
PHYSICAL REVIEW A 108, 043708 (2023)

Light-matter interactions in a Hofstadter lattice with next-nearest-neighbor couplings
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The light-matter interactions for an emitter coupling to the bulk region of a Hofstadter lattice were recently
investigated by De Bernardis et al. [Phys. Rev. Lett. 126, 103603 (2021)]. We propose light-matter interactions
in an extended Hofstadter lattice with the next-nearest-neighbor (NNN) couplings. Compared with the standard
Hofstadter lattice, the NNN couplings break the mirror symmetry and the energy bands are not flat, but are
dispersive with nonzero group velocity. In contrast to the study by De Bernardis et al., when a two-level emitter
interacts with the bulk region of the extended Hofstadter lattice, the emitter is no longer trapped by the coherent
oscillations and can radiate photons unidirectionally. The chiral mechanism stems from the broken mirror
symmetry. Both the radiation rate and the chirality periodically change with the emitter’s coupling position. All
of those particular features can be realized on the photonic lattice platform and may find potential application in
chiral quantum information processing.
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I. INTRODUCTION

Exploring the interaction between quantum emitters and
photonic baths with various kinds of spectra is the central
topic of quantum optics [1]. One well-known phenomenon
is spontaneous emission; that is, an excited emitter spon-
taneously emits energy into the environment. By designing
a bath with finite spectral bandwidth, a large number of
interesting phenomena beyond spontaneous emission in quan-
tum electrodynamics (QED) are observed. For example,
non-Markovian evolution [2–7] and bound states [8–14] are
demonstrated in the photonic crystal waveguide with a band
gap [15,16]. Moreover, when the bath is spatiotemporally
modulated, analog Hawking radiation [17–19] and chiral
transport [20–24] have been realized. All those important
processes indicate that a specific artificial platform, where the
structures of the photonic bath are designed, can be used to
demonstrate quantum optics.

Recently, unconventional quantum phenomena in the lat-
tice model in condensed- matter physics have attracted great
interest [25–35]. Those lattices usually have nontrivial spectra
and extraordinary topological properties. For example, when
an emitter resonates with the central frequency of a two-
dimensional square lattice’s band, the exponential decay rate
does not obey Fermi’s golden rule but is predicted by over-
damped oscillations and slow relaxation dynamics [36,37].
Moreover, considering a small emitter coupled to a hexagonal
lattice and tuning in the Dirac point, the decay follows a loga-
rithmic law [38]. All these phenomena show that lattices with
nontrivial spectra provide versatile platforms for exploring
QED phenomena beyond conventional photonic baths.

In condensed matter, when the lattice lies in a magnetic
field, the spectrum becomes nontrivial, leading to the quantum
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or fractional Hall effect [39–43] and topologically protected
edge states [44–50]. For a square lattice with a perpendicular
gauge field, an elegant fractal structure spectrum known as
the Hofstadter butterfly emerges [51]. In Ref. [52], by con-
sidering an emitter coupled to the bulk region of a Hofstadter
model, the emission process displayed coherent oscillations
or no decay at all. When an emitter is located at the edge of
the Hofstadter model and resonant with different band gaps,
the emission characteristics become quasiquantized and chiral
due to the increasing edge modes [53]. The magnetic field
not only leads to so-called Landau levels but also causes the
topologically protected chiral edge states [54–57].

In experiments, the Hofstadter model is often realized
in an artificial platform with tunable nearest-neighbor (NN)
hopping [44,45,58–63]. However, when the lattice sites be-
come closer to each other, the parasitic next-nearest-neighbor
(NNN) couplings must be considered [64,65]. In zigzag
waveguide arrays, when the distance between the waveguides
is twice that between the layers, the NNN coupling strength
is 30% of the NN coupling [66]. In this scenario, the NNN
couplings have significant effects and lead to new physical
phenomena beyond the NN approximation [67–75].

