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Efficient tensor-network simulation for the few-atom multimode
Dicke model via coupling-matrix transformation
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We present a generalization of the chain-mapping technique that applies to few-atom multimode systems by
making use of coupling-matrix transformations. This is extremely useful for tensor-network simulations of the
multimode Dicke model and the multispin-boson model because their coupling structures are altered from the
star form to the chain form with near-neighbor interactions. Our approach produces an equivalent Hamiltonian
with the latter coupling form, which we call the band Hamiltonian, and we demonstrate its equivalence to the
multimode Dicke Hamiltonian. In the single-atom case, our approach reduces to the chain-mapping technique.
When considering several tens of field modes, we have found that tensor-network simulation of two atoms in
the ultrastrong-coupling regime is possible with our approach. We demonstrate this by considering a pair of
entangled atoms confined in a cavity, interacting with 30 electromagnetic modes.
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I. INTRODUCTION

The Dicke model describes the physics between a col-
lection of two-level atoms and a quantized electromagnetic
field [1]. It has been used to study rich and nontrivial physics
such as superradiance and quantum phase transitions [2,3].
Such physics have been found to occur in the ultrastrong-
coupling (USC) regime [4–6] where the field-atom-coupling
coefficient is comparable to the atomic transition frequency. In
this regime, the rotating-wave approximation is invalid, ren-
dering the analysis of the system much more difficult. Hence,
approximate techniques such as the Holstein-Primakoff trans-
formation are often used, which is valid only in specific
settings.

Nevertheless, the USC regime gives rise to intriguing
physics that must be explored further. For instance, it may
enable fast two-qubit gate operations for quantum computing
applications [7], and it has been shown that the multimode
fields must be taken into account in order for the system to
be causal [8]. Furthermore, from rigorous derivation in circuit
quantum electrodynamics (QED), the extended Dicke model
has been shown to include a direct qubit-qubit interaction
term which becomes non-negligible in the USC regime [9].
Such phenomena unique to this regime greatly motivate the
need to develop numerical techniques to efficiently simulate
multiatom multimode systems.

For the study of single atom interacting with multiple
field modes, the chain-mapping technique has been extremely
useful for tensor-network analysis of the spin-boson model
[10–13] and the multimode quantum Rabi model [8,14]. Since
these models have the so-called star-coupling structure [10],
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they are transformed to an equivalent Hamiltonian with a
linear-chain-coupling structure with nearest-neighbor interac-
tions. Once transformed, numerical algorithms such as matrix
product states (MPSs) [15,16] or density matrix renormaliza-
tion groups [17] can be applied efficiently.

Although it is highly effective, the chain-mapping tech-
nique is limited to systems with single two-level atom or
spin-1/2 systems. Naturally, various efforts have been made
to extend the technique to more general systems such as
the two-bath spin-boson model [18,19]. However, the gen-
eralization to a multiatom multimode system has remained
challenging. Strathearn et al. [20] developed an extension to
a spin-boson model with two spins by projecting the system
onto a subspace and mapping it to a single-spin-boson model.
Most notably, transformation of the multispin-boson model to
a chainlike structure has been achieved by applying the block
Lanczos algorithm [21].

In this paper, we present a generalization of the chain-
mapping technique that works for few-atom multimode
systems. Our method is straightforward to implement and is
numerically stable as opposed to methods involving Lanczos
algorithms. It also completely specifies all coupling coeffi-
cients (field-atom and field-field) after the transformation for
arbitrary configurations. Our method utilizes coupling-matrix
transformations to achieve this, and it leads to equivalent
Hamiltonians that are more compatible with tensor-network
algorithms. We demonstrate this through various numerical
simulations in the USC regime.

The rest of this paper is organized as follows. In Sec. II,
we present our formulation that is based on coupling-matrix
transformations and discuss the applicability and limitations
of our approach. After that, in Sec. III, we numerically val-
idate our proposed approach. A numerical example of two
entangled atoms ultrastrongly coupled to multimode fields is
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FIG. 1. The coupling matrices for the Dicke (a) and band (b) Hamiltonians. The matrix entries correspond to the coefficients in Eqs. (1)
and (7).

discussed in Sec. IV. And finally, summary and directions for
future work are given in Sec. V.

