing a digitized version of STIRAP [10], and
imaging stars via quantum communication techniques [11].

An extension of STIRAP, the fractional STIRAP (FSTI-
RAP), may prove useful for imaging, sensing and detection
by virtue of the generation of an enhanced signal as well as
the signal sustainability upon propagation through a medium.
Fractional STIRAP is designed to generate a coherent super-
position of the initial and the final states by manipulating the
duration of the Stokes pulse and make it vanishing simulta-
neously with the pump pulse [12]. For example, FSTIRAP
was applied in experiments in Rb atomic vapor to maximize
atomic coherence, which led to the enhancement of coherent
Raman scattering [13]. The practicality of this method is
based on a relative flexibility of the key control parameters
relevant for both STIRAP and FSTIRAP such as the fields
strength, the ratio of the pump to the Stokes Rabi frequency,
the Stokes pump pulse delay, and the pulse duration. The im-
plementation of ultrafast chirped pulses brings spectroscopic
advantages, as shown in a number of papers [14–17]. In [18],
STIRAP with chirped pulses permitted the selective excitation

of two nearly degenerate states by changing the sign of the
chirp. However, FSTIRAP has never been examined for the
degree of spectral resolution for imaging and detection tech-
niques. This motivated us to explore thoroughly the effects of
chirping pulses in STIRAP as well as FSTIRAP processes. We
show that chirping both pulses with equal rates in CSTIRAP
cancels out the nonadiabatic term caused by the two-photon
detuning and thus preserves adiabatic passage within the dark
state. Moreover, in a system with two nearly degenerate final
states, the population can be driven to a desired state by
controlling the sign of the chirp of the Stokes and the pump
pulses. In CFSTIRAP, chirping of the pulses results in an im-
proved selectivity in the creation of the maximum coherence
between the initial and a predetermined final state. Another
technique, the chirped adiabatic passage (CHIRAP), has been
used for selective population transfer to one of the fine-
structure states in Na vapor [19,20]. It differs from CSTIRAP
in that CHIRAP does not have a time delay between pulses.

The paper is organized as follows. After a brief discus-
sion of conventional STIRAP and FSTIRAP, we examine in
detail the configuration of CSTIRAP and explain the selec-
tive excitation of nearly degenerate final states through the
dressed-state analysis. Next we address the CFSTIRAP and
show how the control scheme of the selective excitation is
modified for the formation of a final coherent superposition
state.

II. STIRAP AND FSTIRAP

In conventional STIRAP, the pump and the Stokes pulses
interact with a three-level system, making a complete adia-
batic population transfer from the initial state to the final state.
The schematic diagram of the three-level λ system in applica-
tion to STIRAP is shown in Fig. 1, where ωp,s represent the
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FIG. 1. Coupling scheme of STIRAP in the three-level λ system.

carrier frequencies of the pump and the Stokes fields, respec-
tively. The one-photon and the two-photon detunings are � =
ω2 − ω1 − ωp and δ = ωp − ωs − (ω3 − ω1), respectively.

The Hamiltonian describing the interaction of the three-
level system with the pump Ep(t ) and the Stokes Es(t ) pulses
is

H(t ) =
3∑

i=1

h̄ωi|i〉〈i| − [μ21Ep(t )|1〉〈2| + H.c.]

− [μ23Es(t )|3〉〈2| + H.c.]. (1)

The dynamics of the system is governed by the Schrödinger
equation

ih̄
∂

∂t
|ψ (t )〉 = H(t )|ψ (t )〉, |ψ (t )〉 =

3∑
n=1

an(t )|n〉. (2)

In STIRAP, the Ep,s(t ) are the Gaussian fields with carrier
frequencies ωp,s and central times tp,s,

Ep,s(t ) = Ep0,s0 e−(t−tp,s )2/τ 2
p,s cos[ωp,s(t − tp,s)]. (3)

The counterintuitive sequence of pulses and suitable overlap
between the Gaussian envelopes, which is determined by the
delay tp − ts, is necessary to perform the adiabatic evolution
of population from |1〉 to |3〉 [21].

While STIRAP is used for full population transfer, the
scheme of FSTIRAP is intended to partially preserve the
population in the ground state, thus creating a coherent su-
perposition of the initial and the final states by the end of the
pulse sequence. The approach implies elongating the Stokes
pulse so that it vanishes simultaneously with the pump pulse.
For this reason, the pump and the Stokes fields are modified
as

Ep(t ) = Ep0 sin Ae−(t−tp)2/τ 2
cos[ωp(t − tp)],

Es(t ) = Es0 e−(t+tp)2/τ 2
cos[ωs(t + tp)]

+ Es0 cos Ae−(t−tp)2/τ 2
cos[ωs(t − tp)], (4)

where the Stokes field is composed of two Stokes pulses
having central times tp and −tp. Note that, for A = π/2,
substituting tp = −ts in the Stokes field equation provides the
fields in Eq. (3) relevant for STIRAP. Substituting Eq. (4) in

FIG. 2. Pump and Stokes Rabi frequencies and population dy-
namics in STIRAP and FSTIRAP. In STIRAP, (a) the Gaussian Rabi
frequency of the pump and the Stokes pulses are shown with a delay
between them, resulting in (b) a full population transfer from the
initial state to the final state. (c) In FSTIRAP, the Stokes Rabi fre-
quency (represented by the blue solid curve) consists of two Gaussian
components �s10 and �s20 . Note that �p0 (t ) overlaps exactly with the
second Stokes component �s20 (t ). (d) With this sequence of pulses,
coherence ρ13 is maximized.

(1), applying the transformations

a1(t ) = ã1(t )eiωp(t−tp),

a2(t ) = ã2(t ),

a3(t ) = ã3(t )eiωs (t+tp) (5)

in the Schrödinger equation (2), and using the rotating-wave
approximation gives the field-interaction Hamiltonian of the
three-level system describing FSTIRAP,

H(t ) = h̄

2

⎛
⎜⎜⎝

0 �p0 (t ) 0

�p0 (t ) 2� �s10 (t )+�s20 (t )eiζ

0 �s10 (t )+�s20 (t )e−iζ −2δ

⎞
⎟⎟⎠,

(6)

where the Rabi frequencies are

�p0(t ) = �0 sin Ae−(t−tp)2/τ 2
,

�s10 (t ) = �0e−(t+tp)2/τ 2
,

�s20 (t ) = �0 cos Ae−(t−tp)2/τ 2
, (7)

with �0 = −Ep0μ21/h̄ = −Es0μ32/h̄ and the phase given by
ζ = 2ωstp. With an appropriate choice of tp satisfying the
condition such that 2ωstp = 2nπ , with n an integer and tp =
nπ/ωs, the phase dependence is canceled out, e.g., for tp =
71, ωs = 5, and e−iζ ≈ 1. Note again that the conventional
STIRAP Hamiltonian can be retrieved from Eq. (6) by taking
A = π/2 and substituting tp = −ts in the Stokes Rabi fre-
quency.

