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Quantum networks assisted by dark modes in optomagnonic systems

Chengsong Zhao,1 Zhen Yang,1 Dawei Wang,1 Yeting Yan,1 Chong Li,1 Zhihai Wang ,2 and Ling Zhou 1,*

1School of Physics, Dalian University of Technology, Dalian 116024, China
2Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China

(Received 20 October 2022; accepted 15 September 2023; published 9 October 2023)

In this paper, we present a scheme to construct a quantum network based on optomagnonic systems where
the photon-magnon coupling systems are connected by a waveguide. We derive the effective master equation of
magnon modes by eliminating the waveguide modes and optical modes. By diagonalizing the dissipative part
of the master equation, we identify dark modes so as to eliminate the effect of the dissipation induced by the
waveguide. Employing dark modes, we investigate the quantum state transfer and entangled state generation in
the two-node cascaded or chiral quantum network. We extend the method to an N-node quantum network and
show the generation of a W state. We also consider the influence of experimental imperfections. Our scheme is
meaningful for building a quantum network based on a magnonic system.
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I. INTRODUCTION

Quantum networks are very valuable for many quantum
information processes such as quantum computing, commu-
nication, and metrology [1–3]. Various schemes for building
quantum networks by connecting distant nodes have been
proposed [4–10]. The distant nodes, which could be atoms
within a cavity [4], superconducting circuits [11], and op-
tomechanical [8] or magnonic systems [12], can be connected
through a waveguide, allowing for the distribution of quan-
tum information among these nodes. The ability to achieve
high-fidelity quantum state transfer between distant nodes in a
quantum network is essential. Toward this goal, a state transfer
protocol [4] in a cascaded quantum network has been pro-
posed. Since then, many similar but improved schemes have
been developed [5–8,10,13]; e.g., a quantum state transfer
protocol independent of the optical properties of the qubit can
be achieved by utilizing an optomechanical setting in each
node [8], and the quantum state transfer immune to noise
can be implemented by introducing an intermediary oscillator
[5,7]. Additionally, in a chiral or cascaded quantum network,
the generation and transfer of entangled states have also been
proposed [14–16]. The related experiments with supercon-
ducting circuits [11,17] to transfer a quantum state and to
produce an entangled state in quantum networks have been
demonstrated.

The magnonic systems, due to their long lifetime and broad
tunable frequency range, are an important candidates for
building quantum networks [18]. Recently, much progress has
been made in hybrid magnonic systems [19–27]. For exam-
ple, photon-magnon-phonon entanglement [23], the gradient
memory [21], the magnon squeezed cat state [28], magnon
blockade [29–32], and nonreciprocal transmission [33,34]
have been reported, which also demonstrate the excellent
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ability of the magnon to combine complementary physical
systems [24], such as microwave photons [35], superconduct-
ing qubits [35], optical photons, and mechanical resonators
[36–38]. More importantly, cavity optomagnonics which cou-
ples the magnons to the optical photons, similarly to the
optomechanical interaction [39], would open up opportunities
in optical communication between distant quantum comput-
ers [20] and has recently made experimental progress [40]
and acquired significant interest such as the microwave-to-
optics conversion [41–43], heralded magnon Fock state [44],
magnon cat state [45], photon blockade [46], magnon path-
entangled states [47], and the Bell test [48]. In Ref. [18], they
propose a quantum network based on optomagnonic coupling,
where, by pumping the corresponding whispering gallery
modes (WGMs), the distant magnon-phonon state transfer and
entanglement can be implemented.

In this paper, we propose a scheme for constructing a quan-
tum network with YIG spheres as nodes, using optomagnonic
coupling. Employing the quantum network, we investigate
the quantum state transfer and entangled state generation. We
derive the effective master equations of magnon modes by
eliminating the waveguide and optical modes, which allows us
to establish the dissipative couplings of magnon modes among
different nodes. By diagonalizing the dissipative part of the
master equation, we find the dark modes so as to eliminate
the effect of dissipation induced by the waveguide. Based
on the dark modes, we design the control fields to achieve
quantum state transfer and entangled state generations. We
show that the deterministic quantum state transfer and en-
tangled state generation in a two-node cascaded or chiral
quantum network can be achieved by using the designed con-
trol fields. And we also extend this approach to a quantum
network of N nodes and show the generation of a W state in
three- and five-node quantum networks. Finally, we discuss
imperfections in experiments, e.g., the intrinsic dissipation.
In order to achieve the high-fidelity quantum state transfer
and entangled state generation, a small intrinsic decay rate is
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FIG. 1. (a) Schematic of the quantum network consisting of YIG
spheres and a common waveguide (CWG). Each YIG sphere is in
a bias magnetic field Bj and a coherent driving for the transverse
magnetic (TM) mode is introduced by a separate waveguide (SWG).
(b) Schematic of the single node. The red (green) arrow indicates
TM [transverse electric (TE)] mode. (c) Spectrum of WGMs. The
magenta and black dotted horizontal lines denote the frequency of
the scattered light. The solid (dotted) double-arrow lines represent
the detuning between the scattered light and the WGMs specified by
selection rules for clockwise (counterclockwise) input.

required. Hence our scheme offers theoretical support for the
construction of quantum networks based on magnonics.

II. THE MODEL AND THE HAMILTONIAN

We consider an N-node quantum network shown in
Fig. 1(a), which contains N yttrium iron garnet (YIG) spheres
and a common waveguide (CWG). In this quantum network,
a node is represented by a YIG sphere in an external uniform
magnetic field along the z axis. Each YIG sphere is coupled
to a separate waveguide (SWG) so as to introduce a time-
dependent coherent pumping.

The detailed configuration of optical modes and the
magnon mode in a single node is shown in Fig. 1(b). The
magnon modes are sourced from collective spins in the YIG
sphere, and in this paper we only consider the Kittel mode.
The YIG spheres also support the WGMs which are optical
modes confined to the equatorial surface by the total inter-
nal reflection [40]. The incident photons, e.g., the transverse
magnetic (TM) mode from waveguides, will excite the WGMs
in YIG spheres and then the WGMs may be scattered by
magnons into other optical modes, e.g., the transverse electric
(TE) mode. Due to the zero orbital angular momentum of the
Kittel mode, the direction of the scattered photon is the same
as that of the incident photon [49].

Additionally, the scattering exhibits nonreciprocal behav-
ior [40,50–52]. Here we consider two orthogonal polarization
optical modes: TE and TM modes. The orbital angular mo-
ments of TE and TM modes with a given azimuthal mode
lTE and lTM are lTE (−lTE) and lTM ∓ 1 (−lTM ∓ 1) for
counterclockwise (CCW) [clockwise (CW)] circulations, re-
spectively. According to Ref. [50], the resonant frequency
difference between TM and TE WGMs of the same azimuthal
mode is �GB ≈ 32 GHz due to the geometric birefringence,

and the free spectral range is �FSR ≈ 40 GHz. The magnon
frequency ωm j is tuned to coincide with �FSR − �GB. There-
fore, due to the angular momentum conservation, for the CW
TM mode input, the selection rule of the Stokes scattering
process is lTE = lTM − 1; then the scattered light is far detuned
from light specified by the selection rule by �FSR + �GB −
ωm j [magenta solid double arrow in Fig. 1(c)]. However, in
the anti-Stokes scattering process with the selection rule lTE =
lTM + 1, the incident TM light excites the σ+-polarized WGM
and then is scattered into the TE mode light with π polar-
ization by the magnon mode [Fig. 1(b)] which is on-resonant
with the selection-rule-allowed light [the black solid double
arrow in Fig. 1(c)] [50]. Straightforwardly, we can obtain that
for the CCW TM mode input, the light of both Stokes and anti-
Stokes is far detuned by �FSR ± �GB + ωm j [see Fig. 1(c)].
The case of TE mode input can be seen in Ref. [53]. The
above nonreciprocal behavior can be summarized as follows:
for CCW input, there is no effective interaction, while for CW
input, the interaction is a jc

†
j m + H.c., where a j , c j , and mj are

the annihilation operators of the TM, TE, and Kittel modes
[40]. After implementing a strong coherent driving for the
TM mode in each node via SWG with the method shown in
Figs. 1(a) and 1(b), the Hamiltonian of the jth node reads

Hj = ωa ja
†
j a j + ωc jc

†
j c j + ωm jm

†
j m j

+ (
g ja jc

†
j m j +

√
γ d

a jε
∗
j a je

iωd j t + H.c.
)
, (1)

where ωa j (ωc j , ωm j) is the frequency for a j (c j , mj), g j is
the optomagnonic coupling strength, and ε j represents the
coherent driving with the frequency ωd j introduced by SWG
with a coupling rate γ d

a j . Hereafter, we refer to a j (c j ) as the
optical pump (signal) mode.