II. GENERALIZED CHAIN MAPPING

A. Formulation

We are primarily concerned with QED applications in the
USC regime where the rotating-wave approximation is in-
valid. Therefore, we use the multimode Dicke Hamiltonian
to represent a system with Na atoms and M electromagnetic
modes, namely,

ĤD = h̄
Na∑
j=1

ωa, j

2
σ̂ z

j + h̄
M∑

k=1

⎡
⎣ωkâ†

k âk − i
Na∑
j=1

g j,k σ̂
x
j (âk − â†

k )

⎤
⎦,

(1)

where h̄ is the reduced Planck constant; h̄ωa, j and σ̂ l
j are the

energy gap and the Pauli operator, respectively, of the jth
atom, where l = x, y, or z; ωk is the electromagnetic mode
frequency, and âk (â†

k) is the photon annihilation (creation)
operator, all for mode k. The coupling coefficient between the
jth atom and mode k is g j,k , which is based on the electric
dipole interaction [14].

The coupling structure of the multimode Dicke Hamilto-
nian can be represented by a coupling matrix of size (Na +
M ) × (Na + M ) partitioned as

MD =
[
ωa g
gT ω f

]
, (2)

where ωa and ω f are diagonal matrices of atomic and field
frequencies, and g is an Na × M dense matrix representing the
field-atom-coupling coefficients. The Dicke coupling matrix
is a real-valued, symmetric matrix that is visualized on the
left in Fig. 1.

The far-off-diagonal-coupling elements of MD such as g1,M

(shown in Fig. 1) are what makes the tensor-network simu-
lation of (1) inefficient. In MPS simulations, these types of
interaction terms are referred to as long-range interactions
[22], and they require implementing a great number of SWAP

gates.1 To avoid this inefficiency, we annihilate these coupling
elements by applying a series of Householder transformations

1A SWAP gate is a quantum gate that exchanges the states of two
qubits. More generally, for MPS simulations, a SWAP gate exchanges
the states of two identical quantum systems [23].

[24,25] and orthogonally transform the coupling matrix into a
band matrix as

MB = QM−Na−1 . . . Q2Q1︸ ︷︷ ︸
=Q

MDQ
T
1 Q

T
2 . . . Q

T
M−Na−1 (3)

or simply MB = Q MDQ
T

.
The Householder matrix is constructed as

Qi = I − 2vivT
i

vT
i vi

, (4)

where I is an (Na + M ) × (Na + M ) identity matrix, and the

vector vi is built from the ith column of M
(i−1)
D as

vi =
[

0i

mi

]
− αeNa+i. (5)

In the above, M
(i−1)
D = Qi−1 · · · Q1MDQ

T
1 · · · Q

T
i−1; 0i is a

length-(Na + i − 1) vector of zeros; mi is a length-(M −
i + 1) vector whose entries are equal to everything below

the (Na + i − 1)th entry of the ith column of M
(i−1)
D ; α =

− sgn(m(i−1)
Na+i,i )‖mi‖2, with sgn being the sign function that is

defined to be 1 at the origin [sgn(0) = 1] and ‖ · ‖2 being
the 2-norm; and eNa+i is a standard unit vector that is equal
to one in the (Na + i)th entry with zeros in all other entries.

Equation (5) and M
(i−1)
D are illustrated in Fig. 2 for visual

clarity.
In (3), each Qi implements a Householder transformation

that annihilates everything below the (Na + i)th entry of the

ith column of the target matrix M
(i−1)
D . The final result is a

FIG. 2. The vector vi (5) is built from a part of the ith column of

the intermediate matrix M
(i−1)
D .
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symmetric band matrix of the same size as MD with band-
width Na that can be expressed in the block matrix form as

MB =
[
ωa ρ

ρT ξ

]
, (6)

where ρ is a lower-triangular matrix of size Na × M rep-
resenting the modified field-atom-coupling coefficients, and
ξ is a band matrix of size M × M with diagonal elements
[ξ]ii = ξi representing the transformed bosonic frequencies
and off-diagonal elements [ξ]i j = ti j for i �= j and |i − j| �
Na representing the newly created boson-boson-coupling co-
efficients. The resulting band matrix is visualized in Fig. 1(b).