The pulse sequence and the time evolution of populations
in STIRAP as well as FSTIRAP are given in Fig. 2. The
pump and Stokes Rabi frequencies of the Gaussian shape
[Fig. 2(a)] transfer the population from |1〉 to |3〉 [Fig. 2(b)].
The parameter that distinguishes the dynamics of STIRAP
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FIG. 3. State populations and coherence in (a) STIRAP and
(b) FSTIRAP as a function of τδ. In STIRAP, the population is
fully transferred to the final state in the vicinity of the two-photon
resonance δ = 0. Here �0 = 1.0ω and τ = 100ω−1.

and FSTIRAP is the mixing angle θ (t ), which is given by
θ (t ) = tan−1[�p0 (t )/�s0 (t )]. For STIRAP θ (t → −∞) = 0
and θ (t → ∞) = π/2, while for FSTIRAP θ (t → −∞) = 0
and θ (t → ∞) = A, where π/4 � A � π/2. By varying the
constant mixing angle A, any arbitrary superposition state
having coherence up to its maximum value 1/2 can be created.
For A = π/4, the �p0 (t ) perfectly overlaps with the second
component of the Stokes Rabi frequency �s20 (t ), and they
vanish simultaneously as shown in Fig. 2(c), maximizing co-
herence ρ13, shown in Fig. 2(d).

Conceptually, the two-photon resonance is required for adi-
abatic passage to occur within the dark state in STIRAP [22].
The end-of-STIRAP state populations are depicted in Fig. 3(a)
as a function of τδ. A complete population transfer to the final
state is observed in the vicinity of the two-photon resonance.
However, for nonzero values of δ, the evolution of populations
is not adiabatic, as it will be demonstrated in the next section,
and the transfer to the final state is compromised by the admix-
ture of the transitional state. Analogous to the case of STIRAP,
the two-photon resonance is required to maximize coherence
in FSTIRAP. We investigate how coherence reduces from the
maximum value with the increase of the two-photon detuning
in FSTIRAP, which is shown in Fig. 3(b). The reduction of
coherence from the maximum value by the factor of 2 is
observed for τδ = 5.

III. CSTIRAP

A. CSTIRAP in a three-level λ system

Here we demonstrate that the two-photon resonance con-
dition for adiabatic passage within the dark state can be
bypassed by chirping the input pulses in STIRAP. Consider
the pump and the Stokes pulses chirped with the rates αp,s,

respectively,

Ep,s(t ) = Ep0,s0 e−(t−tp,s )2/τ 2
p,s cos

×
(
ωp,s(t − tp,s) + αp,s

2
(t − tp,s)2

)
. (8)

To derive the field-interaction Hamiltonian for CSTIRAP, we
apply the following transformations to the probability ampli-
tudes in Eq. (2):

a1(t ) = ã1(t )eiωp(t−tp)+(i/2)αp(t−tp)2
,

a2(t ) = ã2(t ),

a3(t ) = ã3(t )eiωs (t−ts )+(i/2)αs (t−ts )2
. (9)

Then, under the rotation-wave approximation, the Hamilto-
nian reads

H(t ) = h̄

2

⎛
⎜⎜⎝

0 �p0 (t ) 0

�p0 (t ) 2�(t ) �s0 (t )

0 �s0 (t ) 2δ(t )

⎞
⎟⎟⎠, (10)

where the time-dependent one-photon and two-photon de-
tunings are defined as �(t ) = � − αp(t − tp) and δ(t ) =
−δ + αs(t − ts) − αp(t − tp), respectively. A closer look at
the dressed-state picture in CSTIRAP shows that with the
right choice of chirp rates, an adiabatic transition is possible
even at δ �= 0.

B. Dressed-state analysis of CSTIRAP: A three-level λ system

Consider a unitary rotation matrix T(t ),

T(t ) =

⎛
⎜⎜⎝

sin θ (t ) sin φ(t ) cos θ (t ) sin θ (t ) cos φ(t )

cos φ(t ) 0 − sin φ(t )

cos θ (t ) sin φ(t ) − sin θ (t ) cos θ (t ) cos φ(t )

⎞
⎟⎟⎠,

(11)

with mixing angles

tan θ (t ) = �p0 (t )

�s0 (t )
,

tan 2φ(t ) =
√|�p0 (t )|2 + |�s0 (t )|2

�(t )
. (12)

Rotation of the probability amplitudes ã(t ) using matrix
T(t) gives the dressed-state probability amplitudes cd(t ) =
T†(t )ã(t ); in the dressed-state basis the Hamiltonian Hd (t )
reads

Hd (t ) = T†(t )H(t )T(t ) − ih̄T†(t )Ṫ(t )

= h̄

⎛
⎜⎝λ+(t ) 0 0

0 λ0(t ) 0
0 0 λ−(t )

⎞
⎟⎠ + h̄δ(t ) cos2 θ (t )

⎛
⎜⎝ sin2 φ(t ) − tan θ (t ) sin φ(t ) 1

2 sin 2φ(t )
− tan θ (t ) sin φ(t ) tan2 θ (t ) − tan θ (t ) sin φ(t )

1
2 sin 2φ(t ) − tan θ (t ) sin φ(t ) cos2 φ(t )

⎞
⎟⎠

− ih̄

⎛
⎜⎝ 0 −θ̇ (t ) sin φ(t ) −φ̇(t )

θ̇ (t ) sin φ(t ) 0 θ̇ (t ) cos φ(t )
φ̇(t ) −θ̇ (t ) cos φ(t ) 0

⎞
⎟⎠, (13)
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where

λ+(t ) = 1
2

{
�(t ) +

√
[�(t )]2 + ∣∣�p0 (t )

∣∣2 + ∣∣�s0 (t )
∣∣2}

,

λ0(t ) = 0,

λ−(t ) = 1
2

{
�(t ) −

√
[�(t )]2 + ∣∣�p0 (t )

∣∣2 + ∣∣�s0 (t )
∣∣2}

.