By coupling the modes a j (c j) to the CWG, the indirect
coupling among different nodes can be reached even if they
are separated by a long spatial distance, and thus the quan-
tum network is established [Fig. 1(a)]. Assuming an adiabatic
coupling between the CWG and YIG spheres, and due to
the orthogonal polarizations of aj and c j , the optical signal
and pump modes interact with photons of different polariza-
tions in the CWG [49]. We consider the case of the optical
pump modes coupling to the CWG. In the frame rotating
with ωd

∑
j a†

j a j (assuming ωd j = ωd ), the Hamiltonians of
the waveguide and the interaction between the CWG and aj

are

Ha
w =

∑
D=L,R

∫
ωba†

D
(ω)ba

D
(ω)dω,

Ha
int = i

∑
D=L,R

N∑
j=1

∫
dω

√
γ a

D j

2π

(
ba†

D
(ω)a je

−iωτD j −iωd t

− a†
j b

a
D
(ω)eiωτD j +iωd t)

, (2)

where ba
D
(ω) (D = L, R) is the annihilation operator for the

left- (L) or right-propagating (R) modes in the CWG with the
same polarization as the optical pump modes, γ a

L(R) j
are

the corresponding coupling strengths, and τD j = x j/vD with
the position x j of the jth node and the left (right) propaga-
tion velocity vL < 0 (vR > 0). By eliminating the waveguide
modes in Hamiltonian (2), we can derive the dynamics
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equation of a j (see Appendix A). When we drive a j from the
right-hand side of the SWG, the optical pump modes circulate
predominantly clockwise and will travel to the right along the
waveguide (see Fig. 1). In addition, due to the nonreciprocal
behaviors caused by the selection rule [Fig. 1(c)], the light
with reverse direction cannot effectively excite optical signal
modes or generate optomagnonic interactions, which cannot
build the desired quantum network. Thus we suppose the
optical pump modes predominantly interact with the right-
propagating mode, i.e., γ a

R j
� γ a

L j
.

Including the coupling of a j to SWG and the intrinsic
dissipation of a j , the dynamics equation for 〈a j〉 is

˙〈a j〉 =
(
−i�a j − γa

2

)
〈a j〉 − ig j〈c jm

†
j 〉 − i

√
γ d

a jεeff, j (3)

with the detuning �a j = ωa j − ωd , total decay rate
γa = κa j + γ d

a j + γ a
L j

+ γ a
R j , intrinsic decay rate κa j ,

and the effective driving for the jth node, εeff, j =
ε j − i√

γ d
a j

∑′
D, j,k

√
γ a

D j
γ a

Dk
〈ak〉eikDx jk [6].

∑′
D, j,k is defined

to denote the sum over j, k, and D, where kD x jk > 0, e.g.,
for D = R, we have x jk > 0. In the strong pump field limit,
neglecting the weak optomagnonic interaction term (g j is
of the order of hertz [40,41,54] and much smaller than
the contribution of optical pumping) and replacing a j with

the steady-state expectation value 〈a j〉ss = i
√

γ d
a jεeff, j

−i�a j−γa/2 , the
effective Hamiltonian of the jth node in the rotating frame
with

∑
j ωd (a†

j a j + c†
j c j ) can be rewritten as

H ′
j = �c jc

†
j c j + ωm jm

†
j m j + Gjc

†
j m j + G∗

j c jm
†
j , (4)

where �c j = ωc j − ωd and the enhanced effective coupling
strength Gj = g j〈a j〉ss. The effective coupling Gj is propor-
tional to the effective driven field εeff, j , which allows us to
generate a time-dependent effective coupling Gj (t ) by slowly
adjusting εeff, j (t ) [6,44]. The time-dependent classical driv-
ing is introduced by coupling YIG spheres with SWGs (see
Fig. 1). Similar to the optical pump modes, the optical signal
modes c j also couple to the CWG; however, c j interacts with
the photons whose polarization direction is perpendicular to
the polarization direction of the optical pumping mode [49].
Although the optical pump modes are dominant in the CWG,
the optical signal modes can still be coupled together through
the CWG.

The master equation to describe the indirect coupling of
modes c j in different nodes is (see Appendix A)

ρ̇ = − i[H ′
node, ρ] +

∑
D

∑
j

γD j

2
D[c†

j , c j](ρ)

−
∑
D, j,k

′√
γD j γDk (e−ikD x jk [ρc†

k , c j] + H.c.), (5)

where H ′
node = ∑

j H ′
j , D[oa, ob](ρ) = 2obρoa − oaobρ −

ρoaob, and γL(R) j is the coupling rate to the left- and
right-propagating modes. The second line in Eq. (5) indicates
the dissipative coupling between different nodes. Due to
the direction of the driving field ε j and the nonreciprocal
scattering, the optical signal photons are mainly coupled to
the right-propagating mode, γR j > γL j . In the following, we
focus on the case of γR j � γL j corresponding to the cascaded

quantum networks. Many proposals for quantum state
transfer are also based on a cascaded quantum network [6,8].
In addition, we analyze the case of a chiral quantum network,
which is important in chiral quantum optics [16,55,56].
Note that the optical signal modes may also couple to SWG
and exhibit intrinsic dissipation, while the magnon modes
also undergo relaxation and pure dephasing [57]. Here, we
temporarily ignore these additional dissipations and will
analyze them in Sec. V.

III. THE REDUCED MASTER EQUATION
OF MAGNON MODES

Because the magnon modes have a long lifetime [39], they
are a good candidate to work as storage qubits. We focus
on transferring a quantum state or generating an entangled
state using the magnon modes as storage qubits. To make the
dynamical behavior of magnon modes tractable, we assume
that the timescale of the optical signal mode c j reaching its
steady state is much shorter than the timescale of the in-
teraction between the optical signal modes and the magnon
modes. Thus the optical signal mode c j can be eliminated
and the effective master equation of magnon modes μ =
trc(ρ) can be derived by Nakajima-Zwanzig project operator
techniques as

μ̇ = −i[Heff , μ] +
∑

jk

S̃ jkD[m†
j , mk](μ), (6)

with S̃ jk = (S jk (ωmk ) + S∗
k j (ωm j ))G∗

j Gk/2. In Eq. (6), we
have assumed a vacuum state for the steady state of c j . For
j = k, the second term in Eq. (6) denotes the individual dis-
sipation induced by the waveguide; if j 
= k, they represent
dissipative coupling induced by the waveguide. The effective
Hamiltonian of the magnon modes is

Heff =
∑

k

{ωmk + |Gk|2Im[Skk (ωmk )]}m†
kmk

− i

2

∑
j 
=k

[S jk (ωmk )G∗
j Gkm†

j mk − H.c.], (7)

describing on-site energy ( j = k) and the nonlocal interac-
tions between magnon modes ( j 
= k), similar to Ref. [58].
The detailed deduction of master equation (6) can be seen
in Appendix B. We would like to point out that the phase
eikDx jk due to the distance x jk between different nodes has been
considered in the coefficients S jk (ω).

The dissipative coupling can also support quantum in-
formation processing, but its function is not so clear to
be understood. By diagonalizing the dissipative part, we
can clearly see the effective dissipation channels induced
by CWG. We can then design appropriate methods to
avoid this dissipation, thus maintaining good quantum coher-
ence. In order to finish that, we introduce the supermodes
mdj = ∑

k Ujkmk with the unitary matrix U . Plugging mj =∑
k U ∗

k jmdk into Eq. (6),

μ̇ = −i[Heff , μ] +
∑

k

DkkD[m†
dk, mdk](μ), (8)
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with D = US̃U † [59]. In Eq. (8), we can see that the su-
permodes mdk couple to the vacuum “reservoirs” with usual
form, which represents an effective dissipative channel. In the
following, we will illustrate how to use the supermodes to
avoid decoherence induced by the CWG.

IV. APPLICATIONS OF THE QUANTUM NETWORK
SUPPORTED BY DARK MODES

In this section, we show transferring an arbitrary quantum
state and generating entangled states of the magnon modes of
different nodes in a quantum network [6,60]. In Sec. IV A, we
take a two-node cascaded quantum network as an example to
illustrate how to avoid decoherence induced by the CWG by
diagonalizing the dissipative part of the master equation. In
Sec. IV B, we show the case in a chiral quantum network.
Finally, in Sec. IV C, we extend the method to an N-node
quantum network. For simplification, in this section, we as-
sume ωm j = �c j = ωm, γR j = γ , and γL j = γL .

