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Single-photon scattering from a chain of giant atoms coupled to a one-dimensional waveguide
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We investigate coherent single-photon transport in a waveguide quantum electrodynamics structure containing
multiple giant atoms. The single-photon scattering amplitudes are solved using a real-space method. The results
give rise to a clear picture of the multichannel scattering process. In the case of identical and equally spaced giant
atoms in a separate configuration, we also use the transfer-matrix method to express the scattering amplitudes in
terms of compact analytical expressions, which allow us to conveniently analyze the properties of the scattering
spectra. Based on these theoretical results, we find that the nondipole effects of giant atoms, which are relevant
to the design of the setup, can strongly manipulate several types of collective properties of the output fields,
including the superradiant phenomenon, the multiple Fano interference, and the photonic band gap. This makes
it possible to manipulate the photon transport in a more versatile way than with small atoms. We also make a
proposal to probe the topological states of a chain of braided giant atoms by using photon scattering spectra,
showing that waveguide quantum electrodynamics systems with giant atoms are ideal platforms to merge

topological physics and on-chip quantum optics.
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I. INTRODUCTION

Waveguide quantum electrodynamics (WQED) systems are
realized by strongly coupling a single or multiple quantum
emitters to a one-dimensional (1D) waveguide and can be used
to manipulate light-matter interactions at the single-photon
level [1-3]. The high atom-waveguide coupling efficiency
makes these systems excellent platforms for controlling the
transport of single or few photons [4-17], and may have
potential applications in quantum devices at the single-
photon level [18-26]. In particular, when multiple emitters
are coupled to a 1D waveguide, the coherent and dissipa-
tive interactions between the emitters can be mediated by
the propagation modes, leading to many interesting phenom-
ena, including superradiant and subradiant states [27-34],
long-range entanglement between distant emitters [35-38],
photonic band-gap generation [16,39,40], cavity QED with
atomic mirrors [41,42], topologically protected spectroscopy
[43] and topology-enhanced nonreciprocal scattering [44],
multiple Fano interferences and electromagnetically induced
transparency (EIT) types of phenomena [45-52], and so on.

Recently, wQED systems with giant atoms [53,54] repre-
sent a new paradigm in quantum optics, in which the quantum
systems, such as superconducting artificial atoms [55], cold
atoms in optical lattices [56], giant spin ensembles [57], etc.,
are simultaneously coupled to distant positions (with wave-
length spacings) of the photonic bath. Thus, the giant atoms
cannot be considered as pointlike particles, and the usual
dipole approximation is no longer valid. The nondipole effects
of giant-atom systems can produce some novel phenom-
ena, such as frequency-dependent decay rate and Lamb shift
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[54,55,58], decoherence-free interaction between braided gi-
ant atoms [55,59-61], non-Markovian dynamics [62,63],
generation of enhanced entanglement [64], tunable atom-
photon bound states [65—71] and scattering states [62,72-76],
and so on. The giant-atom effects on chiral atom-waveguide
coupling [77] and ultrastrong coupling [78,79] have also been
investigated. The structure of giant atoms can also be imple-
mented in a synthetic dimension [80,81].

The study of scattering spectra is an important aspect of
wQED systems. On one hand, the light-matter interactions
during the scattering process make the photons be effectively
controlled. On the other hand, photon scattering spectra can
reveal useful information about the interactions between light
and matter. It is shown that in wQED structures containing
a single giant atom effects beyond the dipole approxima-
tion play an important role in photon transport [62,73]. For
the double giant atom structure, the coherent and dissipative
interactions between atoms, which can be manipulated by
designing the layout of the coupling points, can produce more
abundant scattering spectra than small atoms [72,74,76]. In
this paper, we focus on the most general case of photon scat-
tering from a collection of giant atoms, each with multiple
coupling points, coupled to a linear waveguide. Using the
real-space method, we obtain the expressions for the atomic
excitation amplitudes and the scattering coefficients. A clear
physical picture of the scattering process from the point of
view of collective excitation is given. We also establish a
mapping between an array of separate giant atoms and a chain
of small atoms. Based on this, we generalize the transfer-
matrix approach for small atoms [45,50-52] to the case of
separate giant atoms. Using the above theoretical tools, we
analyze in detail the characteristics of the scattering spectra
for multiple-giant-atom systems in different configurations. In
particular, for an array of identical and periodically arranged
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atoms in a separate configuration, by analyzing the explicit
analytical expressions under different parameters, we find that
the nondipole effects of giant atoms can strongly manipulate
several types of collective properties of the output fields,
including the superradiant phenomenon, the multiple Fano
interference, and the photonic band gap. This allows for more
versatile manipulation of photon transport than an array of
small atoms. The formation of these spectral structures is well
interpreted as interferences between different scattering chan-
nels relevant to the excitation of the collective modes. For an
array of braided giant atoms, we focus on the influence of the
unique decoherence-free interactions on the scattering spec-
tra. By designing the layout of the connecting points and the
corresponding decoherence-free interactions, we construct an
effective atomic array described by the Su-Schrieffer-Heeger
(SSH) model [82], and further make a proposal to probe
the topological states of a braided atomic chain. It is shown
that the photon scattering spectra can provide useful infor-
mation of the interactions between light and unconventional
many-body states, and establish a bridge between topological
physics and on-chip quantum optics. Conversely, the systems
can be used to realize tunable and topologically protected
photon transport.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the basic model of the wQED structure
containing multiple giant atoms and further obtain the most
general expressions of single-photon scattering amplitudes,
which are applicable for arbitrary configuration. In Sec. III,
based on explicit analytical expressions obtained from the
transfer-matrix approach, we provide a detailed analysis on
the scattering spectra for an array of separate giant atoms.
In Sec. IV, we analyze the spectra that can reveal nontrivial
many-body states caused by decoherence-free interactions in
an array of braided giant atoms. Finally, further discussions
and conclusions are given in Sec. V.

II. MODEL AND SOLUTION

A. Hamiltonian and equations of motion

Here we focus on the wQED structures with multiple
two-level giant atoms, where each atom is coupled to a 1D
waveguide through multiple connection points, as shown in
Fig. 1(a). In Fig. 1(b), we show how this setup could be
implemented with superconducting qubits coupled to a mean-
dering coplanar waveguide. We assume that the total number
of atoms is N, and the number of coupling points for the
ith atom is M;. Under the rotating-wave approximation, the
Hamiltonian of the system in the real space [1] can be written
as(h=1)

N
N a
A=Y oot 6 + f dxy e (x)(—ilsvga—>65(x)
X
i=1 s
N M;
b [ T30S bt~ el w6 + Hic

s i=1 m=1
ey

where s =R, L, lg = *1. 6'l.+ (6;7) is the raising (lowering)
operator of the atom i. é;(x) [Cr(x)] and &) (x) [Cr(x)] are
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FIG. 1. (a) A schematic of multiple two-level giant atoms cou-
pled to a 1D waveguide through multiple connection points. (b) A
possible implementation with superconducting circuits, where mul-
tiple Xmon qubits coupled capacitively to a meandering microwave
transmission line at multiple points.

the field operators of the creating (annihilating) right- and
left-propagating photons at position x in the waveguide. w;
is the transition frequency of the atom i. vg is the group
velocity of the photons in the waveguide. V;,, is the coupling
strength of the mth coupling point of the ith giant atom at
position X;,.