In this paper, we consider the extended Hofstadter model
with NNN couplings as a perturbation and investigate the
quantum dynamics of an emitter coupling to the bulk region
of the lattice. The NNN sites are coupled via a real tunneling
amplitude, without hopping phases. The mirror symmetry is
broken by the NNN couplings in both the x and y directions
(see Appendix A) [73,75,76]. Consequently, the flat bands
become dispersive with nonzero group velocity. When the
emitter resonates with the middle of the lowest band, the
decay follows an exponential law. More intriguingly, the emis-
sion field shows periodicity and strong chirality, which paves
the way for realizing chiral quantum optics [77–81]. Different
from the widely discussed chiral edge state in the Hofstadter
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FIG. 1. (a) Sketch of a setup of a two-level emitter coupling to the bulk region of a photonic lattice, which corresponds to an extended Hofs-
tadter model with next-nearest-neighbor (NNN) hopping (red dashed lines), under a perpendicular synthetic magnetic field �B. (b) Schematic of
the two-dimensional (2D) Hofstadter model, i.e., a square photonic lattice with hopping strength J and hopping phase φi, j between neighboring
lattice sites. For each plaquette,

∑
�φi, j = 2πα. (c) The extended 2D Hofstadter model with the NNN couplings λJ between diagonal sites of

the square.

model [53,56,82,83], our findings about the chiral emission in
the bulk region of the lattice have rarely been studied [84].
Our proposal indicates that the unavoidable NNN couplings
play an important role in an artificial photonic lattice and
can lead to unconventional QED phenomena beyond standard
platforms.

The structure of this paper is as follows: in Sec. II, we
introduce the extended Hofstadter model with NNN couplings
and obtain dispersion relations via the quasicontinuous Harper
equation. In Sec. III, we consider an emitter coupling to
the extended Hofstadter model and derive the spontaneous
emission rate under the Markovian approximation. In Sec. IV,
by analyzing distribution properties of the lattice modes, we
explain the mechanism of chiral emission and its periodicity.
In Sec. V, we summarize our main results.

II. MODEL

We consider a two-level emitter with frequency we located
in the bulk region of an extended Hofstadter model, which
contains additional NNN hoppings between the diagonal sites
of the lattice, as shown in Fig. 1(a). The lattice constant is set
as l0 = 1, and Nx × Ny is the total number of lattice sites. Each
lattice site is assumed to be a photonic cavity. The annihilation
operator at the site �r = (x, y) is denoted as ax,y. The coupling
strength between the nearest-neighboring sites is Jeiφi j . The
NNN hopping rate is λJ and is assumed to be identical and
real. Therefore, the Hamiltonian of the extended Hofstadter
model is written as (h̄ = 1 and J = 1)

Hm = −
∑
x,y

[(
a†

x+1,yax,y + eiφx,y a†
x,y+1ax,y

)

+ λ
(
a†

x+1,y+1ax,y + a†
x+1,y−1ax,y

)] + H.c. (1)

Here the phase φi, j = e
h̄

∫ �ri

�r j
�A(�r) · d�r originates from a syn-

thetic magnetic field �B = �∇ × �A, where we employ the
Landau gauge with �A = B(0, x, 0). We define a dimensionless
parameter α to denote the effective magnetic flux [47,52,53],

α = 1

2π

∑
�φi j = 1

2π
(φi, j + φ j, j′ + φ j′,i′ + φi′,i ) = e�

2π h̄
,

where
∑

� represents the summation of the hopping phase
in a unit cell [i.e., the blue arrow in Fig. 1(b)]. In this case,
� = Bl2

0 is the flux enclosed in the plaquette. Without loss of
generality, we take α = 1/M, with M ∈ N.

In the presence of the Landau gauge, the spectrum of the
extended Hofstadter model in the ky direction is not flat and
has nonzero group velocity. In the kx direction, the group
velocity is still zero. We adopt a perturbation approach to
obtain the analytical dispersion relation. We assume that the
wave function can be written as ψ (x, y) = eikyyu(x), with
pure Bloch waves on the y axis. By substituting ψ (x, y) into
Schrödinger’s equation Hmψ (x, y) = Eψ (x, y), the discrete
extended Harper equation is derived as [55,85]

Eu(x) = −2 cos(2παx − ky)u(x)

− (1 + 2λ cos ky)[u(x + 1) + u(x − 1)], (2)

which indicates that u(x) is periodic with 1/α = M. There-
fore, we truncate this lattice to x = M and apply periodic
boundary conditions.