(14)

For the process to be adiabatic, the dressed-state Hamil-
tonian Hd (t ) needs to be diagonal. The nonadiabatic contri-
bution due to the second term in Eq. (13) is canceled out
by imposing the time-dependent two-photon detuning δ(t ) =
−δ + αs(t − ts) − αp(t − tp) to be zero. This can be done
by choosing the chirp rates such that −δ + (β − α)t + αtp −
βts = 0, where α = αp and β = αs. If α and β are chosen
to be equal, this condition becomes α(tp − ts) = δ and the
choice of tp, ts, and α satisfying this condition eliminates the
δ(t )-dependent nonadiabatic term.

The third term in Eq. (13) constitutes the nonadiabatic
contribution from T†(t )Ṫ(t ), with θ̇ (t ) and φ̇(t ) given by

θ̇ (t ) = �s0�̇p0 − �p0�̇s0

�2
p0

+ �2
s0

, (15)

φ̇(t ) = �
(
�p0�̇p0 + �s0�̇s0

) − �̇
(
�2

p0
+ �2

s0

)
2
√

�2
p0

+ �2
s0

(
�2 + �2

p0
+ �2

s0

) . (16)

For adiabatic passage, the contribution from the third term
must be negligible, requiring |θ̇ (t )|, |φ̇(t )| � |λ±(t )|. The
conditions for mixing angles θ (t ) and φ(t ) are met in the
presence of a significant overlap between the Stokes and the
pump pulses with θ (t ) and φ(t ) varying very slowly.

When these adiabaticity conditions are satisfied, the
dressed state having the zero energy λ0(t ) = 0 is given by

|λ0(t )〉 = cos θ (t )|1̃〉 − sin θ (t )|3̃〉. (17)

This state, known as the dark state, smoothly evolves from
the initial bare state |1̃〉 to the final bare state |3̃〉 without
having any component of the intermediate state |2̃〉. For the
remainder of this section, the tilde of the wave function and
eigenstates is dropped for convenience. The frequency and
time parameters in this paper are expressed in the units of ω

and ω−1 respectively where ω is an arbitrary frequency.
Adiabatic population transfer in the presence of nonzero

two-photon detuning is demonstrated in Fig. 4. Here the
evolution of the dressed-state energies λ0,±, the nonadiabatic
coupling parameter V0±, the state populations, and coherence
are given for the chirp rates satisfying the condition δ(t ) = 0.
In Figs. 4(a) and 4(b), δ and α are positive, and in Figs. 4(c)
and 4(d), these parameters are negative. In both cases, the
two-photon detuning δ is compensated by α(tp − ts) and the
system dynamics is always aligned with the dark state having
energy λ0(t ) = 0; the population is completely transferred
adiabatically from the initial bare state |1〉 to the final bare
state |3〉 without populating the intermediate state |2〉. Intu-
itively, this process can be explained in the following way:
Since both the pump and the Stokes fields are chirped at the
same rate, both their frequencies sweep through the energy
levels at the same rate. However, because of the delay tp − ts
between the two pulses, a factor of α(tp − ts) needs to be

added to the detuning to keep the system in resonance during
the process.

The robustness of this population is demonstrated in Fig. 5,
where the final-state population ρ33 is plotted as a function
of the two-photon detuning δ and the chirp rate α. A broad
area in the vicinity of the dark line satisfying the condition
α = δ/(tp − ts) indicates the robustness of this scheme. It
should be noted that the robustness around δ = 0 in STIRAP
is symmetric, as is evident from Fig. 3(a), while for a given δ

it is not symmetric around δ = α(tp − ts) in CSTIRAP.

C. CSTIRAP in a four-level λ system with two energetically
close final states

Consider a system with an additional level nearly de-
generate with the final state in the λ configuration. A
schematic of such a system is shown in Fig. 6 with the
two-photon resonance occurring with state |3〉, which implies
the two-photon detuning is δ′ = ωp − ωs − (ω4 − ω1) and the
one-photon detuning is � = ω2 − ω1 − ωp. In the rotating-
wave approximation and the field-interaction representation,
the Hamiltonian of the four-level system is

H (t ) = h̄

2

⎛
⎜⎜⎜⎝

0 �p0 (t ) 0 0
�p0 (t ) 2�(t ) �s0 (t ) �s0 (t )

0 �s0 (t ) 2[δ′(t ) + δ′] 0
0 �s0 (t ) 0 2δ′(t )

⎞
⎟⎟⎟⎠,

(18)

where �(t ) and δ′(t ) are defined as �(t ) = � − α(t − tp)
and δ′(t ) = −δ′ + β(t − ts) − α(t − tp). With the choice of
equal chirp rates for the pump and the Stokes pulses, β =
α, the fourth diagonal term in the Hamiltonian can be can-
celed out by fulfilling the condition α = δ′/(tp − ts). This is
a sufficient condition for transferring the population to the

FIG. 4. Evolution of the dressed-state energies and populations
in the CSTIRAP when (a) and (b) δ > 0 and (c) and (d) δ < 0.
The population is adiabatically transferred from the initial state to
the final state in both cases, owing to the choice of the chirp rates
satisfying δ(t ) = −δ + α(tp − ts ) = 0, where α = β. The nonadi-
abatic coupling parameters θ̇ and φ̇ are very small compared to
|λ+ − λ−| during the interaction, as shown in the inset, implying
the adiabatic nature of interaction. Here (a) and (b) δ = 0.14ω and
α = 1 × 10−3ω2 and (c) and (d) δ = −0.14ω and α = −1 × 10−3ω2.
The other parameters are � = 0, ts = −70ω−1, tp = 70ω−1, τp,s =
100ω−1, and peak Rabi frequencies �p0,s0 = 1.0ω.
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FIG. 5. Final-state population in CSTIRAP as a function of the
two-photon detuning and the chirp rate. The adiabatic population
transfer is achieved in the vicinity of the dark line satisfying α =
δ/(tp − ts ), providing δ(t ) = 0.

detuned state |4〉 adiabatically. This condition implies that
both the chirp rate and the two-photon detuning δ′ need to
be of the same sign. In contrast, choosing the chirp rate equal
to α = −δ′/(tp − ts) results in transferring population to the
resonant state |3〉; in this case, the signs of the detuning and
the chirp are opposite. In numerical analysis, the values of the
peak Rabi frequency and the time duration are taken to be
�p0,s0 = 1.0ω and τp,s = 100ω−1. The dynamics of the selec-
tive population transfer to each of the final states is shown in
Fig. 7. In Fig. 7(a) the bare state |4〉 is populated at the end
of pulse sequence with the choice of α = 1 × 10−3ω2, and in
Fig. 7(b) the population is driven to the final bare state |3〉 with
the choice of the negative chirp α = −1 × 10−3ω2.