We assume that initially a single photon with energy w =
v,k is incident from the left, where k is the wave vector of
the photon. In the single-excitation subspace, the interacting
eigenstate of the system can be written as

N
) =3 [avecoclwm+ Y for . @
s i=1

where |(J) is the vacuum state, which means that there are no
photons in the waveguide, and meanwhile the atoms are in
their ground states. ®,(x) (s = R, L) is the single-photon wave
function in the s mode. f; is the excitation amplitude of the
atom i. Substituting Eq. (2) into the eigenequation

H|V) = w|V) 3)

yields the following equations of motion:

N M;
(—ivg% - a)) )+ 3D Vindr — 3l fi = 0, ()

i=1 m=1

N M;
(ivgaa—x - w) L)+ Y D Vind(x — xin)fi =0, (4b)

i=1 m=1

M;
(@ = )i+ Y Y Vin®y(xin) = 0. (40)

s m=1
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B. General expressions for scattering amplitudes

For a photon incident from the left, ®(x) and &, (x) take
the following Ansatz:

Ne—1

Dp(x) = | 0 (x; —x) + Z 1,0 (x — xp)0 (Xp11 — X)
p=1
+9(x —xn,) | (5a)
Ne
O (x) = e *| ro(e —x) + Z 0 (x — Xp )P (X, — x)
p=2

(5b)

Here the positions of coupling points from left to right
are labeled as x,. N; is the total number of coupling points
and satisfies the relation va M; = N.. Here 1, (rp) is the
transmission (reflection) amplitude of the pth coupling point,
t (r) is the transmission (reflection) amplitude of the last (first)
coupling point, and ¥ (x) denotes the Heaviside step function.

Starting from the equations of motion (4a)—(4c) and the
Ansdtze (5a) and (5b), and after some algebra (see Appendix A
for details), we can obtain the atomic excitation amplitudes

f= /0l —H)'V, (6)

and the corresponding transmission and reflection amplitudes

t=1——Vit=1—iVi@l—H)V, (7a)

VU
r=——Vt=—iV (ol — H)V. (7b)
e
Here I is the identity matrix. f is written as
f=fi.for s )" ®)
V takes the form
V=W,V ..., 00", )

with elements

M;
Yim o, (w
Vi=> /7601”’( ), (10)
m=1

where the phase factor is defined as 6;,, (@) = kX, = WX /v,
and the decay rate into the guided modes through the coupling
point at x;,, iS Vi, = 2V, / v, from Fermi’s “golden rule.” H
is the effective non-Hermltlan Hamilton matrix of the atom
array, with elements

. M M
Hij = widij — % Z Z ViV €O @ i @ (1)
m=1m'=1
The nondiagonal element of this effective non-Hermitian
Hamilton matrix describes the coherent and dissipative atom-
atom interactions mediated by the waveguide modes. The
effective Hamiltonian of the atom array takes the form

N N
A =) Mij676;. (12)

i=1 j=1

Note that Egs. (6)—(7b) are applicable for the most general
setup possible, i.e., an arbitrary number of giant atoms with
an arbitrary number of connection points each.

To better understand the physics of the scattering process,
we rewrite the scattering amplitudes in terms of collective
modes of the atoms

N 2\ (UL’
lZl—iZ(VUn)(Un V)

n=1

, 13
© (13a)

(VU (UF V)

N
r—— Z—V ,

where UZ and U;Z are the right and left eigenvectors of the

(13b)

non-Hermitian Hamilton matrix H, satisfying U:Z TU? = Suw
[83]. A, is the complex eigenvalue of H. The numerators in
the above equations represent the overlap degree of the nth
collective state of atoms and the propagating photon modes.
The transmittance and the reflectance can be further defined
as T =|t|*> and R = |r|>. Equations (13a) and (13b) show
that the scattering spectrum can be regarded as the result of
interference between different scattering channels, which are
provided by the corresponding collective modes. It is impor-
tant to note that the above results apply to both the Markovian
and the non-Markovian regimes.

In what follows, we assume that the frequencies of all
the giant atoms are distributed in a small range around a
reference frequency, with w; >~ w,. We further assume that
the spacing between the connection points is small enough so
that the non-Markovian effects (the phase-accumulated effects
for detuned photons) can be neglected, thus the phase factors
Oim(w) can be replaced by 0, (w,) = waXim/vg = ;. Under
this approximation, the elements of the effective Hamilton
matrix H can be written as

1
Hii = wi+ Ar; — Ereff,i, (14a)
i
Hijizj = 8ij = 5 eollij: (14b)

where the Lamb shift and the effective decay of the ith atom
are defined as [59]

M; M;
AL,i = Z Z lmylm’ sin |91m - eim’lv (lsa)

N =

M; M;
Feff,i = Z Z yzmylm/ Cos(glm - lm ) (15b)

The exchange interaction and the collective decay between the
ith and the jth (i # j) atom take the form

M; M;
1 < .
8ij =3 ZZ YimVjm S0y — 0|, (162)
M; M;
Ceoij = Y Y o/YinVim 08(Oim — Ojur).  (16b)
m m

Clearly, the scattering spectra are determined by the above
characteristic quantities.
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FIG. 2. Sketches of 1D chains of separate giant atoms: (a) the most general configuration possible for an array of separate atoms, (b) the
configuration where all the giant atoms are identical and periodically arranged, and (c) the configuration where all the atoms are identical and

all the coupling points are equally spaced.

Since under the Markovian approximation the quantities V
and H (and the corresponding eigenvalues A, and eigenvectors
Un‘%”‘g ) are independent of the frequency of the photons, the
energy and the effective decay of the nth collective mode
can be defined as @, = Re[A,(w,)] and T, = —2Im[A,(w,)],
respectively. Further, we can define the numerators in

Egs. (13a) and (13b) as 5, = —i[(VIUZ)(UZ V)]|,—,, and
= —i[(VTU? )(U;? TV)]lw:wﬂ. Thus the transmission and
reflection amplitudes can be written as

N
t=1+ZL

— (17a)
=l A—S,,—i—l?"
o 7
r=y ——*% (17b)

Here A = w — w, (8, = @, — w,) is the detuning between the
frequency of the photons (the nth collective mode) and the
reference frequency. Equations (17a) and (17b) show super-
positions of several Lorentzian-type amplitudes contributed
by the collective excitations. 1, (7,) determines the weight
of each Lorentzian component. Equations (17a) and (17b) are
very helpful for us to analyze the scattering spectra for setups
containing multiple giant atoms.

III. SPECTRA FOR AN ARRAY
OF SEPARATE GIANT ATOMS

The expressions (13a) and (13b) [or Eqgs. (17a) and (17b)]
are applicable for any multiemitter system with arbitrary cou-
pling points, and reflect the physical picture of multichannel
scattering through the collective modes. However, for an array
of separate giant atoms (see Fig. 2), the photon scattering can
be understood from a different point of view: the cascade
scattering process (i.e., the output of the previous atom is
the input of the next one). Thus we will show below that
the transfer-matrix approach, which has been used to calculate
the photon scattering amplitudes of an array of small atoms

[45,50-52], can be generalized to the case of separate giant
atoms. In particular, if all the giant atoms are identical and
periodically arranged, we can obtain the explicit analytical
expressions for the transmission and reflection amplitudes. By
combining these results with those of the previous section, a
number of properties of the scattering spectra can be deter-
mined and interpreted.