We adopt the quasicontinuum approximation to replace
u(x ± 1) with e±∂x u(x) (see Appendix B for more de-
tails) [85]. Consequently, the dispersion relations are simpli-
fied as

El,ky � −4 − 4λ cos ky +
[

2πα

(
l + 1

2

)

− 1

16
(2πα)2

(
2l2 + 2l + 1

)]
2
√

1 + 2λ cos ky, (3)

where El is the lth Landau level. For higher energy levels, this
perturbation approach is invalid. If λ = 0, the cosine terms
in Eq. (3) vanish, and the eigenvalues become constants with
high degeneracy, i.e.,

El,ky � −4 + 2

[
2πα

(
l + 1

2

)
− 1

16
(2πα)2(2l2 + 2l + 1)

]
.

However, when considering nonzero NNN couplings, the
eigenvalues vary with ky. The energy levels become dispersive
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FIG. 2. (a) The dispersion relations for the two lowest energy
levels with λ = 0 and ±0.01. We assume that the emitter’s frequency
lies in the cyan area. In the middle of the lowest band, the group
velocity is ±vg. (b) The probability |ul,ky (x)|2 versus ky for l = 0 and
λ = 0.01 with different x values. The parameter for those plots is
α = 1/10.

bands with a bandwidth

Wl = El,ky=π − El,ky=0 � 8λ − 8πα

(
l + 1

2

)
.

In Fig. 2(a), the red horizontal curves (λ = 0) and the black
curves (λ = 0.01) are the flat bands of the Hofstadter model
and the dispersive bands of the extended Hofstadter model,
respectively. The NNN couplings break the mirror symmetry,
which leads to the Landau levels being nondegenerate and
each band being nonflat. Furthermore, The group velocity vg

is nonzero, indicating that the photonic current can propagate
along the y axis.

The Hamiltonian is rewritten as an M × M matrix (see
Appendix C). After numerical diagonalization, the lth energy
band’s discrete wave function ul,ky is expressed as a column
vector,

El : ul,ky = [ul,ky (1), ul,ky (2), . . . , ul,ky (M )]T .

We plot the probability |ul,ky (x)|2 for l = 0 and α = 1/M =
1/10 in Fig. 2(b). The probabilities are asymmetric about
ky = 0 [ul,ky (x) �= ul,−ky (x)], except for x = 5 and 10. Note
that for λ = 0 the probability |ul,ky (x)|2 still keeps this form.
When the emitter couples to those points with an asymmetric
wave function, the emission is unidirectional. For simplicity,
we replace ky with k in the following discussion.

III. SPONTANEOUS EMISSION

We consider a two-level emitter located in the bulk region
(x0, y0) of the extended Hofstadter model [see Fig. 1(a)]. The
system’s Hamiltonian is written as

HS = H0 + Hint, (4)

H0 = 1
2wqσz + Hm, Hint = g

(
σ−a†

x0,y0
+ σ+ax0,y0

)
, (5)

where wq is the frequency of the emitter, g is the interaction
strength between the emitter and the lattice, and σz/± are the
Pauli operators of the atom. As discussed in Appendix C, the
real-space operator a†

x0,y0
is expressed as the combination of

eigenmodes Xi,k . Consequently, the interaction Hamiltonian
is rewritten as

Hint = g√
N

σ−
∑

k

M∑
i=0

e−iky0 ui,k (x0)X †
i,k + H.c. (6)

We assume that the emitter resonates with the lowest band
E0,k . The band gap (� 4πα) between the two lowest bands
is much larger than the bandwidth (� 8λ) of E0,k [52]. The
effects of the higher bands El , l > 0 on the dynamics can be
ignored. Therefore, Eq. (6) is simplified as