Inspired by the chain-mapping technique [10–13], the
Hamiltonian whose coupling structure is represented by the
band-coupling matrix MB can be written in terms of the en-
tries of MB as

ĤB = h̄
Na∑
j=1

[
ωa, j

2
σ̂ z

j − i
∑
k� j

ρ j,k σ̂
x
j (b̂k − b̂†

k )

]

+ h̄
M∑

k=1

[
ξkb̂†

kb̂k +
Na∑
j=1

tk,k+ j (b̂
†
kb̂k+ j + b̂†

k+ j b̂k )

]
,

(7)

with tk,k+ j = 0 for k + j > M. It is remarkable that (7) com-
pared to (1) lacks the far-off-diagonal couplings as a result of
the coupling-matrix transformation. This is explicitly shown
by the summation indices for the interaction terms that are
limited by the atomic index j (first row, second summation)
and the number of atoms Na (second row, second summation).
This absence of far-off-diagonal couplings is what makes (7)
much more compatible with tensor-network algorithms.

The orthogonal matrix Q in (3) that implements the trans-
formation is of the form

Q =
[

INa 0

0 U

]
, (8)

where INa is an Na × Na identity matrix, and U is an M × M
orthogonal matrix. From this form of Q, it is evident that the
transformation only applies to the bosons and not the atoms.
This is why the atomic frequencies in MB are left unchanged
and are equal to those in MD. The photonic operator âk and
the chain bosonic operator b̂ j are related as b̂ j = ∑M

k=1 Ujkâk ,
where Ujk = [U] jk is the block matrix from (8). In other
words, a particular way of clustering the photons gives rise to
the chain bosonic modes. This is precisely the same as what
is done in the chain-mapping technique [10–13].

There is a good reason that we do not trim the off-diagonal
elements of MD all the way to the tridiagonal form. If it
were tridiagonalized, then we would lose the identity block
matrix INa in the upper left corner of (8), and Q would end
up being a full matrix, which would mix the two-level and
bosonic operators in the process of transformation. The result-
ing Hamiltonian will not be well-defined. To avoid this, we
make sure that the transformation only applies to the bosonic
operators as shown in (8).

FIG. 3. Left: Four-site operator for TEBD in the Na = 3 case.
Right: Decomposed MPO of the four-site operator. All vertical in-
dices (on top and bottom of tensors) are bosonic indices of dimension
Nf . As a result of the decomposition, bonds are formed with the
highest dimensional bond being at the center of the MPO.

B. Complexity, applicability, and limitations

Since our scheme is based on Householder transformations
which cost O(N3) where N = Na + M is the number of rows
and columns of the coupling matrices, it is numerically sta-
ble. This is in contrast to the chain-mapping technique that
is unstable due to the Lanczos algorithm [O(MN2) assum-
ing M > Na] on which it is based. Hence, chain mapping
needs stabilization using methods such as the modified Gram-
Schmidt orthogonalization [14], which costs O(N3) also.

The generalized chain-mapping technique works the best
when there are just a few atoms interacting with multiple
modes (Na < M). If Na � M, then Na − M + 1 atoms re-
main coupled to all the modes even after the coupling-matrix
transformation, making the resulting system incompatible
with tensor-network algorithms.