A. Transfer matrix for an arbitrary array of giant atoms
in a separate configuration

First, we consider an arbitrary giant atom array in the sep-
arate configuration, as shown schematically in Fig. 2(a). We
can prove that the scattering amplitudes on the left and right
of the ith atom can be connected by the following recursive
linear matrix equation (see Appendix B for details):

<ti—l,M;1) _ T;lTiTai< tim; ) (18)
i1 ! Fit1,1
with
1+ i&;
“‘(—@ 1—@) (152)
el 0
T, = ( 0 e“"")' (19b)
Here &; takes the form
Cetr;
= 20
5 2(A; — Ary) 0

where A; = w — w; is the detuning between the photons and
the ith atom. The Lamb shift A ; and the effective decay I'ef ;
of the ith atom are defined in Eqs. (15a) and (15b). The phase
factor «; is relevant to the effective position of the ith atom
and satisfies

er\n/ljm’zl Wsin Bin + Gi)
Z:Ir\n/ljm’=1 WCOS B + Oir)

tan 20; = (21)
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The boundary conditions satisfied by Eq. (18) are tyuy, =1,
rny1,1 =0, fom, = 1, and ry; = r. Note that here we have
assumed that the transition frequencies of all the atoms are
approximately equal, w; ~ w,, and have used the Markovian
approximation (i.e., we ignore the phase-accumulated effects
for detuned photons). Thus, similar to Sec. I B, the phase
factor is defined as 6;,, = waXim /vy, i.€., the wave vector k has
been replaced by w,/v,.

Using Eq. (18) iteratively N times in succession and setting
o = 0 (this can be achieved by selecting the origin of the co-
ordinates appropriately), we obtain the following connective
relation between the reflection and transmission amplitudes:

1 et
(7)=m(5) @)

M= [Aﬁ (T,-T¢,.)1|TN. (23)

with

i=1

Here the effective phase propagating matrix is defined as

_ e 0
Ty, =T, T, = ( 0 ei@), (24)

with ¢; = ;1 — «;. Straightforwardly, the transmission and
reflection amplitudes read

—ia,
e lan

t = s (25a)
M
M

r= 2 (25b)
M

which are applicable to any giant-atom array in separate con-
figuration. In fact, the above results indicate that N separate
giant atoms in a wQED structure are equivalent to N small
atoms, each with a frequency shift Ay ;, an effective decay
Iefr.i» and a reference phase «; (relevant to the effective posi-
tion of the ith atoms).

B. Transfer matrix for an array of periodically arranged
identical giant atoms in a separated configuration

Here we focus on the case where all the giant atoms are
identical and periodically arranged, as shown schematically
in Fig. 2(b). This require the following conditions.

(1) All transition frequencies are equal, with w; = w,, i.e.,
all detunings are equal, with A; = v — 0, = A.

(i1) The number and layout of the connection points are the
same for each atom, with M; = M, 6;,, — 6jn, and
Yim = Vjm-

(iii) The atoms are evenly spaced, with lattice constant
Xi+1.m — Xim = L, i.e., the phase factors satisfy the relation
Oiy1,m — Oim = woL/vg = .

Thus all the Lamb shifts and the effective decays are
identical, with Ay ; = Ay and e ; = [egr. In addition, from
Eq. (21), one can prove that for this case ¢; = ;41 — o =
¢, i.e., a; = (i — 1)¢, is satisfied. The connective relation

Eq. (22) becomes
1\ _ aw[te™?
()= (%) @

- 9in = Ujm

with

= ((1 + i&)e "

- i
TP > @7)

(1 —i§)e?
and

Do
C2A-Ap)

The corresponding transmission and reflection amplitudes are
of the form

§ (28)

o—iNG
t=——, 29
(T (2%)
(TV),
= — . 29b
' (TY)11 (290)

By using Abeles’s theorem [84], we can derive the trans-
mittance and reflectance as follows (see Appendix C for
details):

1

T=|tf=——ou—, 30

"= Teno 300
2172

Re|rfp = 2 U1 (30b)

1L+ EU )

Here U, (y) represents the Chebyshev polynomials of the sec-
ond kind. Note that the transmittance and the reflectance are
constrained by the relation 7 + R = 1 because of the conser-
vation of photon number. Thus, in the following part, we focus
on the reflectance R only.

C. Spectra for the case of maximum symmetry

Based on the results of the previous subsection, we further
consider the case of maximum symmetry for an array of
identical giant atoms in a separate configuration, as shown
in Fig. 2(c). In this case, all the bare decay rates are equal
with y;,, = y. In addition, the coupling points are equally
spaced with distance d [i.e., the lattice constant is Md; see
Fig. 2(c)], and the corresponding phase delay is 6 = w,d /v,.
The effective decay rate and the Lamb shift of a single giant
atom can be written as

1 —cosM6
Pep =y —"——, Gla)
1 —cosf
y M sin6 — sin M0
A, = LSO Z ST (31b)
2 1 —cos6
and y takes the form
y = cos M@ + & sin M6. (32)

In Figs. 3(a) and 3(b), we plot the reflectance as functions of
the detuning A and the phase delay 6 for N = 3 and different
M. The range of 6 is chosen as 6 € [0, 27 ] because the spectra
change periodically with 8. From Egs. (30a) and (30b), we
can obtain that the reflection peak with R = 1 appears at
A = A, [marked by the red dashed lines in Figs. 3(a) and
3(b)]. And the reflection minima with R = 0 can be fixed by
the relation Uy_;[y(A, 8)] = 0 [marked by the white dashed
lines in Figs. 3(a) and 3(b); see more details in Sec. [II C2].
In addition, for a phase factor 0 € [0, 7], we have relation
R(A,0) = R(—A,2mr —0). The detailed characteristics of
the spectra for different 8 are summarized below.
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0.0 0.5 10 1.5

2.00.0 0.5 ‘ 1.0 ' 1.5 2.0

FIG. 3. Reflectance R for an array of separate giant atoms with maximum symmetry as functions of detuning A and phase 0, with (a) N =
3,M =2 and (b) N =3, M = 3. The red (white) dashed lines are used to mark the locations of the total (zero) reflection. Some special
phase delays are indicated by the red circles (decoupling), the red disks (superradiance), and the blue squares (symmetrical broad spectrum),

respectively.

1. 6 = 57 : Decoupling or superradiant points

When 6 = nz /M (n € N), depending on the value of n,
the atomic array decouples from the waveguide, or exhibits a
Lorentzian spectrum of width NT ., which is a superradiant
feature.

(1) If n = 2m and mod[m, M] # 0 (m € N), each atom is
decoupled from the waveguide with 'y = O [see Eq. (31a)],
and hence R =0 for all values of A [see Egs. (28) and
(30b)]. Clearly, there are M — 1 such decoupling points (with
n=2,4,...,2M — 2) in the range of 6 € [0, 2], as shown
by the red circles in Figs. 3(a) and 3(b).

2) f n=2m+1, or n =2m and mod[m, M] =0 (m €
N), according to Egs. (31a) and (31b), the effective decay rate
and the Lamb shift become

AP _ %My cot (ﬁn), n=2m-++1,
7 o, n = 2m and mod[m, M] = 0,
(33)
and
e _ ycscz(ﬁn), n=2m+1,
eff M?y, n = 2m and mod[m, M] = 0.
(34)

In addition, according to Eq. (32), we have y = £1. Thus,
using the identity (C4a), the reflection amplitude (30b) can be
further simplified as

IRl
(8- A7) + STy’

(35)

In this case, the reflection spectrum is a standard Lorentzian
line shape centered at A = A;"” and the linewidth NT;” is
proportional to the number of giant atoms, which is a typical
superradiant phenomenon. In the range of 6 € [0, 2x], there
are M + 2 such points (withn =0,1,3,...,2M — 3,2M —
1, 2M), as shown by the red disks in Figs. 3(a) and 3(b). The
corresponding cross sections at these phases, which exhibit
Lorentzian-type spectra, are shown by the curves in Figs. 4(a)
and 4(b).