Hint = g√
N

∑
k

e−iky0σ−u0,k (x0)X †
0,k + H.c. (7)

Then, by replacing the eigenmode X †
0,k with the creation oper-

ator in k space (see Appendix C), we obtain

Hint = g√
N

M∑
x=1

∑
k

e−iky0 u0,k (x0)u0,k (x)σ−a†
x,k + H.c. (8)

There are two emission channels when we assume a resonant
position at wq = E0,±kr . To continue, we apply the unitary
transformation U0(t ) = e−iH0t . The interaction operator be-
comes

∑
k

σ−a†
x,k → N

2π

∫ π

−π

(
σ−a†

x,kei
kt
)
dk,

where 
k = E0,k − wq.
We assume that, initially, the emitter is in the excited state,

and the lattice modes are in the vacuum state. Therefore, the
system’s state in momentum space is expressed as

|�(t )〉 = ce(t )|e, 0〉 +
M∑

x=1

∑
k

cx,k (t )|g, 1x,k〉. (9)

Note that cx,k (t ) is the probability amplitude of a photon
located at x with mode k. Substituting the state vector |�(t )〉
into the Schrödinger equation, we derive

ċe(t ) = −i
g√
N

M∑
x=1

∑
k

eiky0 u0,k (x0)u0,k (x)cx,k (t )e−i
kt ,

(10)

ċx,k (t ) = −i
g√
N

e−iky0 u∗
0,k (x0)u∗

0,k (x)ce(t )ei
kt . (11)
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We first integrate Eq. (11) and substitute the integrated form
into Eq. (10). The evolution equation of ce(t ) is simplified as

ċe(t ) = − g2

2π

∫ π

−π

dk|u0,k (x0)|2
∫ t

0
ce

(
t ′)e−i
k (t−t ′ )dt ′, (12)

where we utilize the normalization of the wave function,∑
x

|u0,k (x0)u0,k (x)|2 = |u0,k (x0)|2
∑

x

|u0,k (x)|2

= |u0,k (x0)|2.
By assuming the interaction strength g is much weaker than
the bandwidth of E0,k , the Weisskopf-Wigner approximation
is valid. The variable |u0,k (x0)|2 can be seen as a constant
|u0,kr (x0)|2. Then, we have

ċe(t ) = − g2

2π

∑
±

|u0,±kr (x0)|2
∫ π

−π

dk
∫ t

0
ce

(
t ′)e−i
k (t−t ′ )dt ′.

(13)

Note that 
k = E0,k − wq. As depicted in Fig. 2(b), around
E0,kr = wq the dispersion relation E0,k is linear, with a group
velocity vg = ∂

∂k E0,k , i.e., 
k = E0,k − E0,kr = vg(k − kr ) =
vgδk. Equation (13) is rewritten as

ċe(t ) = − g2

2π

∑
±

|u0,±kr (x0)|2

×
∫ π

−π

1

vg
d
(
vgδk

) ∫ t

0
ce(t ′)e−ivgδk(t−t ′ )dt ′. (14)

The integral bound ±π can be extended to infinity. The corre-
sponding solution to Eq. (14) is

ce(t ) = e− Γ
2 t , Γ =

∑
±

Γ± =
∑
±

g2

vg
|u0,±kr (x0)|2, (15)

where Γ+ (Γ−) corresponds to the emission rate in the
+y (−y) direction.

We simulate the interaction between a two-level emitter
and an Nx × Ny square lattice in real space. The Hilbert space
is restricted within the single-excitation subspace, i.e.,

|�(t )〉 = ce(t )|e, 0〉 +
Nx∑

x=1

Ny∑
y=1

cx,y(t )|g, x, y〉. (16)

Here ce(t ) denotes the amplitude of the emitter in the ex-
cited state, and cx,y(t ) is the amplitude of a single photon
at (x, y) in the lattice. The Hamiltonian in Eq. (5) can be
expanded in the basis of Eq. (16). Then, by numerically solv-
ing the Schrödinger equation, we obtain the probabilities of
the emitter, |ce(t )|2, and the photonic field, |cx,y(t )|2. For a
finite Nx × Ny lattice, the Hilbert space is NxNy + 1. We set
Nx = 25 and Ny = 1000, which is large enough to avoid the
propagation field touching the lattice boundary.