We have investigated time-domain MPS simulations with
the band Hamiltonian (7) using the time-evolving block dec-
imation (TEBD) algorithm [16,26] and the time-dependent
variational principle [22,27]. Both algorithms require forming
an (Na + 1)-site operator due to the near-neighbor coupling
structure of the band Hamiltonian (7). For example, in TEBD,
this operator is then turned into a matrix product operator
(MPO), whose bond dimensions scale exponentially in Na.
If we let Nf be the number of Fock states considered for
each bosonic mode in the simulation, then the maximum
bond dimension of the MPO would be NNa

f or NNa+1
f when

Na is even or odd, respectively. An example of the Na = 3
case is illustrated in Fig. 3. The four-site operator in this
example is formed from a part of the band Hamiltonian (7) as
exp{−iĥk�t/h̄}, where ĥk = ξkb̂†

kb̂k + ∑3
j=1 tk,k+ j (b̂

†
kb̂k+ j +

b̂†
k+ j b̂k ) for some k.

At the onset of the USC regime, we found that at least Nf =
8 is required for the simulation times we explore in Sec. IV.
In this case, the largest bond dimension of the MPO would be
N4

f = 84 = 4096, which makes three-atom MPS simulation
computationally impracticable at this coupling strength. For
weaker-coupling strengths where Nf could be lower with-
out sacrificing the accuracy, it is possible to simulate up to
three or four atoms with this approach. For these reasons, we
simulated two atoms in the USC regime as demonstrated in
Sec. IV.

III. NUMERICAL VALIDATION

A. Equivalence to the chain mapping

What is reassuring is that when Na = 1, our coupling-
matrix-transformation technique reduces to the chain-
mapping technique and implements the exact same transfor-
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FIG. 4. Comparison of the original chain-mapping technique
from Ref. [10] and our coupling-matrix-transformation (CMT) ap-
proach presented in this paper. They are in good agreement. ξn

represents the transformed bosonic frequencies, and tn represents the
chain boson-boson-coupling coefficient.

mation. This is numerically demonstrated2 in Fig. 4. Here,
we consider a single atom placed at the center of a one-
dimensional (1D) lattice with periodic boundary conditions,
and we consider the lowest 50 electromagnetic eigenmodes
of this system. The parameters for this test are selected to be
ωk = kωa, with the integer k ∈ [1, 50], and gk = g

√
ωk , with

g = 1. Since there is only one atom in this case, the atomic
index is fixed at j = 1 and is omitted here. It is observed in
Fig. 4 that the coefficients agree perfectly, so it is clear that the
coupling-matrix transformation reduces to the chain-mapping
technique in the single-atom case.

B. Equivalence of the Hamiltonians

To show that the multimode Dicke Hamiltonian (1) is
equivalent to the band Hamiltonian (7), we perform a sim-
ple numerical time-domain simulation for both systems for
the three-atom five-mode case in the USC regime.3 This is
small enough that the computational cost for simulating either
system is very low (and the tensor-network algorithm is not
needed here).

The three atoms are assumed to be identical and placed in
a 1D cavity with perfect electric conductor (PEC) walls. The
cavity occupies x ∈ [−L/2, L/2], where L is the length of the

2Since the Householder transformation is by and large a numerical
technique, it is difficult (or impossible) to mathematically prove
the equivalence between our coupling-matrix transformation and the
chain-mapping technique. This is why we numerically demonstrate
their equivalence.

3This is realized by setting one of the coupling coefficients as
g1,1/ω1 = 0.25, i.e., the normalized coupling coefficient between
the first atom and fundamental field mode of the cavity is 0.25.
The coupling coefficients for the other modes and other atoms are
determined by the electric dipole interaction which depends on the
field profile, atoms’ positions, and their dipole moments. Since we
assume identical atoms here, their dipole moments are equal. The
expression for the electric-dipole-coupling coefficient is given in Ref.
[14], Eq. (7).

FIG. 5. Illustration of three identical atoms placed in a 1D PEC
cavity interacting with the first five modes.