Figure 8 shows the contour plots of populations of states
|4〉 [Fig. 8(a)] and |3〉 [Fig. 8(b)] as a function of detuning δ′
and chirp rate α. The dark solid line in Fig. 8(a) represents
the constraint condition −δ′ + α(tp − ts) = 0. For selective
excitation of state |4〉, the chirp and the detuning must be
chosen in the vicinity of this line, implying that both of them
have the same sign. The condition to drive the transition to

FIG. 6. Four-level λ system of the STIRAP configuration having
two energetically close final states. The two-photon resonance is with
state |3〉 and the two-photon detuning from state |4〉 is δ′ = ωp −
ωs − (ω4 − ω1); the one-photon detuning is � = ω2 − ω1 − ωp.

FIG. 7. Selective population transfer in the four-level STIRAP
scheme achieved by controlling the sign of the chirp rate in the
case of positive two-photon detuning δ′ = 0.14ω. (a) The detuned
state |4〉 is populated owing to a positive chirp rate given by α =
δ′/α(tp − ts ), where α = β. (b) In contrast, the population is trans-
ferred to the resonant state |3〉 with a negative chirp rate given by
α = −δ′/α(tp − ts ). The parameters are � = 0, ts = −70ω−1, tp =
70ω−1, τp,s = 100ω−1, and the peak Rabi frequencies �p,s0

= 1.0ω.
The values of the chirp rates are α = ±1 × 10−3ω2.

state |3〉 is δ′ + α(tp − ts) = 0 [represented by the dark dashed
line in Fig. 8(b)], implying that the signs of the detuning
and the chirp need to be opposite. For zero detuning, states
|3〉 and |4〉 are degenerate and are equally populated. When
detuning deviates from zero, the detuned state is selectively
populated if the chirp has the same sign as the detuning or
the population goes solely to the resonant state if the signs
of the chirp and the detuning are opposite. The latter case
implies that the nonadiabatic term is not canceled out how-
ever, meaning the nonadiabatic term proportional to δ(t ) is not
zero. The dressed-state analysis indeed demonstrates that the
evolution of the wave function in this case involves a series of
dressed states. Surprisingly enough, even under the condition
of nonadiabatic coupling between dressed states, the range of
α and δ′ parameters is broad and demonstrates the robustness
of the approach. Such a dependence of the state dynamics on
the sign of detuning and the chirp is further explained in the
next section by analyzing the evolution of the dressed states
in the field-interaction frame.

D. Dressed-state analysis of CSTIRAP in the four-level λ system

If in the three-level CSTIRAP the transformation to a
dressed-state basis can be done using a three-dimensional
rotation matrix, it is not so trivial in the case of the four-level

FIG. 8. Populations of states (a) |4〉 and (b) |3〉 as a function
of δ′ and α. The dark solid line represents the constraint condition
δ′(t ) = 0 and δ′/(tp − ts ) = α for the selective excitation of state
|4〉. For state |3〉 selective excitation, the constraint condition is
−δ′/(tp − ts ) = α, which does not cancel out δ′(t ) and that is the
cause of nonadiabaticity, represented by the dashed line.
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CSTIRAP. For the adiabatic passage, the system has to remain
in a single dressed state throughout its evolution and the
nonadiabatic effects should be negligible. Here we present a
numerical analysis of nonadiabaticity and population transfer
based on the dressed-state analysis in the field-interaction
picture and show that a scheme can be engineered in such
a way that nonadiabatic effects are suppressed through the
proper choice of the detunings and the chirp rate.

The dressed-state energies of the four-level system are the
roots of the quartic polynomial f (λ(t )) obtained using the
Hamiltonian in Eq. (18). The effect of the two fields is to
shift the quartic equation f0(λ(t )) by a parabola f1(λ(t )). The
quartic polynomial f (λ(t )) reads

f (λ(t )) = f0(λ(t )) + f1(λ(t )),

f0(λ(t )) = [λ(t ) − 2δ′(t )][λ(t ) − 2δ′(t ) + 2δ′]λ(t )

× [λ(t ) − 2�(t )],

f1(λ(t )) = 2|�s0 (t )|2{λ(t )[2δ′(t ) − λ(t )]} − |�p0 (t )|2[2δ′(t )

− λ(t )][2δ′(t ) − 2δ′ − λ(t )]. (19)

This introduces mixing of the incoming dressed states having
energies λ−

k (t ) (where t → −∞) with the outgoing dressed
states having energies λ+

k (t ) (where t → +∞). The incoming
and outgoing dressed states have energies given by the roots of
f0(λ(t )), which are obtained from the secular equation for the
Hamiltonian (18) in the limit of vanishing field strength. The
f1(λ(t )) is the remainder polynomial in the general case of the
nonzero external fields. The incoming and outgoing dressed-
state energies are also the bare-state energies.

An understanding of the nonadiabatic contributions re-
quires a study of dynamics in the vicinity of avoided
crossings between the dressed-state energies, where |λi(t ) −
λ j (t )|/|〈λi(t )|Ḣ (t )|λ j (t )〉| � 1. The nontrivial coupling rate
between two dressed states |λi〉 and |λ j〉 is given by

Vi j (t ) =
∣∣∣∣〈λi(t )〉 d

dt
λ j (t )

∣∣∣∣
=

∣∣∣∣ 〈λi(t )|Ḣ (t )|λ j (t )〉
λi(t ) − λ j (t )

∣∣∣∣, i �= j. (20)

The numerical dressed-state analysis of the selective pop-
ulation transfer in the four-level system is presented in Fig. 9,
with Figs. 9(a)–9(d) corresponding to the case of the positive
chirp rate shown in Fig. 7(b) and Figs. 9(e)–9(h) correspond-
ing to the case of the negative chirp rate shown in Fig. 7(c). In
Figs. 9(a) and 9(e) the bare-state energies λ±

k (t ) (incoming and
outgoing dressed energies) are represented by dashed lines
and the dressed-state energies are represented by solid lines. A
single dressed state λk (t ) does not connect to the same incom-
ing and outgoing dressed states λ±

k (t ). While the two λ±
k (t )

are represented by a single dashed line, the time evolution
of the kth dressed state λk (t ) results in its connection to the
different outgoing λ+

m (t ) state. At initial time t → − ∞, the
energy of eigenstate |λ1(t )〉 starts at zero energy of the ground
bare state |1〉. In the case of a positive chirp rate, the mech-
anism of selective population of the bare state |4〉 is through
providing resonance via compensating the positive value of
two-photon detuning by the choice of the positive chirp such
that δ′(t ) = −δ′ + α(tp − ts) = 0. This causes λ1(t ) ≈ 0 for