Now we compare these results with the case of an array of
equally spaced small atoms [50].

(i) For small atoms, the superradiance appears when the
phase delay between neighboring atoms is nm, while for
equally spaced separate giant atoms, as shown above, the

condition satisfied by the phase delay between neighboring
atoms M6 = nm is necessary but not sufficient for the appear-
ance of superradiance, because the atom decouples from the
waveguide (with I'eg = 0) when n = 2m and mod[m, M] # 0.

(i) For small atoms, the line center is also the resonance
point of each single atom, while for separate giant atoms the
line center appears at A = A" [see Eq. (33)] because the
frequency of each atom is shifted by A} due to the exchange
of virtual photons between different connection points of the
same atom.

(iii) For small atoms, the width of the superradiant spec-
trum is always Ny, while for separate giant atoms the width
becomes NT".;”, which depends on the phase delay, as shown
in Eq. (34).

As shown by Egs. (17a) and (17b), the scattering spectra
are the result of interference between Lorentzian-type excita-
tions of different collective modes of the atomic array. This
point of view can provide an effective way to explain the
formation of these superradiant states. To this end, we plot
the detuning §; between the ith collective mode and the atoms
[see Figs. 4(c) and 4(d)] and the decay rate ['; of this mode
[see Figs. 4(e) and 4(f)] as functions of 6. One can see that
at the superradiant points [indicated by the dashed grid lines
in Figs. 4(c)—4(f)] the frequencies of the collective states are
degenerate and equal to the shifted effective frequency of a
single giant atom, with §; = A}"" [given by Eq. (33)]. Addi-
tionally, among these states, one is a superradiant state, with
width NT;? [given by Eq. (34)], and the others are subradiant,
with vanished decay rates. Thus only the superradiant state
contributes to the scattering process, resulting in a Lorentzian
line shape centered at A = A} with width NT';;?, as shown
in Figs. 4(a) and 4(b).

2. 0 # 57 Spectra with multiple reflection minima

According to Egs. (C3) and (32), we can find N — 1 reflec-
tion minima appearing at

A= AL+ SOMO (36)

C T AT o —cosMB) <

when 0 # 2m =+ ) (meNand s =1,2,...,N — 1), as

shown in Fig. 5(a). y, are the roots of of Chebyshev poly-

nomial Uy_;(y) given in Eq. (C3). If the value of cos M9 is

exactly equal to one of the roots of Uy_;(y), labeled as yy,

ie., 0 =02m=* ‘N)Al,] is satisfied, the corresponding Ay does
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N=3, M=2

N=3, M=3

FIG. 4. (a), (b) Plots of R vs A for an array of separate giant atoms with maximum symmetry. The phase delays 6 are chosen to satisfy
the superradiant condition. (c), (d) The detuning 5; between the ith collective mode and each atom (solid lines) and the Lamb shift A; of each
atom (blue dashed lines) as functions of 6. (e), (f) The decay rate I'; of the ith mode (solid lines) and the effective decay I of each atom
(blue dashed lines) as functions of . In panels (c)—(f), the dashed grid lines are used to mark the phase delays at which superradiance appears.

Left column: N = 3, M = 2. Right column: N =3, M = 3.

not exist because the second term of Eq. (36) is divergent.
Thus the number of reflection minima for this case is N — 2
[see Fig. 5(b)]. In particular, when 8 = (2m + 1) /(2M), one
can obtain a broad spectrum structure that is symmetric at the
Lamb shift [see Fig. 5(c)]. And there are N — 1 (N — 2) re-
flection minima symmetrically distributed on both sides of the
main peak for N € O (N € E™). In the range of 6 € [0, 2],
there are 2M points (withm =0,1,2,...,2M — 3,2M — 1)
that exhibit this kind of spectrum structure, as indicated by
the blue squares in Figs. 3(a) and 3(b). Note that in the large

N limit this type of spectral structure becomes a photonic band
gap, which will be discussed in detail in Sec. III C 3.

To better understand the appearance of these reflection
minima, based on Eq. (17b) we decompose the reflection
amplitude into the sum of several Lorentzian-type ampli-
tudes [defined as £; = 7j;/(A — &; +i[;/2),i=1,2,...,N]
corresponding to the excitations of the collective modes [see
Figs. 5(d)-5(f)]. It can be seen that the positions of the
reflection minima are determined by the peaks of the nar-
row excitation amplitudes, indicating that the minima result

0=0.05n

() | (b)
& 0.5

0 A

1Hd) o (e) 1L
Tl 1P ;&N |£aP

0

-5 5 -5

0
Aly

0
Aly

0
Aly

FIG. 5. (a)—(c) Reflection spectra with multiple reflection minima. In each panel, the Lamb shift of a single atom is indicated by the
dashed grid line where the reflection reaches its maximum. Corresponding to panels (a)—(c), panels (d)—(f) show the decomposed components
contributed by the collective excitations. In all the panels, we set N = 3, M = 2.
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FIG. 6. (a) The photonic band gap centered at A = A, with
width W. The parameters are set as N = 10, M =2, and 6 = 7 /4.
The curve y is plotted according to Eq. (32). The horizontal coor-
dinates A, corresponding to y=y, (s=1,2,...,N—1; s #N/2
when N € E*) are the positions of zero reflection. When N >> 1, the
band-gap width can be defined as W >~ |A; — Ay_;|. Inset: Width W
for6 = /(2M), 2w — 7 /(2M) (where W reaches the maximum for
fixed M) as a function of M. (b) The curves show the decomposed
components contributed by the collective excitations corresponding
to the spectra shown in panel (a). The two narrowest peaks with
distance W and width T',,,; are located at the innermost, corresponding
to the two most subradiant states. (c) The circles show the width
[, as a function of N for fixed M = 2. The solid line AN is the
fitted curve with A = 45.94. (d) The disks show the distance W as a
function of N for fixed M = 2. It converges to W for large N.

from the destructive interference between the broad and nar-
row collective excitation spectra. If the linewidth difference
between the broad and narrow spectral lines is large enough,
the reflection spectra around the minima exhibit Fano line
shapes.

3. Photonic band gap

Interestingly, when the number of atoms N is large, the
broad spectrum structure appearing at 6 = (2m + 1) /(2M)
becomes a photonic band gap centered around the Lamb shift
Ay, as shown in Fig. 6(a). At the edges of the band gap,
the reflectance drops sharply from 1 to 0. Thus, the distance
between the two innermost reflection minima can be used to
estimate the width of the band gap. In fact, in the limit N > 1,
we have y; = —yy_; =~ 1 [see Eq. (C3) and Fig. 6(a)]; thus,
by using Eq. (36), we can obtain the following approximate
expression for the width of the band gap:

. r
1 — cos (2gtlr)

W > |A; — Ay = Tegp = (37)

Clearly, in the range of 6 €[0,2n], for fixed M, W
reaches the maximum value when m = 0,2M — 1 [i.e., 6 =
w/(2M),2x — w /(2M)]. The width W for these phase delays
is plotted as a function of M in the inset of Fig. 6(a). When
M > 1, the maximum width can be further approximated as

sMm?