FIG. 6. Three-atom five-mode simulation of the Dicke (1) and
band (7) Hamiltonians with normalized coupling strength 0.25 be-
tween Atom 1 and the fundamental mode of the cavity. Here, we
are numerically demonstrating the equivalence between the two
Hamiltonians.

cavity, and the atoms are placed at x = 0, L/4, and −3L/8.
This setting is depicted in Fig. 5. The plot of the time-domain
simulation result is shown in Fig. 6. We numerically solve the
quantum state equation (also known as the Schrödinger equa-
tion) for Hamiltonians (1) and (7) to obtain the time-evolved
state |ψ (t )〉 and compute the excited-state atomic population
〈σ+

j σ−
j 〉 = 〈ψ (t )|σ̂+

j σ̂−
j |ψ (t )〉 for each atom. The initial state

is given by |ψ0〉 = |e, e, e, 0, . . . , 0〉, i.e., three excited atoms
in vacuum. Excellent agreement is observed in Fig. 6, and
we conclude that the Dicke (1) and band (7) Hamiltonians
represent an equivalent physical system.

IV. NUMERICAL EXAMPLE: TWO ENTANGLED
ATOMS IN A CAVITY

In the USC regime, a single-electromagnetic-mode approx-
imation is likely to fail due to the possibility of superluminal
signaling [8], so multiple modes must be considered. It was
found that several tens of modes are enough to accurately
characterize the propagation effects in this coupling regime
[8]. When so many modes need to be incorporated into the
model, it is highly inefficient (or impossible) to numerically
simulate the system using the multimode Dicke Hamiltonian
(1). Since we have seen their equivalence, we use the band
Hamiltonian (7) for tensor-network simulations in the remain-
der of this paper.

A. Simulation setting

We restrict our MPS simulations to two identical atoms
in the 1D PEC cavity in the presence of 30 electromagnetic
modes (M = 30). In particular, we are interested in how en-
tangled atoms interact with multiple-field modes in the USC
regime. This is important since obtaining entangled qubits is
an essential step in all quantum algorithms. Moreover, it has
been shown in circuit QED that ultrastrong interactions can
be leveraged to “harvest” entangled atoms [28]. Our simula-
tions show how quantized multimode fields impact the time
evolution of entangled atoms in different configurations in the
USC regime.

The simulation setting is similar to the one depicted in
Fig. 5 but only with two atoms now placed at x = ±L/4. We
assume that the atoms are resonant with the fundamental mode
of the cavity such that the mode frequencies are ωk = (2k −
1)ωa, with the integer k ∈ [1, M], where the atomic frequency
for both atoms is ωa. These mode frequencies are a conse-
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FIG. 7. MPS simulation results of the two-atom 30-mode Dicke model using the band Hamiltonian (7). First, the atomic population in the
excited state is calculated as 〈σ+

j σ−
j 〉 = 〈ψ (t )|σ̂+

j σ̂−
j |ψ (t )〉 and plotted in the top row. This is equal for both atoms because they are placed

symmetrically within the cavity. Second, the first-order field-correlation function is computed as 〈E(−) · E(+)〉 = 〈ψ (t )|Ê(−)(r) · Ê(+)(r)|ψ (t )〉,
whose calculation is detailed in Ref. [14]. Third, we compute the components of four possible two-atomic states in |ψ (t )〉 as |〈φ|ψ (t )〉|2,
where |φ〉 = |g1g2〉, |g1e2〉, |e1g2〉, and |e1e2〉. Finally, the von Neumann entanglement entropy of the MPS S1:m(t ) is calculated for two
different bipartitions of the MPS: one between the first two sites and the other between the second and third sites.

quence of the homogeneous 1D PEC cavity. Other than the
fact that it eliminates the possibility of superluminal signaling
[8], considering 30 modes is also adequate because in this
type of setting the normalized coupling coefficient (g j,k/ωk)
decays rapidly with the mode index k [14]. The MPS is used to
efficiently represent the time-evolving quantum state |ψ (t )〉,
and the time evolution operator e−iĤB�t/h̄ is approximately
constructed as an MPO using TEBD.

We consider three initial states:

|ψ1〉 = (|e1e2〉 + |g1g2〉)/
√

2, (9a)

|ψ2〉 = (|e1g2〉 + |g1e2〉)/
√

2, (9b)

|ψ3〉 = (|e1〉 + |g1〉)(|e2〉 + |g2〉)/2, (9c)

with vacuum (no photons) in all three cases. The subscripts
in the above distinguish the two atoms. The first two states
are maximally entangled with different configurations, while
the last is separable (nonentangled). We reveal the differences
in their time-evolution characteristics for these three initial
states.