A. A two-node quantum network with γL = 0

Assuming kRx21 = 2nπ (n is an integer) and the effec-
tive coupling G1(2) as real, we can calculate the coefficients
S j j (ωm) = 2/γ ( j = 1, 2), S21(ωm) = −4/γ , and S12(ωm) =
0 (see Appendix C for details).

Then the master equation of the magnon modes of the two-
node quantum network can be simplified as

μ̇ = −i[Heff , μ] +
∑

j,k=1,2

S̃ jkD[m†
j , mk](μ), (9)

with the effective Hamiltonian in the rotating frame of
ωm

∑
j=1,2 m†

j m j ,

Heff = 2i

γ
G1G2(m†

2m1 − m†
1m2), (10)

and the matrix

S̃ = 2

γ

(
G2

1 −G1G2

−G2G1 G2
2

)
. (11)

Following what has been discussed in the previous sec-
tion, we diagonalize matrix S̃. It can be found that S̃ has
the eigenvalues 2(G2

1 + G2
2)/γ and 0, and the corresponding

eigenstates are

b = − sin θm1 + cos θm2,

d = cos θm1 + sin θm2,
(12)

with sin θ = G1/�, cos θ = G2/�, and � =
√

G2
1 + G2

2.
Then master equation (9) can be rewritten in the form of
Eq. (8):

μ̇ = −i[Heff , μ] + 2�2

γ
D[b†, b](μ), (13)

where

Heff = i�2

γ
sin 2θ (b†d − d†b). (14)

See Eq. (13). The supermode b couples to an equivalent vac-
uum reservoir which leads to the dissipation of the system;

meanwhile, the supermode d decouples from the vacuum
reservoir. We refer to the supermode b as a bright mode and
the supermode d as a dark mode [6]. However, due to the
effective swap interaction [see Hamiltonian (14)], the dark
mode d could be converted into the bright mode b, which
will also induce the dissipation for supermode d . Hence, we
need to find a way to inhibit the conversion from the dark
mode d to the bright mode b. In the following, we would like
to design the time-dependent control fields G1(t ) and G2(t )
[equivalently �(t ) and θ (t )] to prevent the swap between the
bright and dark modes.

We know that the Fock basis of magnon modes
mj is |nm1 , nm2〉 = 1√

nm1 !nm2 !
m

†nm1
1 m

†nm2
2 |0m1 , 0m2〉. For

the supermodes b and d , we define |nd (t ), nb(t )〉 =
1√

nd !nb!
[d (t )]†nd [b(t )]†nb |0d , 0b〉 with |0d , 0b〉 = |0m1 , 0m2〉

[29]. Then we assume the initial state of the network is
|ψ (0)〉 = ∑

nd
cnd (0)|nd (0), 0b〉 with

∑
nd

|cnd (0)|2 = 1,
which meets b|ψ (0)〉 = 0. If the state during evolution is
maintained as |ψ (t )〉 = ∑

n cnd (t )|nd (t ), 0b〉, the system will
only undergo a unitary evolution. That is, the evolution of the
state |ψ (t )〉 satisfies the Schrödinger equation

i
∂|ψ (t )〉

∂t
= i

∑
nd

ċnd (t )|nd (t ), 0b〉 + i
∑

nd

cnd (t )
∂|nd (t ), 0b〉

∂t

= Heff |ψ (t )〉, (15)

with ∂|nd (t ),0b〉
∂t = 1√

nd !
∂[d (t )]†nd

∂t |0d , 0b〉. Using relation (12), we

have ḋ = θ̇b. Considering d†b|nd (t ), 0b〉 = 0, we obtain

i
∂|nd (t ), 0b〉

∂t
= iθ̇ (b†d − d†b)|nd (t ), 0b〉. (16)

Then we have

i
∑

nd

ċnd (t )|nd (t ), 0b〉 = [Heff − iθ̇ (b†d − d†b)]|ψ (t )〉. (17)

Assuming ċnd = 0, we have

θ̇ = �2(t )

γ
sin 2θ. (18)

If the control field �(t ) and θ (t ) meet Eq. (18), in the pro-
cess of evolution, the state of the network will be |ψ (t )〉 =∑

nd
cnd (0)|nd (t ), 0〉d . In order to solve the differential equa-

tion, we first let x = cos 2θ , and we have

ẋ + 2
�2(t )

γ
(1 − x2) = 0. (19)

The trivial solution of the differential equation is x = 1. The
nontrivial solution is

x = 1 − e4η(t )+y0

1 + e4η(t )+y0
, (20)

with �(t ) = �2(t )/γ and η(t ) = ∫ t
0 �(t ′)dt ′, where y0 is re-

lated to the initial condition. Finally, we have the control field
G1,2:

G1 = ±�
√

(1 − x)/2,

G2 = ±�
√

(1 + x)/2. (21)
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FIG. 2. (a) The designed pulse G1(2)(t ). The inset in (a) shows
the time to complete a quantum state transfer versus �̃/γ . (b) The
evolution of the fidelity, where the red solid line and blue circle
correspond to the dynamical evolution governed by Eqs. (5) and
(9), respectively. (c) The fidelity of transferring the cat state |α+〉
using the time-varying couplings G1(2) in (a) (red solid line) and the
constant couplings G1 = G2 = �̃ (dashed blue line). (d) The expec-
tation value 〈b†b〉 corresponding to (c), and the probability P00 =
〈0m1 , 0m2 |μ|0m1 , 0m2 〉 when G1(2)(t ) = �̃ (the left y coordinate). The
parameters are �̃ = 0.15γ , α = 2, y0 = −9, and ymax = 10.

Now we are in the position to illustrate the quantum state
transfer by using the control fields (21). We find that d → m1

when θ → 0, and d → m2 when θ → π/2. Based on condi-
tion (18), the state of the network is

|ψ (t )〉 =
∑

nd

cnd (0)|(nd )m1 , 0m2〉(θ = 0)

=
∑

nd

cnd (0)|0m1 , (nd )m2〉(θ = π/2). (22)

Hence an arbitrary quantum state of the first node m1 can
be transferred to the second node m2 if the control field
θ (t ) satisfies the conditions θ (t = 0) → 0 and θ (t → ∞) →
π/2. Because the condition θ (t = 0) → 0 requires x(t =
0) = (1 − ey0 )/(1 + ey0 ) → 1, we need to set y0 → −∞ (in
the actual calculation, y0 can be set to, for example, −9).
The choice of �(t ) is not unique and here we set a simple
control field; that is, �(t ) = �̃ is time independent. And in
order to complete the quantum state transfer (θ → π/2), the
condition 4�t + y0 = ymax → ∞ is required (in simulation,
the fidelity can usually be greater than 0.99 when we set
ymax = 10). Then the total duration to complete the state trans-
fer is γ t = ymax−y0

4(�/γ )2 , which means as �̃/γ increases, the time
to complete a quantum state transfer decreases dramatically as
shown in the inset in Fig. 2(a). Due to the intrinsic dissipation
in magnon modes, we expect a shorter duration (see Sec. V),
i.e., a larger �̃. However, �̃/γ cannot be too large in order to

ensure the validity of master equation (6). The exact values for
�̃, and the pulse shapes G1(2) are shown in Fig. 2(a). Now we
show the quantum state transfer from the first node to the sec-
ond node, using the time-dependent functions G1(2) designed
in Fig. 2(a), that is, |ψ〉m1 ⊗ |0〉m2 → |ψtar〉 = |0〉m1 ⊗ |ψ〉m2

with arbitrary states |ψ〉m j . From Eq. (5), after a long enough
time evolution, the two optical signal modes are in a vac-
uum state. Thus for Eqs. (9) and (5), we define the fidelity
F = 〈ψtar|ρ|ψtar〉 and F = 〈0c1, 0c2|〈ψtar|ρ|ψtar〉|0c1, 0c2〉, re-
spectively. In Fig. 2(b), by using Eqs. (9) and (5), we plot the
fidelity of transferring a qubit state |ψq〉m1 =〉1/

√
2(|0〉m1 +

|1〉m1 ) with the initial state of the vacuum state |0c1 , 0c2〉 in
the optical signal mode c j . As we can observe, the fidelity
can reach 1, which illustrates that the pulse shapes obtained
above can implement the deterministic quantum state transfer,
and the fidelity of Eq. (5) agrees well with that of Eq. (9),
which implies the validity of the effective master equation (9).
Notably, in Fig. 2(b), we have assumed kRx21 = 2nπ . When
kRx21 
= 2nπ , by the substitution G2 → G2eikRx21 , the phase
in coefficient S21(ωm) = 2eikRx21/γ can be canceled out. Then
the matrix S̃ and the effective Hamiltonian are exactly the
same as in the case of kRx21 = 2nπ , for instance, S̃21 = S̃∗

12 =
−2eikRx21 G1[G2eikRx21 ]∗/γ = −2G1G2/γ . We can generalize
this conclusion to an N-node cascaded network; by the sub-
stitution of Gj with GjeikRx j1 , the phase eikRx jk in S jk (ωm) can
also be canceled out. Therefore, for arbitrary phase eikRx jk , the
deterministic quantum state transfer can also be implemented.