The spectrum of the extended Hofstadter model is disper-
sive, with a bandwidth proportional to λ. Therefore, when
λ � g, the Markovian approximation is valid. In Fig. 3(a),
we plot the evolution of the emitter via numerical simula-
tion, which matches well with an exponential decay e−Γ t

[Γ is given by Eq. (15)]. When λ is comparable to g, the
Markovian approximation is not valid. The modes around the
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FIG. 3. The probability |ce(t )|2 for (a) Markovian and (b) non-
Markovian situations with different λ. The exponential decay rate
Γ is derived from Eq. (15). The orange squares in (a) and the two
curves in (b) are all numerical calculations. The emitter is located at
the position (x0 = 12, y0 = 0) for a 25 × 1000 lattice. (c) The decay
rate Γ versus the coupling position x0 with λ = 0.01. The orange
squares and solid curve correspond to the numerical and analytical
results, respectively. (d) The probability |u0,±kr (x0)|2 versus x0, with
kr = π/2. The parameters are ωq = −3.42, α = 0.1, and g = 0.005.

band edge with zero group velocity contribute significantly
to the dynamics of the emitter [86,87]. The dynamic evo-
lution is a fractional decay process [27,36,37,88,89]. Partial
energy is trapped around the coupling position and cannot
propagate. The trapped energy oscillates between the emitter
and the lattice sites around the coupling position [90–94].
For λ = 0 the whole photonic energy is trapped around
the coupling position, and complete Rabi oscillation is ob-
served, as discussed in Ref. [52]. We plot the non-Markovian
evolution of the emitter with λ = 0 and λ = 10−4 in
Fig. 3(b).

We plot in Fig. 3(c) the decay rate versus the coupling
position x0 via numerical simulation when the Markovian
approximation is valid. The analytical results [Eq. (15)] are
also plotted. The rate has a periodic relationship with x0,
which stems from the wave function of the coupling posi-
tion, |u0,kr (x0)|2. For example, we set kr = π/2 and plot the
probability |u0,±ky (x0)|2 for different x0 in Fig. 3(d). Note
that

∑
± |u0,±ky (x0)|2 is symmetric about x0 = 10. According

to Eq. (15), the decay rate of the emitter is proportional to∑
± |u0,±ky (x0)|2. Eventually, the decay rate changes with the

coupling position periodically. The length scale of the oscilla-
tion is 1/α.

Then we pay more attention to the difference between Γ+
and Γ−. From Eq. (15) and Fig. 3(d), Γ+ �= Γ−, except for
x0 = 5 and x0 = 10, which leads to unidirectional emission
along the y axis. In the following, we focus on the chiral
emission along the y axis.

043708-4



LIGHT-MATTER INTERACTIONS IN A HOFSTADTER … PHYSICAL REVIEW A 108, 043708 (2023)

5 10 15

0

0.5

1

C
,
x

0

x0

numercial

α> 0

α< 0

analytical

α> 0

α< 0

5 10 15

−400

−200

0

200

400

y/
l 0

x/ l0
5 10 15

x/ l0

(c)(b)(a)

FIG. 4. (a) and (b) The photonic field |cx,y|2 for the emitter coupling to (x0 = 8, y0 = 0) and (x0 = 12, y0 = 0) (the dot). (c) The chiral
factors C+ for α > 0 and α < 0 are calculated by numerical simulation via Eq. (17) and analytical simulation via Eq. (19). The parameters are
ωq = −3.42, |α| = 0.1, λ = 0.01, and g = 0.005.