FIG. 9. Dressed-state analysis of the selective population transfer
for cases with (a)–(d) a positive chirp rate, the dynamics for which is
shown in Fig. 7(a), and (e)–(h) a negative chirp rate, corresponding
to Fig. 7(b). The arrows in (a) and (e) represent the corresponding
dressed state the system is aligned with during the evolution. The
parameters are � = 0, ts = −70ω−1, tp = 70ω−1, τp,s = 100ω−1,
and the peak Rabi frequencies �p,s0

= 1.0ω. The chirp rate is α =
±1 × 10−3ω2 for (a)–(d) and (e)–(h), respectively..

all time, as seen in Fig. 9(a), and results in a degeneracy
for the bare states λ±

1 (t ) = λ±
4 (t ). Owing to this, during the

evolution, the system stays in a single dressed state |λ1(t )〉,
which evolves from bare state |1〉 to |4〉 [Fig. 9(d)]. The solid
arrows along λ1(t ) indicate that the system is in the respective
dressed state |λ1(t )〉 all the time. The dressed state |λ1(t )〉 is
the dark state. The probability amplitudes of the dressed states
with respect to the state vector |ψ (t )〉, shown in Fig. 9(b),
confirm the adiabatic evolution of the wave function along the
dressed state |λ1(t )〉, since it is isolated from the rest manifold.
The nonadiabatic coupling terms, shown in Fig. 9(c), with
the exception of the coupling between |λ2(t )〉 and |λ3(t )〉,
are an order of magnitude less than the closest separation
of the dressed states, which confirms the adiabatic passage
as a mechanism of population transfer. The high value of
the coupling rate 〈λ3(t )〉 d

dt λ2(t ), which coincides with the
avoided crossing between the corresponding eigenenergies at
t ≈ 200ω−1, does not adversely affect the adiabaticity as the
total wave function aligns with |λ1(t )〉 at all times.

In contrast to the previous case, the time evolution of
dressed states for a negative value of the chirp, shown in
Figs. 9(e)–9(h), demonstrates a complete population transfer
from |1〉 to the resonant state |3〉 via a nonadiabatic process
involving three dressed states. Two nonadiabatic transitions
occur at a low-field intensity while a smooth (adiabatic-type)
population transfer takes place within a single dressed state
at strong fields. In more detail, at time t ≈ −200ω−1, the
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originally populated dressed state |λ1(t )〉, keeping population
within the bare state |1〉, approaches an avoided crossing
with |λ3(t )〉, shown in Fig. 9(e), and transfers population
there owing to nonzero coupling shown in Fig. 9(g). Further
time evolution takes place within |λ3(t )〉, during which bare
states |1〉 and |3〉 adiabatically exchange population. At time
t ≈ 200ω−1, the second avoided crossing of |λ3(t )〉 occurs
with dressed state |λ4(t )〉. Here the population is transferred
again populating bare state |3〉 within |λ4(t )〉 by the end of
the pulses’ duration, as shown in Fig. 9(h). The nonadia-
batic couplings, shown in Fig. 9(g), at the same times as
the avoided crossings, provide population transfer between
respective dressed states. The slopes of the dressed-state en-
ergy curves and the closest-approach distance between the
curves at the crossing give us an estimate of the transi-
tion probability. The closest-approach distance is 8 × 10−4ω

at ta = 198.1ω−1, | d
dt [λ3(ta) − λ4(ta)]| = 3.48 × 10−4ω, and

the nonadiabatic coupling 〈λ4(t )〉 d
dt λ3(t ) is a Lorentzian curve

centered at t = ta with width w = 0.35 and area A = π/2. The
population is transferred from bare state |1〉 to bare state |3〉
nonadiabatically, owing to the synergistic dynamics between
dresses states shown in Fig. 9(f), first |λ1(t )〉 and |λ3(t )〉 and
then |λ3(t )〉 and |λ4(t )〉. Notably, the majority of population
transfer occurs during the time the two pulses overlap.

As demonstrated in Fig. 9, the population transfer to the
resonant state |3〉 is not an adiabatic process. However, it is
possible to transfer the population to |3〉 via adiabatic passage
by introducing a chirping delay in the Stokes pulse. The mod-
ified Stokes pulse with delay td reads

Es(t ) = Es0 e−(t−ts )2/τ 2
s cos

[
ωs(t − ts) + 1

2β(t − ts − td )2].
(21)

This modifies the δ′(t ) in Eq. (18) to δ′(t ) = −δ′ + β(t −
ts − td ) − α(t − tp). With a choice of td = tp − ts, the third
diagonal element cancels out, making the states |1〉 and |3〉
degenerate. This is the condition to populate |3〉 adiabatically.
The evolution of dressed-state energies in this case is given
in Fig. 10(a). Here the dark state |λ3(t )〉, which the system is
always aligned with, as seen in Fig. 10(b), smoothly evolves
from bare state |1〉 to bare state |3〉, shown in Fig. 10(d). All
the nonadiabatic coupling rates are negligible compared to
the dressed-state energy separations, confirming the passage
is adiabatic. In Fig. 11 a contour plot of population ρ33 is
depicted as a function of the two-photon detuning δ′ and
the chirp rate α. The figure demonstrates that, for adiabatic
population transfer to state |3〉, there is no constraint condition
on the value of the chirp rate within the given range as long as
a delay td is applied and satisfies the above condition.

The selectivity of the final-state excitation is possible only
for small values of chirp rates satisfying the Landau-Zener
adiabaticity condition requiring �2

p0,s0
/α 
 1. For larger val-

ues of chirp rates, adiabatic passage is not possible, leading to
an arbitrary superposition of states |3〉 and |4〉.