The control fields obtained above can be used to transfer
not only a two-level state but also the continuous-variable
state, e.g., a cat state. As it is shown in Refs. [5,7,61,62],
cat states can be employed to reduce errors of quantum
state transfer based on quantum error correction codes. In
Fig. 2(c) we plot the fidelity for transferring a cat state |α+〉 =
1/A+(|α〉 + | − α〉) using the time-varying coupling G1(2)(t )
designed in Fig. 2(a) and the constant couplings G1(t ) =
G2(t ) = �̃, respectively. In Fig. 2(d), we plot the expectation
value 〈b†b〉 corresponding to Fig. 2(c). As we can observe
from Figs. 2(c) and 2(d), with the time-varying couplings, the
fidelity reaches 1, while the expectation value 〈b†b〉 remains
zero, which means no population in bright mode b. Thus
the bright mode really is not involved in the process of the
state transfer, and the decoherence is avoided; in this way the
deterministic quantum state transfer can be implemented. In
contrast, with the constant couplings G1(2), there is a popula-
tion in bright mode b, then the dissipation channel inevitably
affects the quantum state transfer, and the corresponding fi-
delity is finally almost zero, from Fig. 2(c). Meanwhile, from
Fig. 2(d) the probability P00 of the vacuum state |0m1 , 0m2〉
increases gradually and finally to 1. This implies that the state
of the magnon modes is eventually a vacuum state, while the
optical photon will be released from the right output channel
[6,14,63]. Thus, without the right control shapes, the dark
mode will also dissipate through the bright mode.

In addition to transferring a quantum state, the entangled
state can be generated by designing the coupling G1(2) based
on Eq. (18). We set the control field θ (t ) to meet θ (t =
0) → 0 and θ (t → ∞) → π/4. If the initial state |ψ (0)〉 =
|1m1 , 0m2〉, the final state |ψ (t → ∞)〉 = 1/

√
2(|1m1 , 0m2〉 +

|0m1 , 1m2〉) will be a Bell state |�+〉. As another exam-
ple, if the initial state of the first node is a cat state |α+〉,
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FIG. 3. (a) The pulse shapes of G1(2) of generating entangled
states. (b) The evolution of the fidelity for generation of the Bell state
|�+〉 (red solid line) and entangled cat state |ψe,c〉 (blue dashed line).
The parameters are the same as in Fig. 2.

the entangled cat state |ψe,c〉 = 1/A+(|( α√
2

)m1 , ( α√
2

)m2〉 +
|(− α√

2
)m1 , (− α√

2
)m2〉) can be obtained. The control field �(t )

satisfying the condition θ (t → ∞) → π/4 is not unique.

Here we set �(t ) = �̃e−ζ t2/2 with ζ = ( 2�̃2√π

−γ y0
)2. The corre-

sponding pulse shapes G1(2)(t ) can be seen in Fig. 3(a). In
Fig. 3(b), using master equation (9), we plot the fidelity for
generation of a Bell state |�+〉 and an entangled cat state
|ψe,c〉. As one can observe from Fig. 3(b), the fidelity reaching
1 indicates that the Bell state and entangled cat state can be
generated.

The generation of the initial cat state in the first node can be
seen in Appendix D. Our approach assumes that the magnon
mode and superconducting qubit couple simultaneously to a
microwave cavity. The odd and even cat states can be obtained
by projecting the qubit state to the upper-level and lower-level
states, respectively. It is noteworthy that several proposals
have been put forward to generate magnon cat states in cavity
magnonic systems. For example, the cat states can be obtained
via the magnon-photon entanglement described in Ref. [45], a
nonlinear radiation-pressure interaction outlined in Ref. [64],
and magnon squeezing presented in Ref. [28]. These alterna-
tive proposals also can be employed for generating the initial
cat state in the first node. In the field of cavity magnonics, the
generation of the Bell state has also been explored through
dissipative cavity-magnon coupling [65]. However, our pro-
posal distinguishes itself by enabling the generation of the
Bell state of distant YIG spheres.

B. A two-node quantum network with γL �= 0

In this section, we consider a chiral quantum network with
γL 
= 0 and kDx jk = 2nπ [15]. In this case we still require that
the timescale of the magnon-photon interaction is much larger
than that of c j reaching steady state, so that the optical signal
modes can be eliminated. However, the timescale of c j reach-
ing steady state is related with γL . We consider the dynamical
equation for c j satisfying v̇1 = A1v1 with v1 = [〈c1〉, 〈c2〉]T

(A1 can be seen in Appendix C). Then the timescale to reach
the steady state for mode c j is related to the maximum real
part of the eigenvalues of the drift matrix A1. In Fig. 4(a),
we plot the real parts of the eigenvalues of A1. We find
that with the increase of γL /γ , the maximum real part of
the eigenvalues (red solid line) gradually increases, which

FIG. 4. (a) The real parts of the eigenvalues of the matrix A1 for
N = 2 (see Appendix C). (b) The fidelity of transferring the state
|ψq〉m1 by using Eq. (5) with �̃ = 0.075γ (red solid line) and 0.15γ

(blue dashed line). In (b), we set γL = 0.5γ . The other parameters
are the same as in Fig. 2.

means that the optical signal mode c j needs more time to
reach the steady state. Compared to the case of γL = 0, in
order to ensure the validity of Eq. (6), we should reduce the
strength of Gj .

The master equation of a two-node chiral quantum network
has the same form as Eq. (9) with the effective Hamiltonian

Heff = 2i

γ − γL

G1G2(m†
2m1 − m†

1m2), (23)

and S̃11(22) = 2G2
1(2)(γL + γ )/(γ − γL )2 and S̃21 = S̃12 =

−2G1G2(γL + γ )/(γ − γL )2 (see Appendix C).
Following similar procedures as in the previous section, we

can obtain a differential equation similar to Eq. (18),

θ̇ = �2

γ − γL

sin 2θ. (24)

The difference between Eq. (24) and Eq. (18) is just the
substitution γ → γ − γL . Hence, similar to Fig. 2(a), by set-
ting �(t ) = �̃, we can obtain the corresponding G1(2) from
Eq. (24).

In Fig. 4(b), we plot the fidelity for transferring the state
|ψq〉m1 with the control fields of �̃ = 0.075γ and 0.15γ by
using Eq. (5). We find that for the larger �̃ = 0.15γ , the
fidelity cannot reach 1; in contrast, when �̃ = 0.075γ , the
fidelity can reach 1. That is consistent with our analysis that
a smaller Gj is required to ensure the validity of Eq. (6).
Additionally, it should be pointed out that when kDx jk 
= 2nπ

in the two-node chiral quantum network, the dark mode does
not exist, thus the quantum state transfer cannot be achieved.
To conclude, in a chiral quantum network, the quantum state
transfer can also be achieved similarly to the case of γL = 0.