IV. CHIRAL-FIELD PROPAGATION

The decay rates Γ± are not identical. For an emitter located
at the position (x0, 0), the positive chiral factor is defined as

C+,x0 = �+∑
�±

= Γ+kr (x0)∑
Γ±kr (x0)

, (17)

�± =
∑

x

±Ny/2∑
y=0

|cx,y|2. (18)

According to Eqs. (15) and (17), the analytical chiral factor is
derived as

C+,x0 = |u0,+kr (x0)|2∑
± |u0,±kr (x0)|2 . (19)

In Figs. 4(a) and 4(b), we plot the photonic field for the
emitters located at (x0 = 8, y0 = 0) and (x0 = 12, y0 = 0),
respectively. Note that the field propagates unidirectionally.
Moreover, the chiral factor depends on the coupling position
x0. In Fig. 4(c), we show how C+,x0 changes with x0. The
length of the period is equal to 1/α = M. For some points,
the chiral factor can reach 1.

More intriguingly, the direction of the chiral bulk states
depends on the signs of α and λ. We plot the chiral factor for
different α in Fig. 4(c). By switching the sign of the parameter
α, the chiral emission of the bulk state is reversed. The reason
is that |uα>0

0,x=M−m(ky)|2 is transformed into |uα<0
0,x=m(ky)|2 and

Γ α>0
± = Γ α>0

∓ . Furthermore, changing the signs of λ leads to
the dispersion relation with opposite group velocities vg(±kr ),
as shown in Fig. 2(b). Additionally, the sign of the group
velocity vg(±kr ) denotes the direction of wave-pocket prop-
agation. The chiral emission direction is reversed by flipping
λ. Therefore, we can modulate the sign of λ and α to change
emission direction along the y axis.

Note that when the emitter is resonant with the mid-
dle of E0,k , i.e., kr = π/2, we have |u0,kr (7)|2 � |u0,kr (8)|2.

Regardless of whether the emitter is located at x = 7 or x = 8,
the photon current mainly propagates along two lines, x = 7
and x = 8, as shown in Fig. 4(a). According to numerical
results, when |u0,+kr (x = 7)|2 reaches its maximum, the emit-
ter’s frequency should be set as wq = −3.4106. In that case,
we use the emitter located at x0 = 7, and most of the photonic
field distributes on x = 7, as shown in Fig. 5(a). In Fig. 5(b),
when wq = −3.4316 and x0 = 8, most of the field distributes
on x = 8. Therefore, we can control the photonic field’s dis-
tribution by adjusting the emitter’s frequency.

5 7 8 10

−400

−200
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200

400

y /
l 0

x/ l0
5 7 8 10

x/ l0

0

0.2

0.4

y|
c x

,
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2
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FIG. 5. The photonic field |cx,y|2. (a) The emitter is located at
x0 = 7 (the dot), with the frequency −3.4106. (b) The emitter is
located at x0 = 8, with wq = −3.4316. The parameters are α = 0.1,
λ = 0.01, and g = 0.005.
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V. CONCLUSION

In this work, we explored the dynamic evolution of an
emitter coupling to an extended Hofstadter model with NNN
couplings. The NNN hopping breaks the mirror symmetry,
leading to nonflat bands with nonzero group velocities. By
considering an emitter located in the bulk region of the ex-
tended Hofstadter model, we observed a chiral Markovian
decay process without coherent oscillations, which is totally
different from the phenomena in Ref. [52]. The physical
mechanism of the chiral emission arises from the asymmetry
of the wave function in k space. Moreover, the decay rate and
the chiral factor change with the coupling position periodi-
cally. The period is the reciprocal of the effective magnetic
flux. The chiral factor can reach 1 with the choice of the
proper coupling position. Moreover, the directional decay can
be controlled by the NNN couplings.