IV. CFSTIRAP

A. CFSTIRAP in the three-level λ system

As demonstrated in Sec. II, the two-photon resonance is
required for the maximum coherence in FSTIRAP. Here we

FIG. 10. Adiabatic population transfer to the resonant state |3〉
by applying a chirping delay td = tp − ts in the Stokes pulse. (a) Evo-
lution of dressed-state energies. (b) The wave function |ψ (t )〉 is
always aligned with the dressed state |λ3(t )〉, which (d) smoothly
evolves from bare state |1〉 to |3〉. (c) There is an avoided cross-
ing between states |2〉 and |4〉, implying a high value of V42 =
〈λ4(t )〉 d

dt λ2(t ). The coupling does not include the dark state |3〉,
confirming that the process is adiabatic.

introduce the chirped FSTIRAP (CFSTIRAP) as the means
to maximize coherence when the two-photon detuning is
nonzero. Consider the pump in which the first and the second
Stokes pulse components are chirped with chirp rates α, β1,
and β2, respectively,

Ep(t ) = Ep0 sin Ae−(t−tp)2/τ 2
cos

[
ωp(t − tp) + 1

2
α(t − tp)2

]
,

Es(t ) = Es0 e−(t+tp)2/τ 2
cos

[
ωs(t + tp) + β1

2
(t + tp − td1)2

]

+ Es0 cos Ae−(t−tp)2/τ 2

× cos

[
ωs(t − tp) + β2

2
(t − tp − td2)2

]
, (22)

where the chirping of the first and the second Stokes pulses is
assumed to have delays td1 and td2, respectively. To derive the
field-interaction Hamiltonian, the following transformations

FIG. 11. Population of resonant state |3〉 as a function of τδ′

and chirp rate α for the case when a chirping delay td = tp − ts is
applied in the Stokes pulse. A full population transfer to the state |3〉
occurs adiabatically for all chirp values in this range owing to the
degeneracy between states |1〉 and |3〉.
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are applied:

a1(t ) = ã1(t )eiωp(t−tp),

a2(t ) = ã2(t )e−i(α/2)(t−tp)2
,

a3(t ) = ã3(t )eiωs (t+tp)+i(β1/2)(t+tp−td1 )2−i(α/2)(t−tp)2
. (23)

Then the Hamiltonian describing CFSTIRAP in the field-
interaction representation reads

H(t ) = h̄

2

×
⎛
⎝ 0 �p0(t ) 0
�p0(t ) 2�(t ) �s10(t ) + �s20(t )eiη(t )

0 �s10(t ) + �s20(t )e−iη(t ) 2δ(t )

⎞
⎠,

(24)

where the Rabi frequencies are the same as in Eq. (7), the
time-dependent detuning is δ(t ) = −δ + β1(t + tp − td1) −
α(t − tp), and the time-dependent phase η(t ) is

η(t ) = 2ωstp + β1

2
(t + tp − td1)2 − β2

2
(t − tp − td2)2. (25)

If all the chirp rates are equal α = β1 = β2 and the chirping
delay td1 is chosen to be td1 = 0, then the time-dependent
detuning δ(t ) becomes δ(t ) = −δ + 2αtp. In addition, if the
delay td2 is given by the negative time difference between
the peaks of two Stokes pulses, td2 = −2tp, then the phase
η(t ) becomes a constant independent from the chirp rates,
η(t ) = 2ωstp = ζ . These assumptions result in the real values
of the Rabi frequencies and the straightforward condition for
the resonance with state |3〉, α = δ/2tp.

The Hamiltonian in Eq. (24) is diagonalized using the
T(t ) matrix in Eq. (11) with the new Stokes field �̃s0 (t ) =
�s10 (t ) + �s20 (t )e−iζ after imposing the condition that δ(t ) =
0. In Fig. 12 the dressed-state energies, populations, and
coherence dynamics are plotted as a function of time for
δ < 0 and δ > 0. The population dynamics shows that it is
possible to create the maximum coherence in the absence
of the two-photon resonance by carefully choosing the chirp
rates and chirping delay, satisfying the condition δ(t ) = 0.
The system is always aligned with the dark state |λ0(t )〉,
which is again given by Eq. (17), with the modified mixing
angle θ (t ) = �p0 (t )/|�̃s0 (t )|. Owing to the modified Stokes
field, as t → ∞, θ (t ) = tan−1(1) = π/4 and the dark state
now evolves from state |1̃〉 to 1/

√
2(|1̃〉 − |3̃〉), which is a

maximally coherent superposition between the two states. The
tilde will again be dropped for convenience for the remainder
of this section.

The contour plot of coherence between the initial and the
final states, ρ13, as a function of the two-photon detuning
δ and the chirp rate α is shown in Fig. 13. The maximum
coherence window, shown in blue, is achieved and remains
relatively constant for the chirp values α = δ/2tp satisfying
the condition δ(t ) = 0. This is in stark contrast to Fig. 3(b), in
which state coherence decreased with the increase of the two-
photon detuning. Thus, the delayed chirp in the CFSTIRAP
configuration overcomes the problem of maximizing state
coherence adiabatically in the presence of the two-photon
detuning.

FIG. 12. Evolution of the dressed states, the nonadiabatic pa-
rameter Vi j , and the state coherence in the case of CFSTIRAP for
detuning (a) and (b) δ > 0 and (c) and (d) δ < 0. A maximum
coherence is created in both cases because of the choice of chip
rates satisfying δ(t ) = 0. The value of Vi j remains zero except for
a short duration, as shown in the inset. The system remains in the
dark state |λ0〉 throughout the evolution, as indicated by the arrows.
In (a) and (b) δ = −0.14ω and α = −1 × 10−3ω2 and in (c) and
(d) δ = 0.14ω and α = 1 × 10−3ω2. The other parameters are � =
0, τp,s = 100ω−1, and peak �p0,s0 = 1.0ω.

B. CFSTIRAP in a four-level λ system with two energetically
close final states

In Sec. III C it was shown that, using the CSTIRAP
scheme, the population can be driven completely to a desired
final state in a nearly degenerate four-level λ system (Fig. 6).
Motivated by this result, we show that, using CFSTIRAP, it is
possible to create a system with equal populations distributed
between the initial state and one of the final states in the
four-level system. In this case, the chirping of one of the
Stokes pulses needs to be delayed for the selective final-state
excitation. The respective Hamiltonian in the field-interaction
frame for the four-level system is written by extending
the three-level Hamiltonian in Eq. (24) to a four-level

FIG. 13. Coherence in CFSTIRAP as a function of two-photon
detuning and chirp rate. The adiabatic regime and maximum coher-
ence are achieved in the vicinity of the dark line satisfying α = δ/2tp,
corresponding to δ(t ) = 0.
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FIG. 14. Evolution of populations and coherence in the case of
CFSTIRAP for δ′ = 0.14ω. (a) When the chirping delays are chosen
to be td1 = 0 and td2 = −2tp, the coherence ρ14 is maximized without
populating state |3〉. (b) In contrast, when td1 = 2tp and td2 = 0
the states |1〉 and |3〉 have equal populations and coherence ρ13 is
maximized without populating state |4〉.