C. Entangled state generation in an N-node quantum network

Multipartite entangled states play a crucial role in quantum
information processing [66,67]. And the ability to entangle
multiple nodes in quantum networks is also very essential
[1,63]. Here we show how to generate an entangled state
in a quantum network containing N nodes by extending the
approach above. The master equation of an N-node network
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can be simplified as

μ̇ = −i[Heff , μ] +
N∑

j,k=1

S̃ jkD[m†
j , mk](μ), (25)

where kRx jk = 2nπ (n is an integer), with the matrix S̃,

S̃ jk = 2

γ
(−1)| j−k|GjGk, (26)

and the effective Hamiltonian

Heff = −2i

γ

N∑
j>k

(−1) j−kGjGk (m†
j mk − H.c.). (27)

Next, we diagonalize the matrix S̃. We consider that the
dimension of S̃ is N = 2M for an integer M. The case of N 
=
2M will be discussed later. To determine the eigenmodes, we
begin by defining the auxiliary modes

b1,l1 = − sin θ2M−1,l1 m2l1−1 + cos θ2M−1,l1 m2l1 ,

b j,l j = sin θ2M− j ,l j
b j−1,2l j−1 + cos θ2M− j ,l j

b j−1,2l j ,
(28)

with j = 2, 3, . . . , M − 1 and l j = 1, 2, . . . , 2M− j

(similar to below), and the coefficients G2l1−1 =
�2M−1,l1 sin θ2M−1,l1 , G2l1 = �2M−1,l1 cos θ2M−1,l1 , �2M−n+1,2ln−1 =
�2M−n,ln sin θ2M−n,ln , �2M−n+1,2ln = �2M−n,ln cos θ2M−n,ln with
n = 2, 3, . . . , M. Then the dark modes corresponding to the
degenerate eigenvalue of 0 in matrix S̃ are given by

d1,l1 = cos θ2M−1,l1 m2l1−1 + sin θ2M−1,l1 m2l1 ,

dk,lk = cos θ2M−k ,lk bk−1,2lk−1 − sin θ2M−k ,lk bk−1,2lk ,
(29)

with k = 2, 3, . . . , M. The bright mode corresponding to a

nondegenerate eigenvalue of
2�2

1,1

γ
in matrix S̃ is

bM,1 = sin θ1,1bM−1,1 + cos θ1,1bM−1,2. (30)

For the case N 
= 2M , the eigenvalues and eigenmodes can
be obtained by setting the corresponding Gj = 0 ( j = N +
1, N + 2, . . .). For instance, in order to obtain the eigenvalues
and eigenmodes for the case of N = 3, we first set M = 2.
Then by setting G4 = 0 (equivalently θ2,2 = π/2), the corre-
sponding eigenmodes can be obtained:

d1,1 = cos θ2,1m1 + sin θ2,1m2,

d2,1 = cos θ1,1(− sin θ2,1m1 + cos θ2,1m2) + sin θ1,1m3,

b2,1 = sin θ1,1(− sin θ2,1m1 + cos θ2,1m2) − cos θ1,1m3,

(31)

with G1 = �2,1 sin θ2,1, G2 = �2,1 cos θ2,1, G3 = �1,1 cos
θ1,1, and �2,1 = �1,1 sin θ1,1. And the effective Hamiltonian
in the basis of the supermodes is

Heff = i�2
1,1

γ
{− sin 2θ1,1(b†

2,1d2,1 − b2,1d†
2,1)

+ sin2 θ1,1 sin 2θ2,1[cos θ1,1(d†
2,1d1,1 − d†

1,1d2,1)

+ sin θ1,1(b†
2,1d1,1 − d†

1,1b2,1)]}. (32)

FIG. 5. (a) The pulse shapes of G1(2,3) for generating the W state
of N = 3 with γL = 0. (b) The evolution of the fidelity of generating
the W state for N = 3 (red solid line) and N = 5 (green dash-dotted
line) in a cascaded quantum network. And the blue dashed line shows
the fidelity for the case of generating the W state for γL = 0.5γ and
N = 3 with �̃ = 0.075γ . The other parameters are the same as in
Fig. 2.

Following the same procedures as in the previous section,
the control fields θ1,1 and θ2,1 should satisfy

θ̇1,1 = �2
1,1

γ
sin 2θ1,1,

θ̇2,1 = �2
1,1

γ
sin2 θ1,1 sin 2θ2,1. (33)

We write x1 = cos 2θ1,1 and x2 = cos 2θ2,1; then the nontrivial
solution of the differential equations is ( j = 1, 2)

x j = 1 − e4η j (t )+y0 j

1 + e4η j (t )+y0 j
, (34)

with η j (t ) = ∫ t
0 � j (t ′)dt ′, �1(t ) = �2

1,1(t )/γ , and �2(t ) =
�2

1,1(t ) sin2 θ1,1(t )/γ .
Next we would like to generate a W state by designing

the control fields G1(2,3) from Eq. (33). We assume the initial
state |ψ (0)〉 = |1m1 , 0m2 , 0m3〉. And due to m1 = cos θ2,1d1,1 −
sin θ2,1(cos θ1,1d2,1 + sin θ1,1b2,1), in order to ensure no pop-
ulation in the bright mode b2,1, we set θ1,1(0) → 0. Then
at t → ∞, the state is |ψ (t → ∞)〉 = cm1 |1m1 , 0m2 , 0m3〉 +
cm2 |0m1 , 1m2 , 0m3〉 + cm3 |0m1 , 0m2 , 1m3〉 with cm1 = ci

2,1c f
2,1 +

si
2,1c f

1,1s f
2,1, cm2 = ci

2,1s f
2,1 − si

2,1c f
1,1c f

2,1, and cm3 = −si
2,1s f

1,1,
and the coefficients si

2,1 = sin[θ2,1(0)], ci
2,1 = cos[θ2,1(0)],

s f
1,1 = sin[θ1,1(∞)], c f

1,1 = cos[θ1,1(∞)], s f
2,1 = sin[θ2,1(∞)],

and c f
2,1 = cos[θ2,1(∞)]. We find that when θ1,1,(2,1)(t ) sat-

isfies si
2,1 =

√
2
5 , ci

2,1 =
√

3
5 , s f

1,1 = −
√

5
6 , c f

1,1 =
√

1
6 , s f

2,1 =
2√
5
, and c f

2,1 =
√

1
5 , the W state (cm1 = cm2 = cm3 = 1/

√
3)

can be obtained.
We set �1,1(t ) = �̃e−ζ t2/2 with ζ = ( 2�̃2√π

γ (ln5−y0 )
)2 to meet

the above conditions. The corresponding effective coupling
G1(2,3) can be seen in Fig. 5(a). And in Fig. 5(b), we plot
the fidelity of generating the W state for three nodes. The
fidelity reaching 1 illustrates that the W state is obtained.
In addition, using the control fields designed in Fig. 5(a),
when the initial state is |ψ (t = 0)〉 = |2m1 , 0m2 , 0m3〉, the final
state is, as shown in Ref. [68], a tripartite high-dimensional
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entangled state |ψ (t → ∞)〉 = 1
3
√

2
(
√

2|2m1 , 0m2 , 0m3〉 +√
2|0m1 , 2m2 , 0m3〉 + √

2|0m1 , 0m2 , 2m3〉 + 2
√

3|D3
2〉) with the

Dicke state |D3
2〉 = 1/

√
3(|1m1 , 1m2 , 0m3〉 + |0m1 , 1m2 , 1m3〉 +

|1m1 , 0m2 , 1m3〉) [69]. And the Dicke state |D3
2〉 can be

concentrated by the approach presented in Ref. [63]. The
method of generating the three-node W state can easily be
extended to more nodes; as an example, in Fig. 5(b) we show
the generation of a W state with five nodes (green dash-dotted
line), and the differential equations for five nodes can be seen
in Appendix E. These demonstrate the ability of the quantum
network to generate multinode entanglement.

Next, we show that the W state can also be generated in a
chiral three-node quantum network γL 
= 0 and kDx jk = 2nπ .
From Appendix C, we have S̃ j j = 2G2

j/(γ + γL )
( j = 1, 2, 3), S̃12 = S̃21 = −2G1G2/(γ + γL ), S̃13 = S̃31 =
2G1G3/(γ + γL ), S̃23 = S̃32 = −2G2G3/(γ + γL ), and the
effective Hamiltonian Heff = 2i/(γ − γL )(G1G2m†

2m1 −
G1G3m†

3m1 + G2G3m†
3m2 − H.c.). By following the same

procedure, we can obtain the differential equations for θ1,1

and θ2,1, which is just a substitution γ → γ − γL in Eq. (33).
Hence the effective coupling G1(2,3) in this case can be
determined in a similar manner as described in the previous
paragraph. And in Fig. 5(b), we plot the fidelity of generating
the W state in the chiral quantum network by using Eq. (5).
The fidelity also can reach 1, which illustrates that the W state
can be generated in the chiral quantum network.