W~ —vy,
7127/

(38)
indicating that W increases with M? [see the inset in Fig. 6(a)].
Note that a similar band-gap structure of width y can also
be created by an array of equally spaced small atoms with
a phase delay of (m+ 1/2)m [16,40]. But the giant-atom
systems provide an effective way to significantly increase the
width of the band gap by increasing the number of coupling
points of each atom. In addition, the center of the photonic
band gap is also tunable by changing the Lamb shift, which
is impossible for an array of small atoms. It should also
be emphasized that both the band-gap structure discussed
here and the similar phenomenon in small atoms [16,40]
appear in the Markovian regime, while Ref. [39] shows
that in the non-Markovian regime the phase-accumulated
effects for detuned photons can also produce a flat band-gap
structure in the transmission spectrum if the distance between
neighboring qubits is equal to a half wavelength.

The formation of this type of spectra can be understood
as interference effects between different scattering channels
corresponding to the excitations of the collective modes. To
this end, according to Eq. (17b), we decompose the spec-
tra into the superposition of Lorentzian lines. As shown in
Fig. 6(b), these Lorentzian-type amplitudes are distributed
symmetrically around the Lamb shift. The area of nearly total
reflection is mainly contributed from the excitation of the most
superradiant states. On the other hand, we find that the two
narrowest excitation amplitudes corresponding to the most
subradiant states are at the innermost [see Fig. 6(b)], and the
corresponding width [",.s decreases as 1/N3 [see Fig. 6(c)],
resulting in very narrow peaks for large N. The destructive
interferences between them and the broad-width excitations
lead to the innermost reflection minima and the steep band-
gap walls in the spectrum. Thus, when N > 1, the distance
W between the centers of the two innermost amplitudes con-
verges to the width W of the band gap, as shown in Fig. 6(d).

IV. SPECTRA FOR AN ARRAY OF BRAIDED GIANT
ATOMS WITH DECOHERENCE-FREE INTERACTIONS

For an array of N braided or nested giant atoms, the
transfer-matrix approach is no longer available due to the
feedback loops that exist in these configurations. Thus the
general formulas Eqgs. (7a) and (7b) should be used to calcu-
late the scattering coefficients. In general, when the atomic
number is large, the explicit analytical expressions for the
scattering coefficients are not simple, and are even tedious,
except for the case N = 2 [74]. For the sake of compactness,
in this section, we focus on the spectra that can reveal nontriv-
ial many-body states caused by decoherence-free interactions
in an array of braided giant atoms. The spectra for an array of
braided giant atoms in the other parameter regime, as well as
the spectra for an array of nested giant atoms, are provided in
Appendices D and E.
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A. Scheme for constructing an SSH-type atomic chain using
decoherence-free interactions

Here, we consider a 1D chain containing N identical giant
atoms, each with a transition frequency w, and two connection
points. Each pair of neighboring atoms is in a braided con-
figuration, and all the bare decay rates are equal with y;,, =
y. For this configuration, the decoherence-free interactions
between each pair of nearest neighboring atoms are easily
designed [59]. Here, as an example, we construct a topo-
logical spin chain described by the SSH model [82], which
can be used to understand some of the fundamental ideas of
topological physics [85-90]. To this end, we set the phase
delay as 0 — ;) = 7, and 0 — 0411 = ¢ fori € O and
Bin — 6i111 = @, fori € EY, as shown in Fig. 7(a). Thus, from
Egs. (15a)—(16b), we find that with such a design the Lamb
shifts, the individual decays, and the collective decays vanish,
with Ap; =T1; = Leonij = 0. And for exchange interac-
tions, only the nearest-neighbor ones are nonzero, with the
so-called decoherence-free interactions g; ;+; = y sing; = J;
for i€ Ot and g;;1 = ysing, =J, for i € Et, respec-
tively. All other pairs of atoms do not interact with each other,
so the tight-binding approximation is valid. Thus according to
Egs. (12), (14a), and (14b), we obtain the following effective
Hamiltonian:

N
Hssn = 6167 +J (6165, +H.c)
SSH = Wy i 9 1 i Oin1 .C.
i=1 i=odd

+1 Y (676, + He), (39)

i=even

i.e., the setup is effectively a 1D chain of atoms described by
the SSH model [see Fig. 7(b), where the dashed box shows
the unit cell]. The strengths of nearest-neighbor coupling are
Ji (for hopping within the unit cell) and J, (for hopping
connecting neighboring unit cells), respectively.

By assuming periodic boundary conditions, one can obtain
the corresponding bands

E(K)=a)a:|:\/112~|—J22+211]200sK, (40)

where K € [—m, ] is the wave vector. The spectrum is
gapped and forms two symmetric bands centered at the ref-
erence frequency w,, with the spectrum width and band gap
prte2 oL@
cos ,
2
Y1 — ¢

Aw = 2(J; +J») = 4y sin (41a)

¢1+ @
sin

Sw = 2|J; — J»| = 4y cos , (41b)

respectively.

For finite systems and an even number of atoms, the values
of J; » determine whether the system is in a topological phase
(with J; < Jp, or ¢; < ¢) or a nontopological phase (with
J1 > Jp, or ¢1 > ¢;), as shown in Fig. 7(c). Here we assume
p1+@p=mn/2andlet g, — @1 = B (e, pr2=7/4F B/2,
B €[—n/2,7/2]), as indicated by the blue solid line with
arrow in Fig. 7(c). To show the influence of the parameter 8
on the topology of the system, we plot the energy levels of
the atomic chain as functions of B in Fig. 7(d). The band-
width and the gap for this case are Aw = 2+/2y cos(8/2)
and dw = 2\/§y| sin(B/2)|, respectively. We can see that if

0.5
pi/r

FIG. 7. (a) Sketch of a setup with giant atoms realizing an SSH
chain with decoherence-free nearest-neighbor couplings. (b) The
effective system. The dashed box shows the unit cell. (¢) J; — J; is
plotted as a function of ¢; and ¢,. There is a topological phase (TP)
and a nontopological phase (NTP) for different values of ¢, and ¢;.
The dashed line (¢; = ¢,) indicates the topological phase transition
where J; = J, is satisfied. (d) Under the condition ¢, + ¢, = /2,
the energy levels are plotted as functions of § = ¢; — ¢, [indicated
by the blue solid line with arrow in (c)] for the setup shown in panel
(a). The number of atoms is set as N = 16.

B < 0, no edge states appear in the gap. Therefore, the system
is in a topologically trivial phase. In the case of g = 0, the
gap closes, recovering the normal 1D tight-binding model.
If B > 0, there is a pair of almost-zero-energy edge states
|W.) in the spectrum gap, indicating that the system is in
a topologically nontrivial phase. If the energy-level splitting
is tiny (this is valid when B is not too small), |W_) take the
form of the hybridization of the left and the right edge states
(Ws) = (W) + |Wg))/+/2, with

1 i—1
W) = (=) 2 1), (42a)
VAL i;d
1 N—i
%R) = —= > (=wT . (42b)
R j—even
Here w=J,/J€(,1), |[i)= 6i+|G) is the excited

state of the ith atom, and Nk, is the normalization
constant. |W;) and |Wg) hybridize under Hssy to an
exponentially small amount, resulting in an effective
interaction

T =~ h(® = 1)(—p)? 43)

between them. Thus the splitting between |W,) and |W_) is
approximately 2|.7].