system as

H(t ) = h̄

2

×

⎛
⎜⎜⎜⎜⎜⎝

0 �p0 (t ) 0 0

�p0(t ) 2[� − α(t − tp)] �̃∗
s0

(t ) �̃∗
s0

(t )

0 �̃s0 (t ) 2[δ′(t ) + δ′] 0

0 �̃s0 (t ) 0 2δ′(t )

⎞
⎟⎟⎟⎟⎟⎠,

(26)

where

�̃s0 (t ) = �s10 (t ) + �s20 (t )e−iη(t ),

δ′(t ) = −δ′ + β1(t + tp − td1) − α(t − tp),

η(t ) = 2ωstp + β1

2
(t + tp − td1)2 − β2

2
(t − tp − td2)2.

If the chirp rates are chosen to be α = β1 = β2 = δ′/2tp,
the fourth diagonal term becomes zero and the phase η(t )
becomes a constant η(t ) = 2ωstp = ζ for the choice of chirp-
ing delays to be td1 = 0 and td2 = −2tp. This results in the
creation of the maximum coherence between states |1〉 and
|4〉, without populating any other states. The evolution of
populations and coherence in this case is shown in Fig. 14(a).
In a contrary scenario, a maximally coherent superposition
is obtained between the initial and final resonant states |3〉
when the chirp rates are chosen to be α = β1 = β2 = δ′/2tp

and chirping delays td1 = 2tp and td2 = 0. In this case, the
third diagonal term becomes zero and the phase is again
reduced to the same constant η(t ) = 2ωstp = ζ . The evolution
of the state populations and coherence in this case is shown in
Fig. 14(b).

The robustness of the schemes corresponding to Figs. 14(a)
and 14(b) are shown in Figs. 15(a) and 15(b) respectively. In
Fig. 15(a), the coherence ρ14 is maximized in the vicinity of
the straight line satisfying α = δ′/2tp. Contrary to this, there
are no constraint conditions on the chirp rate to maximize the
coherence ρ13, as shown in Fig. 15(b).

FIG. 15. (a) Coherence ρ14 as a function of two-photon detun-
ing and chirp rate α for a choice of chirping delays td1 = 0 and
td2 = −2tp and (b) ρ13 for td1 = 2tp and td2 = 0. In (a) a maximum
coherence between the initial and detuned state |4〉 is reached for
chirp rates satisfying α = δ′/2tp, represented by the diagonal dark
line. As demonstrated in (b), there is no constraint condition on the
chirp rate to create a maximally coherent superposition between the
initial and resonant state |3〉 as long as the delays satisfy td1 = tp and
td2 = 0.

C. Dressed-state analysis of CFSTIRAP
in the four-level λ system

In FSTIRAP, the choice of the fields in Eq. (7) gives us
a different structure in the dressed-state picture as compared
to STIRAP. In the three-level system, the dressed states are
nondegenerate at t → −∞ but the states |λ1〉 and |λ3〉 are
degenerate at t → ∞.

The Schrödinger equation in the dressed-state ba-
sis is �̇(t ) = −i[E (t ) + F (t )]�(t ), where Ei j (t ) = [λi(t ) +
〈vi(t )〉v̇i(t )]δi j represents the diagonal adiabatic matrix and
Fi j (t ) = 〈vi(t )〉v̇ j (t )(1 − δi j ) represents the nonadiabatic cou-
pling matrix. The nonadiabatic transitions need to be removed
to achieve adiabatic passage, and this requires choosing pa-
rameters that prevent any avoided crossings and transitions
between dressed states.

The time of avoided crossings between two dressed states
can be found when the determinant of H (t ) and its derivative
are both zero. There is also the possibility of a crossing with
three or more dressed states. The probability of transitioning
to the higher-energy state |λ j (t )〉, assuming all population is
initially in state |λi(t )〉, during an avoided crossing at time t
where λi(t ) = λ j (t ), is given by the Landau-Zener formula
[23]

PLZ(t ) = exp

(
−4π2

h̄

[〈λ j (t )〉 d
dt λi(t )

]2

d
dt |λi(t ) − λ j (t )|

)
. (27)

We note that while there can be many avoided crossings when
the Rabi frequencies are small, these crossings trivially affect
the bare-state populations. The above discussions about the
dressed-state analysis are generic and are not specific to the
case of CFSTIRAP.

The energy gap between the two dressed states at t → ∞,
assuming we have no other nonadiabatic transitions, will de-
termine the final state. The previous section gives us a scheme
for which we can achieve adiabatic evolution to a maximum-
coherence state composed of equal population in the ground
state and one of the final states |3〉 or |4〉. The selection
of the latter state depends on the chirp rate and frequency
offsets, created by the delays td1 and td2 introduced in the
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FIG. 16. Dressed-state analysis of the CFSTIRAP four-level sys-
tem, corresponding to (a)–(d) Fig. 14(a) when ρ14 is maximized and
(e)–(h) Fig. 14(b) when ρ13 is maximized. (a) and (e) The system
is always aligned with the dressed state |λ1〉, as indicated by the
arrows. (b) and (f) Dressed-state decomposition of the wave function
confirms adiabatic evolution, with(c) and (g) trivial nonadiabatic
coupling rates. The dressed state |λ1〉 smoothly evolves to a maxi-
mum coherence state involving (d) |1〉 and |4〉 and (h) |1〉 and |3〉. The
parameters are � = 0, ts = −70ω−1, tp = 70ω−1, τp,s = 100ω−1,
�p0,s0 = 1.0ω, and α = ±1 × 10−3ω2.

chirp functions. For adiabatic evolution, the energy spectrum
of the Hamiltonian that satisfies this condition must be the one
where the ground state and the selected state coincide at the
same energy at t → ∞ and the nonselected state must diverge
from the two previous states. This condition is required for the
system to remain in a single dressed state.