In artificial quantum systems, the NNN couplings ex-
ist widely. For example, in bilayer or doped graphene, the
NNN hopping strength is around 5% of the NN interaction
strength [95,96]. Hence, our work will provide guidance for
the experimental realization of exotic quantum dynamics in
the extended Hofstadter model. We believe our proposal could
also be utilized to simulate quasi-one-dimensional chiral pho-
ton transport in a two-dimensional system.
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APPENDIX A: MIRROR SYMMETRY

In quantum mechanics, if the Hamiltonian and the oper-
ator satisfy the commutation relation, i.e., [H, A] = 0, the
system has the corresponding symmetry. Regarding mirror
symmetries, the operator Mx (My) seeds x (y) → −x (−y),
and the Hamiltonian obeys [H, Mx(y)] = 0. However, in the
Hofstadter model, due to the magnetic flux φ = 2πα, the
operator Mx(y) must multiply a gauge transformation G to
recover the symmetry, Mα

x(y) = Mα=0
x(y) Gα [76]. In this scenario,

the Hamiltonian does not obey the original relation for mirror
symmetry, but the relation with flux reversal, i.e.,

(Mα
i )Hα (Mα

i )† = H−α. (A1)

When we consider the NNN couplings, Eq. (A1) is not valid.
The mirror symmetries are broken. To explain this point
clearly, we take the model in the main text as an example.

For the whole square lattice (N × N), the Hamiltonian is

Hs =

⎛
⎜⎜⎜⎜⎜⎜⎝

Hx Hy 0 · · · H†
y

H†
y Hx Hy · · · 0

0 H†
y Hx · · · 0

...
...

...
. . .

...

Hy 0 0 H†
y Hx

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Hx =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 1
1 0 1 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

1 0 0 1 0

⎞
⎟⎟⎟⎟⎠,

Hy =

⎛
⎜⎜⎜⎜⎜⎝

eiφ1 λ 0 · · · λ

λ eiφ2 λ · · · 0
0 λ eiφ3 · · · 0
...

...
...

. . .
...

λ 0 0 λ eiφN

⎞
⎟⎟⎟⎟⎟⎠

, (A2)

where Hx (Hy) is an N × N square matrix and Hs is an N2 ×
N2 square matrix. The subdiagonal terms of Hx are the NN
hopping along the x direction. The diagonal terms of Hy are
the NN hopping along the y direction with hopping phase eiφn ,
with φn = 2παn. The subdiagonal terms of Hy are the NNN
couplings in both the x and y directions. The elements in the
top right and bottom left corners of Hs, Hx, and Hy are the
periodic boundary conditions.

We define the matrices

M1 =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 0 1

⎞
⎟⎟⎠, M2 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
...

. . .
...

...

1 0 0 0

⎞
⎟⎟⎠,

(A3)

M3 =

⎛
⎜⎜⎝

e1 0 · · · 0
0 e2 · · · 0
...

...
. . .

...

0 0 0 eN

⎞
⎟⎟⎠, (A4)

where en = ei2π (1−αn). The mirror-symmetry matrices, for
α = 0, are M0

x = M1 ⊗ M2 and M0
y = M2 ⊗ M1. Under the

Landau gauge, the gauge transform is G = M1 ⊗ M3. Then
Mα

x = M0
xG, and Mα

y = M0
y . Therefore, the Hamiltonian

Hs(α, λ) obeys[
M0

x(y)

]†
Hs(0, λ)

[
M0

x(y)

] = Hs(0, 0), (A5)

[
Mα

x(y)

]†
Hs(α, 0)

[
Mα

x(y)

] = Hs(−α, 0), (A6)

[
Mα

x

]†
Hs(α, λ)

[
Mα

x

] �= Hs(−α, λ), (A7)

[
Mα

y

]†
Hs(α, λ)[Mα

y

] = Hs(−α, λ). (A8)

Equation (A7) indicates that the NNN couplings break the
mirror symmetry, with α �= 0, which is the mechanism for the
chiral emission in the main text.