B. Probing the energy spectrum of an SSH-type atomic chain
formed by decoherence-free interactions

The exact decoherence-free interactions described by
Eq. (39) cannot be probed by the photons because all the
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FIG. 8. (a) Scheme for probing the decoherence-free interactions of an atomic array by properly designing the first atom. (b) The effective
system. (c)—(f) The reflection spectra for an array of N = 16 braided atoms with decoherence-free interactions. The bands formed by the bulk
states in the thermodynamic limit N — oo are shown by the shaded regions in panels (c) and (e). (d), (f) Details of the spectral structures
in the dashed boxes in panels (c) and (e), corresponding to the edge states. The black dots in these panels are approximate results obtained
from Eq. (47b). The insets in panels (d) and (f) show the corresponding decomposed components |7+ /(A — Z.)|? contributed by the collective
excitations. The parameters are ¢; = 0.27, ¢, = 0.37, and € = 0.17 in panels (c) and (d) and ¢; = 7 /6, ¢, = 7 /3, and € = 0.1x in panels
(e) and (f). (g) Upper panel: The superposition of the left edge state |\, ) and the right edge state |\Wg) results in an effective coupling strength
J between them. Lower panel: Effective energy diagram formed by the edge states |, ) and |Wg) and the ground state |G).

atoms are decoupled from the waveguide. To overcome
this problem, we can slightly change the position of the
leftmost coupling point, with 6;; — 6;; + €. Namely, the
phase delay between the two connection points of the first
atom becomes m —e€, as shown by Fig. 8(a). This de-
sign can ensure that all the exchange interactions and the
collective decays between the first and the other atoms re-
main unchanged [i.e., gi1o =J; =y singi, g, =0 (j = 3),
and Teon1; =0 (j 2> 2)], and at the same time the indi-
vidual decay and the Lamb shift of the first atom obtain
small values [er,; =2y (1 —cose) and Ay = y sine, re-
spectively [see Egs. (15a)—-(16b)]. As shown by Fig. 8(a),
we also let the transition frequency of the first atom be
w) = w, — y sine€ to cancel out the influence of the Lamb
shift Az ; (i.e., all the effective atomic frequencies equal to
wg). As a result, the effective Hamiltonian (39) of the system
becomes

Hl; = Hssp — %Feff,lafﬁl_, (44)
which means that the system sketched in Fig. 8(a) is equiva-
lent to the one shown in Fig. 8(b). Thus, through the coupling
between the waveguide and the first atom, the energy spectra
of the topological atomic chain can be probed. The corre-
sponding scattering amplitudes can be calculated by using
Eqgs (7a) and (7b).

The reflection spectra of the system in the topologically
nontrivial phase [with 8 € (0, 7w /2)] are shown in Figs. 8(c)—
8(f). It can be seen that a mapping relationship is established
between the reflection peaks and the energy levels of the
atomic array [see Figs. 8(c) and 8(e)]. On one hand, the peaks
corresponding to the bulk states are very narrow and thus well

resolved [see the spectra in the shaded regions in Figs. 8(c)
and 8(e)], since the effective decays of these states to the
waveguide are small. On the other hand, the properties of
the spectral structure around A = 0, corresponding to the hy-
bridized edge states |V, ), depend on . When g is small, the
spectrum around A = 0 exhibits the Autler-Townes splitting
(ATS) feature, as shown in Figs. 8(c) and 8(d), while for large
B the spectrum has the character of EIT, as shown in Figs. 8(e)
and 8(f).

To further understand the spectral structure in the topo-
logical band gap, we assume that § is not too small so that
the edge states are deep in the topological band gap and the
splitting between them is tiny. Because of the existence of the
topological band gap, the bulk states are almost not coupled
to the edge states and can therefore be ignored. Therefore, we
can only consider the subspace spanned by |W, z) and |G),
in which the effective non-Hermitian Hamiltonian (44) can be
approximated as

Hrp ~ g Y 878 - E1“LSZSL + JSi8, +He), (45)
i=L,R

where the lower operator is defined as S‘L,R = |G)(¥L |- The
two edge states interact with strength .7, defined by Eq. (43).
The left edge state |W.) couples to the waveguide with an
effective decay

T~ (11— uH)lefr 1,

resulting from the coupling between the leftmost atom and
the waveguide. And the right edge state |Wg) is decoupled
from the waveguide with effective decay 'y = 0. Thus the
left and right edge states | ¥y g) and the ground state |G) form

(46)
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an effective three-level A-type system [see Fig. 8(g)] that can
exhibit ATS- or EIT-like spectra.

According to the effective Hamiltonian (45) and Eqgs. (17a)
and (17b), the transmission and reflection amplitudes
around the center of the band gap A =0 can be
approximated as

R AZ_ 2
R s A 17
n==+ T 4n A(A+ZT)_‘7
~ ’FL i€
Tn ITAe
~ = 47b
e 4

AE+T) -7
where

Zy=1(—iT, +,/167% —T?) (48)

is the eigenvalue of the non-Hermitian Hamiltonian Eq. (45),
and

Z Z_)Z
Ny = M’ (492)
Z: — 7.
- (Z Z_)Z
e = _e:ew (49b)
Zi — 7.

are weighting factors of the Lorentzian components. We can
see from Figs. 8(d) and 8(f) that the approximate results
(the black dots) obtained from Eq. (47b) are in good agree-
ment with the exact solutions (the red solid lines). The ratio
4|J1/T'L, which decreases monotonically in the region 8 €
(0, /2), can be used to determine whether the system is in
the ATS or EIT region. When 4|7|/T; > 1, the eigenvalues
Z+ have the same imaginary part and opposite real parts.
The system is thus in the ATS regime, where the spectral
structure in the gap can be decomposed into two symmet-
rically distributed resonances of equal width [see the inset
in Fig. 8(d)]. In particular, when 4|7|/T. > 1, the splitting
2| J| between the two peaks corresponding to the hybridized
edge states |Wy) = (|W.) £ |\IJR))/«/§ [note that |W.) corre-
sponds to Zy (Z5) for 7 > 0 (J < 0) and plays the role of
the dressed state] is much larger than the width 'y /2 of the
peaks. Thus the two edge states can be well detected by probe
photons, as shown in Fig. 8(d). On the other hand, in the EIT
regime with 4| 7|/, < 1, Z,. are purely imaginary but with
different moduli. Thus the spectral structure in the gap can be
decomposed into wide and narrow resonances, both centered
at A = 0 [see the inset in Fig. 8(f)]. The Fano-type destruc-
tive interference between them produces a reflection spectrum

J

with EIT-type transparency points at A = 0. In particular,
when 4| 7|/T', <« 1, a narrow transparency dip of width about
4.77%/T'; appears in a Lorentzian resonance of width I', as
shown in Fig. 8(f).