V. THE IMPERFECTIONS

In practice in the experiment, there are some imperfections
which were not included in the previous discussion. We now
focus on two types of imperfections. The first one is frequency
mismatch. In the previous discussion, we assumed that the
frequencies of magnon modes mj and the detuning of optical
signal modes c j were the same: ωm j = �c j = ωm. However,
when these frequencies do not match, the decoherence
induced by the waveguide cannot be avoided, because the
dark mode may not exist or the conversion between
the bright mode and dark mode cannot be prohibited.
So the frequency mismatch will reduce the fidelity of
quantum state transfer. In addition, the relaxation and
pure dephasing for magnon modes [57] and the additional
dissipation for optical signal modes due to coupling
to the SWG and intrinsic dissipation also can disrupt
the dark modes, leading to a decrease in fidelity. After
including these dissipations, the following terms need
to be added to master equation (5):

∑
j

κc j

2 D[c j, c†
j ]

(ρ) + ∑
j

κm j

2 {(nth
m, j + 1)D[mj, m†

j ](ρ)+nth
m, jD[m†

j , mj](ρ)} +∑
j κ

ph
m jD[nm j, nm j](ρ), where nm j = m†

j m j , κc j is the addition

decay rate of optical signal modes, κm j and κ
ph
m j are the

relaxation and pure dephasing rates of the magnon modes, and
nth

m, j is thermal magnon number. In this section, we focus on a
two-node cascaded quantum network and assume that the low-
temperature condition leads to nth

m j ≈ 0. Considering the two
imperfections and assuming κc j = κc, κm j = κm, γR j = γ , and

κ
ph
m j = κ

ph
m , the coefficients become S j j (ωm j ) = 1

i(�c j−ωm j )+γ̃ /2

( j = 1, 2), S21(ωm1) = − γ

[i(�c,1−ωm1 )+γ̃ /2][i(�c,2−ωm1 )+γ̃ /2] ,

FIG. 6. (a) The evolution of the fidelity with ωm1 − ωm2 =
0.035γ and �c j = ωm j . (b) The maximum fidelity versus ωm1 − ωm2

for ωm2 = 50γ (red solid line) and 10γ (green dots), when �c j =
ωm j . The inset shows the maximum fidelity versus �c j − ωm j with
ωm1 = ωm2. In (a) and (b), we set κc = κm = κph

m = 0. (c) The maxi-
mum fidelity versus γc with κm = κph

m = 0. (d) The maximum fidelity
as functions of κm with κph

m = 0 (red solid line), κph
m = 2 × 10−4γ

(blue dashed line), and κph
m = 2 × 10−3γ (green dash-dotted line)

when κc = 0.02γ . In (c) and (d), we set ωc j = �c j , and ωm1 = ωm2.
Except for the green dots in (b), we set ωm2 = 50γ . The other
parameters are the same as in Fig. 2.

S12(ωm2) = 0, with γ̃ = γ + κc when kRx21 = 2nπ .
The effective master equation of magnon modes is
written as

μ̇ = − i[Heff , μ] +
∑

j,k=1,2

S̃ jkD[m†
j , mk](μ)

+
∑
j=1,2

κm

2
D[mj, m†

j ](μ) + κph
m D[nm j, nm j](μ), (35)

where Heff can be calculated by Eq. (7).
In Fig. 6, using Eq. (35), we plot the fidelity of transferring

state |ψq〉m1 under the influence of the aforementioned imper-
fections. Note that Figs. 2 through 5 show the fidelity in the
frame rotating with ωm

∑
j m†

j m j ; however, in Fig. 6 we plot
the fidelity in the original frame, due to the existence of fre-
quency mismatch. As we can observe from Fig. 6(a), fidelity
exhibits rapid oscillation, and the maximum fidelity cannot
reach 1, due to the frequency mismatch. From Fig. 6(b), we
find that as the degree of frequency mismatch ωm1 − ωm2

increases, the fidelity gradually decreases, while the mag-
nitude of ωm2/γ does not affect the fidelity, by comparing
the red solid line and green dots. That implies the fidelity
is mainly affected by frequency mismatch rather than the
magnitude of frequency. Additionally, the fidelity is found to
be insensitive to �c j − ωm j . Figures 6(c) and 6(d) illustrate
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that increasing these dissipation rates κc, κm, and κ
ph
m leads

to a decrease in maximum fidelity. Therefore, achieving high-
fidelity quantum state transfer requires small dissipation rates
(i.e., κc, κm, κ

ph
m � γ ) as well as a small frequency mismatch.

VI. DISCUSSION AND CONCLUSION

A number of researches have been reported to achieve
quantum state transfer and entangled state generation by
using a time-varying coupling in a cascaded quantum system
[4–7,13,63]. In Refs. [4,6], time-dependent control pulses
were proposed to transfer a quantum state from one qubit
to the next by considering the dark state condition and
time-reverse property in the context of quantum trajectories.
In Refs. [7,10,13], the conditions and control pulses for
transferring a quantum state of oscillators were presented.
We would like to highlight that in Ref. [7] the condition
for vanishing output fields is equivalent to Eq. (18). In
Ref. [63], a protocol for state generation in a multinode
cascaded quantum network was proposed. Compared to
these proposals, our proposal starting from diagonalizing the
dissipative part of the master equation and using the dark
modes to avoid the decoherence induced by the CWG not
only demonstrates the ability to transfer a quantum state,
but also can be easily used to implement the generation of
entangled states in a quantum network. Furthermore, our
scheme is not limited to two-node quantum networks and
can be easily extended to N-node cases. In addition, based
on our method, the condition to transfer a quantum state in a
chiral quantum network (γL 
= 0) without strictly requiring a
cascaded quantum network (γL = 0) can be easily obtained.

Now we discuss how to detect magnon states. Previous
experiment [27] has shown that the state of magnons can be
measured by measuring the qubit entangled with the magnon.
Here we describe a possible method to detect the Bell state
of magnon modes in quantum networks. We assume mode m2

is coupled to an assistant detection qubit with the effective
Hamiltonian H eff

de = gdem†
2m2σz, which can be achieved by

coupling the magnon, qubit, and microwave cavity [27]. We
now consider that the detected state of the magnon modes
of the two-node quantum network is c10|10〉 + c01|01〉 and
the qubit is prepared in ground state |g〉. First, we apply a
π
2 pulse to the qubit (|g〉 → 1√

2
(i|e〉 + |g〉)). Next, we let the

qubit interact with m2 through H eff
de , and the state becomes

1
2 [c10|10〉(i|e〉 + |g〉) + c01|01〉(ie−iφde (t )|e〉 + eiφde (t )|g〉)] with
φde = gdet . Then, we apply another π

2 pulse to the qubit, and
the state is

i√
2

[(c10|10〉 + c01 cos φde|01〉)|e〉 + c01 sin φde|01g〉]. (36)

When we choose φde = n π
2 with an integer n, the final state

is c10|10e〉 ± c01|01g〉, where the qubit states and the magnon
state are entangled. Finally, we measure the state of the qubit
|e(g)〉 to determine the coefficients c10(01). Similarly, to de-
tect the W state, we assume that m2 and m3 couple to two
separate qubits. Following a similar procedure as above, the
final state is c100|100ee〉 + c010|010ge〉 + c001|001eg〉 by set-
ting proper interaction time. Hence the W state can also be
detected by measuring qubit states. The detection of qubits

and the dispersive coupling between qubit and magnon mode
were demonstrated in Ref. [27]. Additionally, there are other
ways to measure the magnon state. For example, in Ref. [26],
magnon states are characterized by the Wigner tomography,
and the density matrix can also be reconstructed by Wigner
tomography. The Wigner tomography can also be used to
detect cat states obtained in Sec. IV A. And further research
is needed to explore more effective methods for detecting
magnon states.

Recently, many experiments with optomagnonic systems
have been demonstrated [50,54], especially in the coherent
conversion of microwave to optical photons [40–43]. In the
experiments involving coupling of magnons and WGMs, the
optomagnonic coupling g j/2π is typically on the order of a
few hertz, such as 1 Hz in Ref. [51], 5.4 Hz in Ref. [54], and
10.4 Hz in Ref. [40]. By driving the optical pumping modes,
for instance, the TM polarization light in the experiment in
Ref. [40], the effective coupling Gj is about 73 kHz and is
promising to reach the 10 MHz level, while the desired control
pulses can be generated by modulating the strength and phase
of the driving fields of optical pumping modes. And some
improvements such as scaling down the sphere size to reduce
the mode volumes [40] can further enhance the optomagnonic
coupling; thus it is hoped that effective coupling will meet the
requirements of our proposal in the near future. Additionally,
in experiments [54], the external coupling γ ≈ 400 MHz with
the quality factor is about 105, i.e., κc > γ , which does not
satisfy the requirements of the proposal [Fig. 6(c)]. However,
after careful surface treatment in experiment [40], the quality
factor can be improved to Q ≈ 106 and thus γ > κc which is
clearly close to the requirements of our propose. The addi-
tional dissipation can further reduced by, for example, prop-
erly polishing and chemically processing the WGM resonator
of the YIG spheres [40,54]. In addition, the relaxation rate κm

of magnon modes in YIG spheres, which is typically on the
order of megahertz [18,33,70] and can even be much smaller
than 1 MHz in low temperature [21], satisfies the requirements
κm � γ for quantum state transfer. The pure dephasing κ

ph
m

can also be suppressed at low temperature [57]. Therefore, the
quantum network node needs to be kept at a low temperature
to achieve a smaller κm and κ

ph
m , which leads to higher fidelity.