B. MPS simulation results

We deal with the onset of the USC regime where
max j,k |g j,k/ωk| = 0.1. The simulation results are shown in
Fig. 7. In particular, the von Neumann entanglement en-
tropies are plotted in the last row to quantify the degree of
entanglement for two different bipartitions of the time-
evolving MPS. The entropies are expressed as

S1(t ) = − tr[ρ̂1(t ) ln ρ̂1(t )], (10a)

S1:2(t ) = − tr[ρ̂1:2(t ) ln ρ̂1:2(t )], (10b)

where the reduced density operators in the above are obtained
by taking the partial trace of the total density operator ρ(t ) =
|ψ (t )〉〈ψ (t )| as ρ̂1:m(t ) = trm+1:N [ρ̂(t )], where m indexes the
physical sites of the MPSs, and the bipartition is taken be-
tween sites m and m + 1. When m = 1, we simply denote

ρ̂1:1(t ) = ρ̂1(t ). The density operator and its bipartitions are
further explained in Fig. 8. With MPSs, these entropies can be
simply computed by taking the singular values at the zero-site
center located right along the bipartition [22].

The simulations in Fig. 7 take place at the lowest end
of the USC regime where both the weak and the USC ef-
fects take place. The weak-coupling effect is shown in the
field-correlation plot where a “glow” in the cavity is observed.
This glow represents the fundamental mode of the cavity to
which the atoms couple dominantly. The propagation effects
characterized by the traveling wave front (traveling at the
speed of light) is also visible due to the USC between the
atoms and the field modes.

What is notable about the simulation results in Fig. 7 is
that, although both initial states (9a) and (9b) are maximally
entangled states, they exhibit very different behaviors in the
presence of multiple electromagnetic modes. The initial state
(9b) displays a highly periodic behavior resembling Rabi
oscillations. It can be seen that this initial state is almost
fully revived when t/(2π/ωa,1) = 5, meaning that both atoms

…

…

FIG. 8. Tensor network diagram of the total density operator
formed by taking the outer product of the MPS. The first two sites
represent the atoms, and the remaining sites represent the electro-
magnetic modes. The bipartition is taken between sites one and two
(red dashed line) to calculate S1(t ), and sites two and three (blue
dotted line) to calculate S1:2(t ). After the bipartition, the right side of
the density operator is traced out by taking the partial trace.
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nearly go back to the maximally entangled initial state. This
does not happen for initial states (9a) and (9c).

Regarding the von Neumann entanglement entropy, the
maximum possible value of S1(t ) is ln 2 ≈ 0.693 since the first
site of the MPS is occupied by a two-level atom. When S1(t )
goes back close to the maximum value at times t > 0 for the
entangled initial states (9a) and (9b), either the atoms are back
to the maximally entangled initial state (9b) or the first atom is
entangled with both the second atom and the field modes in the
case of (9a). For the separable initial state (9c), we observe the
entropies starting out at zero and slowly increasing over time.
For sufficiently long simulations, these values will saturate to
a level that depends on the coupling strength.

V. SUMMARY AND FUTURE WORK

We have presented a generalization of the chain-mapping
technique based on coupling-matrix transformations that
works accurately for few-atom multimode systems. Our tech-

nique is very useful for tensor-network simulations of the
multimode Dicke model and the multispin–boson model be-
cause it can take the coupling structures of these models
and alter them into a linear chain form with near-neighbor
interactions, which is highly compatible with MPSs. The
coupling-matrix transformations are numerically stable, and
this technique reduces to the chain-mapping technique in the
single-atom case. We have demonstrated the equivalence be-
tween the Dicke (1) and band (7) Hamiltonians and applied
the band Hamiltonian for MPS simulations of two entangled
atoms with 30 electromagnetic modes. Our future work in-
volves extending this technique for realistic 3D models such
as flux qubits ultrastrongly coupled to coplanar waveguide
resonators [29,30].
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