V. CONCLUSION

In summary, we study the single-photon scattering prob-
lem in multiple-giant-atom wWQED systems. It is shown that
the scattering spectra are determined by the characteristic
quantities relevant to the photon exchange and interfer-
ence effects between coupling points, including the Lamb
shifts and the effective decays of single atoms, and the
exchange interactions and the collective decays between dif-
ferent atoms. The obtained analytical expressions provide
a clear physical picture of the multichannel scattering pro-
cess via collective excitations. For separate giant atoms, we
find that the transfer-matrix method applicable for small
atoms can be generalized to this case due to the feature
of the cascade scattering process. Using the above theoret-
ical tools, we systematically investigate the characteristics
of the scattering spectra for multiple-giant-atom systems in
different configurations. It is shown that interactions be-
tween photons and the collective modes of the atomic array
result in abundant interesting phenomena, such as superradi-
ance, Fano-type interference, and photonic band gaps. And
these phenomena are strongly influenced by the nondipole
and interference effects resulting from the phase delays be-
tween different connection points. We also take the SSH-type
model as an example to investigate the optical properties
of topological states resulting from the decoherence-free in-
teractions of a chain of braided atoms. It is shown that
the scattered photons can be used to probe the nontrivial
many-body states of an array of giant atoms. In addition,
the quantum interferences between the excitation channels
of the nearly degenerate edge modes can generate topo-
logically protected EIT-type phenomena. Our paper can
provide insight into the scattering physics when photons in-
teract with multiple giant atoms, and may provide powerful
tools for manipulating photon transport in future quantum
networks.
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APPENDIX A: DERIVATION OF GENERAL EXPRESSIONS FOR SCATTERING AMPLITUDES

Equations (4a) and (4b) yield the following boundary conditions:

— Vo[ Pr(Kim+) — PrXim—)] + Vi f; = 0,
e[ Pr (Xjmt) — PL(Xim=)] + Vimfi = 0,

—
Aifi =5 22 2 Vil @4ims) + @41 = 0.

s m=l1

(Ala)
(Alb)

(Alc)
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Here s = L, R. A; = w — w; is the detuning between the photons and the ith atom. To obtain Eqs. (Ala)—(Alc), we have used
the following relations:

Xim,+ 0
/ 8_(Ds(x)dx = qu(-xim,nL)_(Ds(xim,f)’ (Aza)
Xim,— 9%
Xim,+ My N My
/ ZZVt’m’(S(x_xtm)ﬁ dx_ZZVlmﬁsu 8mm - tmfla (Azb)
Xim,— =1 m'=1 =1 m'=1
D, (xim) = §[q>s(Xim,+) + D (xim, )] (A2¢)
Substituting Egs. (5a) and (5b) into Eqgs. (Ala)-(Alc), we arrive at
~iVy(tp,, — Ip,—1)€"" + Vinf; = 0, (A3a)
gy 1 = Ip, e 4 Vi f; = 0, (A3b)
| &
Aifi = 2 Z Viml(tp,, + tp;mfl)elkxim + (rpy41 + 1py, )e_lkxim] =0. (A3c)
m=1

Here we have assumed that the mth coupling point of the ith atom, located at x;,,, is the p;,th one of all the coupling points
(counting from the first coupling point at the far left). Thus we have the following relations: x,,,, = Xin, V), = Vim» and f},,, = fi.
Starting from Eqs. (A3a) and (A3b), through iteration (note that fy = 1, ry,+1 = 0), we obtain the following relations:

Pim
tpy = 1= i— Z Vye 5 £y, (Ada)
p =1
P = —z— Z Ve f. (A4b)
& p'=pin
Thus the transmission and reflection amplitudes read
gt
t=ty=1—i—Y Vye™f, —1—1—22%,,,51“"" (A5a)
Ve

i=1 m=1

r=r = —z— Z\//e’kx’ = —l— ZZV ekm ;. (A5b)

i=1 m=1
Substituting the expressions (A4a) and (A4b) into Eq. (A3c), we arrive at

Pim Pim—

M;
1 « .
Alﬁ _ z § Vim _ l— § :V e —ikx, /f _ l— § Vpe thl, elk)(,'m
m=1

—z— Z Ve f, —l— Z Ve f, e | =0, (A6)
Y8 pptl & p=pin
which can be simplified as
M; [ pin—1 M;
Aif + Z Z ViV e Gn=3) ¢ 4 Z ViV =sm) ¢ | = Zvimeikxim’ (A7)
g p=1 P =Pim m=1
namely,
Aifi+ ZZV,mV/e’k‘x"” wlfy = Zv ek, (A8)
m=1p'=1
Note that

Z V ezk\x,m =X, \f _ Z Z V /etk\x,,,l Xt If (A9)

j=1 m'=1
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thus Eq. (A8) can be further written as
N M M;

A2 P DA Zv s, (A10)

j]mlm’l

By defining decay rate into the waveguide continuum y;, = 2V;2 /v, (through coupling point x;,) and phase delay 6;,(w) =

kXi = wx;n/vg, we obtain the following linear equations for the atomic excitation amplitudes f;:

i N M, M;
Aifit 5 YD e el — Z /vgmm' e (Al1)

]lmlm’l

or in a more compact form

(0l — D = /v, V. (A12)
The transmission and reflection amplitudes Eqs. (A4a) and (A4b) can be further written as
L Z Z [Yim i) ¢ = 1 LVTf, (Al13a)
\/U_g i m 2 \/U_g

. 1 Yim g (w) i T
= —i— [0 gifm(@) £ =~y Tg, (A13b)
Vs Z; 2 VU

Here f, V, and H are defined in Egs. (8), (9), and (11) in the main text. From Egs. (A12)-(A13b), one can easily obtain the
formal solutions Egs. (6)—(7b).

APPENDIX B: DERIVATION OF THE TRANSFER MATRIX FOR AN ARRAY OF SEPARATE ATOMS

Note that for an array of separate atoms the coupling points at x;, and x;,_; are always adjacent to each other. Thus
Egs. (A3a)—(A3c) become

_ivg(tim - ti.mfl)eikxml + Vtmﬁ =0, (Bla)

ivg(ri,erl - ri,m)eiikx’m + Vlmﬁ = O» (Blb)
| &

Atfi= =3 Vinlllim + 1) + (s + rig)e 5] = 0. (Blo)
2 m=1

Note that for the separate configuration we have the following relations: tjy = t;_1 m, |, Fim+1 = Fit1.1-
Starting from Eqgs. (B1la) and (B1b), after iterative calculation, we obtain the following relations:

. 1 = —ikx, s
lim = tici M,y — lv—g Z Vimwe™ ™ fi (B2a)
Fim = Fir11 — z— Z Vi € f;. (B2b)
8 m'=m

Substituting the above results into Eqgs. (B1c) and using definition y;,, = 2V-2 -1/ Vg, We have

ik Xim ikXim
Zm 1Vzm(6’”C Lioime, e Mg )
Ai+ 5 Zm,mle Vi Vi € Fim =% |

According to Egs. (B2a), (B2b), and (B3), we can obtain Eq. (18), in which the scattering amplitudes on the left and right of the
ith atom are connected by the transfer matrix.

fi= (B3)

APPENDIX C: DERIVATION OF SCATTERING COEFFICIENTS FOR AN ARRAY OF PERIODICALLY ARRANGED
IDENTICAL GIANT ATOMS IN A SEPARATED CONFIGURATION

It can be verified that the determinant of the matrix T is 1. Based on Abeles’s theorem [84], we can write the matrix TV in
terms of Chebyshev polynomials of the second kind:

TV = Uy )T = Uy2 0L, (CI)
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where
ry A = arceos (y), NES!
PO s WL A=In(yl+VHP =D, bl>1 (2
y= %Tr(T) = cos ¢ + &£ sin ¢, (C2b)
and I is the identity matrix. Chebyshev polynomial Uy_;(y) has N — 1 roots:
s
Vs = COS (N) (C3)
withs = 1,2,..., N — 1. And the following identities will be used in this paper:
Un(ED = EDYWV + 1),
(C4a)
U100 + U2 = 20Un-1(0)Un—20) = 1. (C4b)

Using Egs. (29a), (29b), (C1), and (C4b), we can obtain the explicit analytical expressions for scattering coefficients, as shown

by Egs. (30a) and (30b) in the main text.