APPENDIX B: QUASICONTINUOUS HARPER EQUATION

In order to obtain the analytical dispersion relation of the
extended Hofstadter model, we adopt the quasicontinuous
approximation u(x ± 1) → e±∂x u(x) in Eq. (2) [85]. We as-
sume that the hopping is related to the Laplacian operator
via a finite-difference approximation. The eigenequation is
rewritten as

Eu(x) = −[(1 + 2λ cos ky)(T̂− + T̂+)

+ 2 cos
(
2παx − ky

)
]u(x), (B1)
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with T̂± = e±∂x . When x′ = x + 1
α

= x + M, the coefficients
of u(x′) are totally equal to u(x), indicating that this system
has periodicity, with M being a period. For the cosine term, we
adopt x = x′ + ky/2πα to remove ky, i.e., cos(2παx − ky) =
cos(2παx′). Using Taylor’s expansion,

e±∂x = 1 + ±∂x

1!
+ (±∂x )2

2!
+ O(x3),

cos (x) = 1 − x2

2!
+ O(x4),

the equation is written as

E + 2 + 2λ0

2
√

λ0
= −1

2

√
λ0∂

2
x + 1

2

(2πα)2

√
λ0

x2, (B2)

where λ0 = 1 + 2λ cos ky. We define w = 2πα, m = 1√
λ0

,

p̂ = −i∂x, x̂ = x, and a† = √mw
2 x̂ − i√

2mw
p̂. Equation (B2) is

similar to the equation of a harmonic oscillator. By consider-
ing the higher-order terms, we obtain the dispersion relations
in Eq. (3).

APPENDIX C: DISCRETE WAVE FUNCTION

Although the dispersion relations are derived through the
quasicontinuous approximation, the discrete wave function
cannot be obtained. Hence, via Fourier transformation on the
y axis,

a†
x,y = 1√

N

∑
k

e−ikyya†
x,ky

,

we rewrite Hm in ky space as

Hm(ky) = −
∑

x

(1 + 2λ cos ky)
(
a†

x+1,ky
ax,ky + a†

x−1,ky
ax,ky

)

− 2 cos(2παx + ky)a†
x,ky

ax,ky + H.c. (C1)

Under periodic boundary conditions and adopting α = 1/M,
the Hamiltonian Hm(ky) can be decomposed as an M-
dimensional Hermitian matrix,

Hm(ky) = −

⎡
⎢⎢⎢⎢⎣

h1 hc 0 · · · hc

hc h2 hc · · · 0
0 hc h3 · · · 0
...

...
...

. . .
...

hc 0 0 · · · hM

⎤
⎥⎥⎥⎥⎦, (C2)

where hi = 2 cos(2παi + ky) and hc = 1 + 2λ cos ky. Using
U −1Hm(ky)U = E , we exactly diagonalize the Hamiltonian.
The eigenvalue El is the lth diagonal element of E , and the
corresponding wave function ul,ky is the lth column vector of
U , where l denotes the lth energy level. The wave functions
and U matrix are expressed as

ul,ky = [ul,ky (1), ul,ky (2), . . . , ul,ky (M )]T ,

U = [u1,ky , u2,ky , . . . , uM,ky ]. (C3)

Consequently, the eigenmodes are

Xl,ky = [
ul,ky (1)a1,ky , ul,ky (2)a2,ky , . . . , ul,ky (m)aM,ky

]
. (C4)

The eigenmodes and the annihilation (creation) operators sat-
isfy the following relationships:[

X †
1,ky

, X †
2,ky

, . . .
] = [

a†
1,ky

, a†
2,ky

, . . .
] × U,

[
a†

1,ky
, a†

2,ky
, . . .

] = [
X †

1,ky
, X †

2,ky
, . . .

] × U −1. (C5)

Since the Hamiltonian Hm(ky) is Hermitian, U is a unitary
matrix, i.e., U −1 = U T , and[

u1,ky , u2,ky , . . .
]−1 = [

u1,ky , u2,ky , . . .
]T

.

Eventually, the annihilation operators in real space can be
rewritten as

a†
x,y = 1√

N

∑
k

e−ikyya†
x,ky

= 1√
N

∑
k

M∑
i=1

e−ikyui,k (x)X †
i,k .

(C6)
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