In this paper, we present a scheme for building a quantum
network based on optomagnonic systems and propose a
protocol to achieve quantum state transfer and entangled state
generation. First we derive the effective master equation of
magnon modes by eliminating the waveguide and optical sig-
nal modes, which establishes the dissipative coupling among
different nodes. Then we diagonalize the dissipative part of
the master equation and design the control fields by consider-
ing the dark modes. We show that the deterministic quantum
state transfer and the generation of the Bell state and entangled
cat state can be achieved in a two-node cascaded or chiral
quantum network. Meanwhile, we show that a W state can
also be generated in three- and five-node quantum networks.
Finally, we consider some imperfections in experiments such
as frequency mismatch and intrinsic dissipation and find
that a small frequency mismatch is important for achieving
the high-fidelity quantum state transfer. Therefore, our
scheme is meaningful for achieving quantum networks based
on magnonics.
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APPENDIX A: ELIMINATING THE WAVEGUIDE MODES

In this Appendix, we give the dynamics equation to de-
scribe optical pump (signal) modes coupling to the CWG
[16,71]. From Hamiltonian (2), we have

ḃa
D
(ω) = −iωba

D
(ω) +

∑
j

√
γ a

D j

2π
a je

−iωτD j −iωd t
, (A1)

and for any operator a in the system, we have

ȧ = i[Hnode, a] −
∑

D

∑
j

√
γ a

D j

2π

∫
dω

[
ba†

D
[a j, a]

× e−iωτD j −iωd t − [a†
j , a]ba

D
eiωτD j +iωd t]

, (A2)

with Hnode = ∑
j Hj . Then we have

ȧ = i[Hnode, a] −
∑
D, j

√
γ a

D j

{
bin†

D,a

(
t − x j

vD

)
[a j, a]

× e−iκD x j − [a†
j , a]bin

D,a

(
t − x j

vD

)
eikD x j

}

−
∑
D, j,k

√
γ a

D j
γ a

Dk

{
a†

k

(
t − x jk

vD

)
[a j, a]e−ikD x jk

− [a†
j , a]ak

(
t − x jk

vD

)
eikD x jk

}
θ

(
x jk

vD

)
, (A3)

where we define bin
D,a

(t ) = 1√
2π

∫
dωe−i(ω−ωd )t ba

D
(ω, 0), x jk =

x j − xk , τD, jk = τD, j − τD,k , kD = ωd/vD , and θ (z) via θ (z) = 1
for z > 0, θ (z) = 1/2 for z = 0, and θ (z) = 0 for z < 0. In
Eq. (A3), the retardation effect can be neglected when the
timescale of the system evolution is much larger than that
of the photon propagation in the waveguide, i.e., |τD, jk | �
{1/γD j, 1/Gj}. That is to say, we can make the following
approximation: a j (t − x jk

vD
) ≈ a j (t ) [16].

Similarly, the Heisenberg-Langevin equation of c j cou-
pling to the CWG can be determined, and we will not go into
detail. By using trc(ȧρ) = trc(aρ̇ ) and assuming the bath is in
a vacuum initially, the master equation form can be obtained
[see Eq. (5)].

APPENDIX B: THE REDUCED MASTER
EQUATION OF MAGNON MODES

In this Appendix, we employ Nakajima-Zwanzig project
operator techniques to derive the master equation of magnon
modes. From Eq. (5), the nonunitary dynamical evolution of
the system can be rewritten as

ρ̇ = Lρ, (B1)

with the Liouville operator L = Lc + Lm + Li, where

Lcρ = − i

⎡⎣∑
j

�c jc
†
j c j, ρ

⎤⎦ +
∑

D

∑
j

γD j

2
D[c†

j , c j](ρ)

−
∑
D, j,k

′√
γD j γDk (e−ikD x jk [ρc†

k , c j] + H.c.),

Lmρ = − i

⎡⎣∑
j

ωm jm
†
j m j, ρ

⎤⎦,

Liρ = − i

⎡⎣∑
j

G jc
†
j m j + G∗

j c jm
†
j , ρ

⎤⎦. (B2)

The projection operator P takes action on the density ma-
trix, leading to Pρ = trc(ρ) ⊗ ρc, where trc is the partial
trace of the optical signal modes, and ρc is the steady-state
density matrix of the optical signal modes. The operator P
and the complementary operator Q = 1 − P have the prop-
erties P2 = P , Q2 = Q, PQ = QP = 0. To derive a simple
reduced density matrix equation, we need the following rela-
tionships:

PLc = LcP = 0,

PLm = LmP,

PLiP = 0. (B3)

The first relation results from the trace-preserving Liouville
operator trc(Lcρc) = 0, and the steady state of the optical
signal modes Lcρc = 0. The second relation is true because
the projection operator has no effect on the space of the
magnon modes. The third is based on the assumption that the
first-order moments for the steady state of the optical signal
modes are zeros; it is obviously valid if the optical signal
modes are in vacuum states. We start from the equations

P ρ̇ = PLPρ + PLQρ,

Qρ̇ = QLPρ + QLQρ. (B4)

Solving the second of Eqs. (B4) and inserting the solution into
the first of Eqs. (B4), we have

P ρ̇ = PLmPρ + PLi

∫ t

t0

dsG(t, s)QLiPρ(s), (B5)

where G(t, s) = T←e
∫ t

s QL(u)du with the chronological time
ordering T← and it satisfies ∂G(t, s)/∂t = QLG(t, s). In
Eq. (B5), we have assumed Qρ(t0) = 0 owing to a factor-
izing initial state ρ(t0) = trc(ρ(t0)) ⊗ ρc(t0). The equation
can further be simplified by preserving the lowest-order ex-
pansion in the perturbation interaction Li, that is, G(t, s) ≈
T←e

∫ t
s Q[Lc (u)+Lm (u)]du. In addition, we note that the coupling

Gi is time dependent in Sec. IV. However, the timescale of
the coupling Gi is much slower than the timescale 1/γR(L), j .
Hence the coupling is considered to be time independent,
when the integration is performed. For convenience, we
use the variable substitution τ = t − s and let t0 → −∞.
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Equation (B5) can be written

P ρ̇ = PLmPρ + P
∫ ∞

0
dτLie

(Lc+Lm )τ Li(τ )e−LmτPρ(t ).

(B6)

Note that in Eq. (B6), we have applied the Markovian approx-
imation Pρ(t − τ ) = e−LmτPρ(t ).

Finally, it is straightforward to derive the master equa-
tion of the magnon modes by inserting Eq. (B2) into
Eq. (B6) [72],

μ̇ = − i

⎡⎣∑
j

ωm jm
†
j m j, μ

⎤⎦ −
∑

j,k

[S jk (ωmk )G∗
j Gk

× (m†
j mkμ − mkμm†

j ) + H.c.], (B7)

where μ = trc(ρ) is the density matrix of the magnon modes,
and the coefficients are

S jk (ω) =
∫ ∞

0
〈c j (τ )c†

k (0)〉eiωτ dτ, (B8)

with the two-time correlation function 〈oa(τ )ob(0)〉 =
trc(oaeLcτ obρc) [73,74]. In Eq. (B7), we have assumed that the
steady state of c j is a vacuum state. The calculation of the two-
time correlation function will be discussed in Appendix C.
In Eq. (B7), we have ignored the high-frequency term, e.g.,
e±i(ωmk+ωm j ), because we assume ωm j � Gj . And we rewrite
master equation (B7) in the form of a Lindblad superoperator,
which can be seen in Eq. (6).

APPENDIX C: THE TWO-TIME
CORRELATION FUNCTION

In this Appendix, we give the calculation of the coefficients
S jk (ω) [6,75]. From master equation (5), we can derive the
equation for 〈c j〉,

˙〈c j〉 =
[
−i�c j −

γR j + γ
L j

2

]
〈c j〉

−
∑
D, j,k

′√
γD j γDk eikD x jk 〈ck〉. (C1)

Then Eq. (C1) can be rewritten in a compact form v̇1 = A1v1

with v1 = [〈c1(t )〉, 〈c2(t )〉, . . . , 〈cN (t )〉]T , [A1] j j = −i�c j −
γR j +γ

L j

2 , [A1] jk = −eikR x jk
√

γR j γRk for j > k and [A1] jk =
−eikL x jk

√
γ

L j
γLk for j < k. Then by using the quantum regres-

sion theorem [76], the coefficients can be derived,

S jk (ω) =
∑

l

[
1

−iω − A1

]
jl

〈clc
†
k〉ss, (C2)

with the steady-state values 〈cl c
†
k〉ss.