APPENDIX D: SPECTRA FOR AN ARRAY
OF BRAIDED GIANT ATOMS

Here, we consider a 1D chain containing N identical gi-
ant atoms with two connection points each. Each pair of
neighboring atoms is in a braided configuration. The phase
delays satisfy 6; » — ;41,1 = 42,1 — 02 = 6, and all the bare
decay rates are equal with y;,, = y, as shown in Fig. 9(a). In
Figs. 10(a) and 10(b), we plot the reflectance as functions of
the detuning A and the phase delay 6 for N = 3 and 4, respec-
tively. The total reflection points with R = 1 are marked by the
red dashed lines. And the reflection minima with R = 0 due to
destructive interference are marked by the white dashed lines.
In addition, for a phase factor 6 € [0, 7], we have relation
R(A,0) = R(—A,2m — 60). Thus, without loss of generality
we show in Figs. 10(c)-10(f) [Figs. 10(g)-10(j)] the cross
sections of Fig. 10(a) [Fig. 10(b)] at some typical phase delays
in the region 6 € [0, w]. The detailed characteristics of the
reflection spectra for different 6 are summarized below.

=

== e oo |—0—|—6—|—0—| ) —_—

FIG. 9. Sketches of 1D chains of (a) braided giant atoms and
(b) nested atoms.

(1) There are at most N total reflection points and N — 1
zero reflection points in the reflection spectrum. In some re-
gions of 6, the number of total reflection points decreases to
one (zero) for N € O (N € ET), as shown in Figs. 10(a)
and 10(b). This is different from small atoms [45,50] and
separate giant atoms (see Sec. III C), where only one total
reflection point appears if the atoms are not decoupled from
the waveguide.

(2) When 6 = 2n [n € N, marked by the red disks in
Figs. 10(a) and 10(b)], one can obtain a Lorentzian spectrum
that is symmetric at A = 0, exhibiting a Dicke-type superra-
diant structure. Namely, the spectrum has a width that scales
linearly with the size of the chain and equals NT['¢if = 4Ny
(note that each atom has an effective decay ey = 4y for this
case), as shown in Figs. 10(c) and 10(g) (with 6 = 0).

(3) When 8 = (2n + 1) /4 (n € N), one can obtain a non-
Lorentzian spectrum structure that is symmetric at the Lamb
shift. And there are N — 1 (N — 2) zero reflection points sym-
metrically distributed on both sides of the main peak for N €
O* (N € EY). In the range of & € [0, 2], the points exhibit-
ing this kind of spectrum structure are 6 = 7 /4, 37 /4, S /4,
and 7 /4, as indicated by the blue squares in Figs. 10(a) and
10(b). The cross sections of Fig. 10(a) [Fig. 10(b)] at phase
delays 0 = 7 /4 and 37 /4 are shown in Figs. 10(d) and 10(f)
[Figs. 10(h) and 10(j)].

(4) When 0 = (2n+ 1) /3 [n € N, indicated by the red
circles in Figs. 10(a) and 10(b)], the effective decay of
each atom vanishes, and thus the atomic array decouples
from the waveguide. Among these values of 6, when 6 =
2mrw £ /3 (m € N),e.g.,0 = /3 and 57 /3 in the range of
0 € [0, 2], the so-called decoherence-free interactions with
strength g; ;11 = ++/3y /2 exist between neighboring atoms,
whereas when 6 = (2m + 1)x,e.g.,0 = m inthe range of 6 €
[0, 2], both the effective decays and the coherent interactions
vanish. In Figs. 10(e) and 10(i), we plot the reflection spectra
when the phase 6 slightly deviates from the decoherence-
free-interaction point 7 /3. In this case, one can ensure that
8iit1 = ++/3y/2, and at the same time the effective decay
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FIG. 10. Reflectance R for braided giant atoms shown in Fig. 9(a) as functions of detuning A and phase 6, with (a) N = 3, M =2 and

(b) N =4,M = 2. The red (white) dashed lines are used to mark the locations of the total (zero) reflection. Some special phase delays
are indicated by the red circles (decoupling), the red disks (superradiance), and the blue squares (symmetrical non-Lorentzian spectrum),
respectively. The curves in panels (c)—(f) [(g)—(j)] show the cross sections of panel (a) [(b)] at phases 6 = 0, /4, 0.357, and 37 /4, respectively.

APPENDIX E: SPECTRA FOR AN ARRAY
OF NESTED GIANT ATOMS

of each atom obtains a small value Iefr; < gii+1. Thus the
tight-binding atomic chain formed by the nearly decoherence-
free interactions can interact with photons in the waveguide.
The corresponding reflection spectrum describes the energy
structure of the atomic chain. In the main text, we discuss a
more interesting example of an SSH-type topological atomic
chain resulting from the decoherence-free interactions (see
Sec. IV).

In this section, we consider N nested giant atoms with
two connection points each. The phase delays between
neighboring coupling points are equal with 8, and all the bare
decay rates are equal with y;, = y, as shown in Fig. 9(b).
In Figs. 11(a) and 11(b), we plot the reflectance as functions
of the detuning A and the phase delay 6 for N = 3 and 4,

N=3, M=2

N=4, M=2

. . 0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
O/n 6/m

1 1

(c) (d) (e) (f) (9) (h)

& 0.5 0.5
ol 6=0 6=n/4 6=n/2 oLo=0 O=n/4 0=n/2
~10 0 10 5 0 5 5 0 5 10 0 10 5 0 5 5 0 5
Aly ALy Ay Ay Ay Ay

FIG. 11. Reflectance R for nested giant atoms shown in Fig. 9(b) as functions of detuning A and phase 6, with (a) N =3, M =2 and
(b) N =4, M = 2. The red (white) dashed lines are used to mark the locations of the total (zero) reflection. Some special phase delays are
indicated by the red circles (decoupling) and the red disks (superradiance), respectively. The curves in panels (c)—(e) [(f)—(h)] show the cross
sections of panel (a) [(b)] at phases 6 = 0, 7 /4, and 7 /2, respectively.
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respectively. For a phase factor 6 € [0, =], we have relation
R(A,0) = R(—A, 2w — 60). The total reflection peaks and the
zero reflection dips are marked by the red and white dashed
lines, respectively. The detailed characteristics of the reflec-
tion spectra for different 6 are summarized below.

(1) There are always N total reflection points and N — 1
zero reflection points in the reflection spectra, except for 6 =
nr (n € N). Each zero reflection point is located between two
total reflection points, as shown by the red and white dashed
lines in Figs. 11(a) and 11(b). This feature is also shown by
the cross sections [see Fig. 11(c)-11(h)].

(2) When 6 = 2nm [n € N, marked by the red disks in
Figs. 11(a) and 11(b)], one can obtain a Lorentzian spectrum
that is symmetric at A = 0. The width is N[t = 4Ny, ex-
hibiting a Dicke-type superradiant structure (note that each
atom has an effective decay [t = 4y for this case), as shown
in Figs. 11(c) and 11(f) (with 6 = 0).

(3) When 8 = 2n + 1) (n € N), the effective decay of
each atom vanishes, and the atomic array decouples from the
waveguide. For example, the decoupling point is 6 = 7 in
the range of 6 € [0, 2x], as indicated by the red circles in
Figs. 11(a) and 11(b).
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