The analysis of the evolution of the dressed-state energies,
shown in Fig. 16, confirms that the creation of the maximum
coherence in the four-level system via selective excitation
in Fig. 14 is perfectly adiabatic. Figures 16(a)–16(d) cor-
respond to Fig. 14(b), where the delays are chosen to be
td1 = 0 and td2 = −2tp, and Figs. 16(e)–16(h) correspond to
Fig. 14(c), where td1 = 2tp and td2 = 0. The system remains
in the dressed (dark) state throughout the process, which
smoothly evolves to a maximum superposition between |1〉
and |4〉 in Fig. 16(d) and between |1〉 and |3〉 in Fig. 16(h).
The behavior of dressed states in Figs. 16(f)–16(h) is the same
as in Figs. 16(b)–16(d), respectively, except that |λ3〉 takes up
the role of |λ4〉 and vice versa. The rates of nonadiabatic cou-
plings in Figs. 16(b) and 16(f) also confirm that the evolution
is adiabatic as all of them have magnitudes much less than the
difference between dressed energies.

V. CSTIRAP AND CFSTIRAP IN THE NV
CENTER IN DIAMOND

In this section we consider population transfer in the
ground state of the 15N-vacancy center in diamond to illus-

FIG. 17. CSTIRAP and CFSTIRAP in the ground state of the
NV center in diamond. (a) Electron spin energy levels where the
degeneracy between |±1〉 states is lifted by an external magnetic
field. (b) Population transfer from |−1〉 to |+1〉 using the CSTIRAP
scheme. (c) Applying the CFSTIRAP scheme, we create a maximally
coherent superposition between states |−1〉 and |+1〉.

trate the implementation of the CSTIRAP and CFSTIRAP
schemes. The electron spin states of the NV center in dia-
mond [the energy structure shown in Fig. 17(a)] have been
extensively investigated, in particular implementing STIRAP
[3]. In the absence of an external magnetic field, the states
|±1〉 are degenerate, having an energy difference of 2.87 GHz
with state |0〉. The degeneracy is lifted by applying a mag-
netic field Bz along the z axis, resulting in the energy split
of �ω± = 2γeBz, where γe is the electronic gyromagnetic
ratio given by γe = 28.0 GHz T−1. For Bz = 3.81 × 10−2 T,
this split becomes �ω± = 2.13 GHz. Two Raman microwave
pulses, in resonance with the transition frequencies ω− and
ω+, are used to transfer the population from |−1〉 to |+1〉. An
efficient STIRAP population transfer using Gaussian pulses
with the peak Rabi frequencies �p0,s0 = 4π × 106 s−1, the
pulse durations τp,s = 0.85

√
2 µs, and the time delay tp − ts =

1.2 µs has been demonstrated in [3]. Note that it was done
under the one-photon and two-photon resonance conditions.

When the two-photon resonance condition cannot be satis-
fied, pulses with equal chirp rates can be used to compensate
for the two-photon detuning, as demonstrated above. For ex-
ample, for δ = 0.1�ω± ≈ 0.2 GHz and time delay tp − ts =
1.2 µs, the chirp rate needs to be α = δ/(tp − ts) = δ/2tp =
0.17 GHz/µs in both CSTIRAP [Fig. 17(b)] and CFSTIRAP
[Fig. 17(c)]. In the case of CFSTIRAP, additionally, the chirp-
ing of the second Stokes pulse component needs to be ahead
of its frequency by 2tp = 1.2 µs to ensure the cancellation of
the phase between the two Stokes pulse components. When
these conditions are met, the evolution of populations and co-
herence in both CSTIRAP and CFSTIRAP is almost identical
to the resonant cases as in [3]. These results demonstrate the
validity of the proposed methodology to perform adiabatic
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passage within a single dressed state, the dark state, in the
presence of the two-photon detuning.

VI. SUMMARY

We presented a scheme that selectively creates the max-
imum coherence in a four-level system having two nearly
degenerate final states via CFSTIRAP. First, by analyzing the
dressed-state dynamics, we demonstrated that chirping of the
pump and the Stokes pulses in STIRAP allows one to achieve
adiabaticity in the absence of the two-photon resonance. To
eliminate the nonadiabatic contribution, both pulses must be
chirped at the same rate and the value of two-photon detuning
δ must match the product of chirp rate and the time delay
between the pulses α(tp − ts). If the resonance frequency is
unknown, this protocol may be used to determine the energy
levels by tuning the chirp rate to compensate for the detun-
ing. We then analyzed a four-level system with two nearly
degenerate terminal levels and showed that the population
can be driven exclusively to one of the terminal levels by the
appropriate pulse chirping. For negative two-photon detuning,
the detuned final state is populated if the chirp rate is positive
while the resonant state is populated if the rate is negative.
The constraint conditions on the chirp rate in both cases were
discussed. The analysis of the evolution of the dressed states
revealed that the population transfer to the detuned state is
adiabatic while the population transfer to the resonant state
is nonadiabatic. Further, we showed that the population can be
adiabatically driven to the resonant state by introducing a de-
lay in the chirping of the Stokes pulse. We applied the concept
of the delay in the chirping to FSTIRAP and showed that, by
chirping the pump and Stokes pulses equally and introducing
a chirping delay in the second Stokes pulse component, the
adiabatic creation of the maximally coherent superposition
is possible even in the absence of the two-photon resonance.
We applied the CFSTIRAP technique to the four-level system
and demonstrated that the maximal coherence between the
initial and a predetermined final state is achievable by manip-
ulating the chirping delays of Stokes pulse components. The

analysis of the evolution of the dressed states confirms that
the selective excitation in the four-level system is perfectly
adiabatic owing to the choice of the chirp rates and the chirp
delays.

For practical implementations, we note that there is an
upper limit on the value of two-photon detuning that can be
compensated by the choice of the chirp rate in both the three-
level and the four-level systems. This is due to the limits on the
values of possible temporal chirp rates for a given pulse dura-
tion and the requirement to have a significant overlap between
the pulses for adiabatic passage. For a given pulse duration τ ,
the optimal time difference between the pump and the Stokes
pulses is tp − ts = 1.4τ . For τ = 100ω−1, the possible values
of the chirp rates are α ≈ ±1 × 10−5ω2, implying the upper
limit on the two-photon detuning |δ| � |α|(tp − ts) = 0.007ω.
In the three-level system, the detuning should not exceed this
value to satisfy the adiabaticity condition and in the four-level
system, a superposition of the initial and a predetermined final
state detuned up to this value may be generated, while the
final-state selectivity is limited by |α(tp − ts)|.

Maximizing coherence is critical to optimizing the output
signal in imaging and sensing techniques based on coherent
Raman spectroscopy. Due to its adiabaticity, reliability, and
higher spectral resolution, the method presented here will find
application in various areas of quantum science and tech-
nology, such as quantum information, quantum sensing, and
imaging, metrology, and magnetometry.
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