For a cascaded quantum network (γ
L j

= 0), the matrix A1

is lower triangular, and the eigenvalues of the matrix A1 are
−i�c j − γR j

2 ; thus the quantum network is stable, which is
an important prerequisite for eliminating the optical signal
modes in Sec. III. The optical signal modes will converge to
the steady state ρc which is a vacuum state here, after a long
time of evolution. Therefore, we have 〈clc

†
k〉ss = δlk . Then

we can obtain S jk (ω) = 0 for k > j, S jk (ω) = eikRx jkW j
k (−iω)

for j � k, with W j
k = −√

γR j γRkM jC j−1 · · · Ck+1Mk ( j >

k), W j
j = M j , Cl = 1 − γRlMl , and M j (s) = 1/[s + i�c j +

γR j /2].
Next we give the coefficients S jk (ω), when γ

L j

= 0.

For simplification, we assume �c j = ωm, kDx jk = 2nπ

(n is an integer), γ
L j

= γL , and γR j = γ . We have, for

odd N , [ 1
−iωm−A1

] j j = 2
γ+γL

, [ 1
−iωm−A1

] jk = (−1)k− j+14γL
γ 2−γ 2

L

(k >

j), [ 1
−iωm−A1

] jk = (−1) j−k4γ

γ 2−γ 2
L

( j > k); and we have, for

even N , [ 1
iωm−A1

] j j = 2(γ+γL )
(γ−γL )2 , [ 1

iωm−A1
] jk = (−1)k− j 4γL

(γ−γL )2 (k > j),

[ 1
iωm−A1

] jk = (−1) j−k4γ

(γ−γ 2
L

) ( j > k). When kR x jk 
= 2nπ , 1
−iωm−A1

is

complicated and is not shown here. For the two- and three-
node quantum networks, the real part of the eigenvalues of
the matrix A1 is negative [see Fig. 4(a)]; then the quantum
network is stable. And the steady state ρc is a vacuum state;
then the coefficients S jk (ωm) can be obtained. Additionally,
we note that when γL = γR , the real part of the eigenvalues of
the matrix A1 is zero, which means that the uniqueness of the
steady state for optical signal modes cannot be ensured; thus,
the optical signal modes cannot be eliminated as was done in
Appendix B.

APPENDIX D: THE GENERATION OF A CAT STATE

In this Appendix, we illustrate how to generate a cat state
by coupling the magnon mode of the first node to an auxiliary
microwave cavity field which couples strongly to a supercon-
ducting qubit. The Hamiltonian reads

Hms =ωcac†
aca + ωsσ

†σ + J (t )(c†
a + ca)(σ + σ †)

+ ωm1m†
1m1 + Gcm(ca + c†

a )(m1 + m†
1), (D1)

where ca is the annihilation operator of the auxiliary mi-
crowave cavity with the frequency ωca, σ = |e〉〈g| is the Pauli
operator of the qubit with the frequency ωs, and |e(g)〉 is the
upper level (lower level) of the qubit. The strength of the
interaction between the qubit and the cavity is modulated by
J (t ) = J (cos 2ωLt + 1/2) and the coupling between the cav-
ity and the magnon is characterized by Gcm. We consider that
the frequency of the microwave cavity is far-off-resonant with
both the superconducting qubit and the magnon mode, i.e.,
ωca � ωs, ωm1, and the frequency of the qubit, the magnon
mode, and the driving field is near resonant, ωs ≈ ωm1 ≈
ωL. We move to a rotating frame with ωL(σ †σ + m†

1m1),
then utilizing the effective Hamiltonian −iHms(t )

∫
Hms(t )dt ,

the cavity mode can be adiabatically eliminated. We assume
the microwave cavity is in a vacuum state and neglect the
high-frequency terms, then the effective Hamiltonian can be
derived:

H eff
ms = �sσ

†σ + �m1m†
1m1 + gmsσ

x(m1 + m†
1), (D2)

with �s = �′
s + δs, �m1 = �′

m1 + δm, gms = − JGcm
2 ( 1

ωa−ωL
+

1
ωc+ωL

), �′
s(m1) = ωs(m1) − ωL, δs = J2

4 ( 1
ωa+3ωL

− 1
ωc−3ωL

), and

δm = −G2( 1
ωc+ωL

+ 1
ωc−ωL

). The Hamiltonian is a Rabi
Hamiltonian of the magnon and qubit, which is different
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FIG. 7. (a) The evolution of the probability Pe01 governed by Hms

(red solid line) and the probability Pe1 (blue dashed line) governed by
H eff

ms . The greed dash-dotted line shows the average photon number
〈c†

aca〉. Both insets in (a) show the partial enlarged detail. (b) The
evolution of the average magnon number 〈m†

1m1〉 (red solid line) and
〈σ †σ 〉 (blue dashed line). The parameters are ωca = 50J , ωL = 10J ,
G = J , �′

m1 = gms − δm, and �′
s = −δs.

from the Jaynes-Cummings interaction obtained in experi-
ment [77].

By defining |±〉 = 1√
2
(|e〉 ± |g〉), the Hamiltonian (D2)

can be rewritten as

H eff
ms = �m1m†

1m1 + gmsσ̃
z(m1 + m†

1), (D3)

with σ̃ = |−〉〈+|, σ̃ z = |+〉〈+| − |−〉〈−|. In Eq. (D3), we
have assumed �s = 0. Utilizing the unitary evolution operator
Uc(t ) satisfying i∂Uc(t )/∂t = H eff

ms Uc(t ) with the initial state
|g, 0m1〉, the state of the system is

|ψc(t )〉 = Uc(t )|g, 0m1〉

= 1√
2

eiφms(t )(|+, [α(t )]m1〉 − |−, [−α(t )]m1〉)

= 1

2
eiφms(t )(A−|e, [α−(t )]m1〉 + A+|g, [α+(t )]m1〉),

(D4)

with α(t ) = − gms(ei�m1t −1)
�m1

, the odd or even cat states |α±〉 =
1/A±(|α〉 ± | − α〉), and the normalization constants A± =

1√
2(1±e−2|α|2 )

. In Eq. (D4), according to the Magnus theory

[78], we have used

Uc(t ) = eiφms(t )egms

[
e−i�m1t −1

�m1
m− ei�m1t −1

�m1
m†

]
σ̃ z

, (D5)

with φms(t ) = − g2
ms

�2
m1

(sin �m1t − �m1t ). From Eq. (D4), one
can find that the even or odd cat state can be obtained by
projecting the qubit into state |g〉 or |e〉, respectively. The state
of the system in the original representation can be obtained as
eiωL (σ †σ+m†

1m1 )|ψc(t )〉.
In order to check the validity of the approximation

from Hamiltonian (D1) to Hamiltonian (D2), we choose
|g, 0ca, 0m1〉 as the initial state and plot the evolution of the
probabilities of |e, 0ca, 1m1〉 and Pe1 = |〈e, 1m1 |ψc(t )〉|2, as
shown in Fig. 7(a). From Fig. 7(a), we see clearly that the
results of original Hamiltonian agree very well with that of
the effective Hamiltonian; meanwhile, the average photon
number is extremely small, 〈c†

aca〉 ≈ 0, which means that
the effective Hamiltonian H eff

ms is reliable. In Fig. 7(b), us-
ing Hamiltonian (D2), we plot the average magnon number
〈m†

1m1〉 and 〈σ †σ 〉. As shown in Fig. 7(b), when t = π
�m1

, the
average magnon number reaches its maximum value |α|2 = 4;
meanwhile, 〈σ †σ 〉 is 1/2. So the odd or even cat state with
an amplitude α = 2 can be obtained with a probability of
1/2. Thus, the desired cat state can be generated in the qubit-
photon-magnon system.

APPENDIX E: THE DIFFERENTIAL EQUATIONS
FOR FIVE NODES

The differential equations for θ j,k in a five-node quantum
network are

θ̇1,1 = �5 sin 2θ1,1,

θ̇2,1 = �5 sin θ1,1 sin 2θ2,1,

θ̇4,1 = �5 sin θ1,1 sin2 θ2,1 sin 2θ4,1,

θ̇4,2 = �5 sin θ1,1 cos2 θ2,1 sin 2θ4,2,

(E1)

with �5 = �2
1,1(t )
γ

.
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