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Switching classical and quantum nonreciprocities with a single spinning resonator
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We study how to achieve, manipulate, and switch classical or quantum nonreciprocal effects of light with a
spinning Kerr resonator. In particular, we show that even when there is no classical nonreciprocity (i.e., with the
same mean number of photons for both clockwise and counterclockwise propagating modes), it is still possible to
realize nonreciprocity of quantum correlations of photons in such a device. Also, by tuning the angular velocity
and the optical backscattering strength, purely higher-order quantum nonreciprocity can appear, featuring
qualitatively different third-order optical correlations, even in the absence of any nonreciprocity for both the
mean photon number and its second-order correlations. The possibility to switch a single device between a
classical isolator and a purely quantum directional system can provide more functions for nonreciprocal materials
and new opportunities to realize novel quantum effects and applications, such as nonreciprocal multiphoton
blockade, one-way photon bundles, and back-action-immune quantum communications.
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I. INTRODUCTION

Optical nonreciprocity, featuring different responses of
light when the input and output ports are interchanged, plays
a key role in fundamental studies and applications of modern
optics, such as directional laser engineering, invisible sens-
ing, and back-action-immune optical communications [1].
In recent years, without using any bulky magnetic materi-
als [2,3], various ways have been demonstrated to create
optical on-chip nonreciprocity, such as spatiotemporal mod-
ulation [4–11], optical nonlinearities [12–31], non-Hermitian
structures [32–35], quantum squeezing [36], and controllable
motion of atoms or solid devices [37–61]. Particularly, by
spinning a single device, it is possible to achieve nonrecip-
rocal transmissions of light, sound, or a thermal field, without
relying on any nonlinear medium [62–64], providing flexible
new ways to achieve nanoparticle sensing [65–67], optical gy-
roscopes [68], and quantum or topological directional control
[69–73]. Also, by further integrating with existing techniques
of quantum nonlinear optics, purely quantum nonreciprocal
effects can be achieved in such spinning systems, such as
nonreciprocal photon blockade [46–50] and nonreciprocal
quantum entanglement [51–54]. We note that, in a very recent
experiment, quantum nonreciprocal correlations of photons
were already observed in experiments using cavity atoms or
an optical nonlinear system [74,75]. However, until now, in
the absence of any classical nonreciprocity, the possibility of
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achieving one-way control of higher-order quantum correla-
tions has not been studied.

Here, in this work, we show how to achieve coherent
switch of classical and quantum nonreciprocities of photons
and how to realize a class of higher-order quantum nonre-
ciprocity with a single spinning resonator. We find that, by
tuning both the angular speed of the resonator and the optical
backscattering strength, one can switch the functions of the
device between a classical isolator and a purely quantum
directional system. Also, a particular type of higher-order
quantum nonreciprocity can emerge where both of the mean
photon numbers and the second-order correlations are recip-
rocal, but the third-order correlation function is nonreciprocal.
We refer to this phenomenon as purely higher-order quan-
tum nonreciprocity (PH-QNR). Particularly, we note that the
backscattering due to material imperfections can induce the
PH-QNR, in comparison with that in ideal devices. Our find-
ings indicate a promising way to achieve novel nonreciprocal
effects, which is useful in realizing chiral quantum networks
[76–79] and invisible sensing [80,81].

The remainder of this paper is organized as follows. In
Sec. II, we introduce the physical system of a spinning Kerr
resonator with a tapered fiber. In Sec. III, we study the
quantum and classical nonreciprocities in the ideal spinning
resonator. In Sec. IV, we explore the quantum and classical
nonreciprocities for systems with backscattering. In particular,
we reveal a purely higher-order quantum nonreciprocity. In
Sec. V, we give a summary.

II. PHYSICAL SYSTEM

As shown in Fig. 1(a), we consider a spinning Kerr res-
onator evanescently coupled with a tapered fiber, and each
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FIG. 1. Quantum and classical nonreciprocities. (a) The whispering-gallery-mode resonator with Kerr-type nonlinearity χ spinning at an
angular velocity �. By fixing the CCW rotation of the resonator, �F > 0 (�F < 0) corresponds to the situation of driving the CW (CCW)
mode. (b) The classical (quantum) nonreciprocity ratio R1 (R2) versus the angular velocity � for �L = 0, where the solid and dashed curves
indicate R1 and R2, respectively. The inset shows that R1 ∼ 0.0016 when � = 17 kHz (i.e., �/γ = 0.07). By further increasing �, R1

gradually approaches 0. (c) The mean photon number N and (d) the second-order correlation function g(2)(0) versus the optical detuning �L

for different input directions at � = 3.8 kHz (i.e., �/γ = 0.016). The solid curves and markers (squares, circles) are analytical and numerical
solutions at Pin = 0.2 fW (i.e., ξ/γ = 0.08), respectively. When we take the parameter Pin = 4 fW (i.e., ξ/γ = 0.36) in the experiment [82]
(dashed curves), the quantum nonreciprocal feature can still be achieved. (e) The values and definitions of the main dimensionless parameters
that we used in our calculations. The other parameters are given in the main text.

side of the fiber serves as both an input port and an output
port. Depending on the input port, light is coupled to circulate
in the resonator in either the clockwise (CW) or counterclock-
wise (CCW) direction. Recently, 99.6% optical isolation was
realized experimentally by using a spinning resonator [44].
In this experiment, the resonator is mounted on a turbine and
rotated along its axis. The tapered fiber is made by heating
and pulling a standard single-mode telecommunications fiber,
which is stabilized at a height of several nanometers above
the rapidly spinning resonator via the “self-adjustment” aero-
dynamic process. Here, for a resonator spinning along a fixed
direction at angular velocity �, the resonance frequencies of
the CW and CCW modes experience an opposite Sagnac-
Fizeau shift, i.e., ω0 → ω0 + �F , with [83]

�F = ±n1r�ω0

c

(
1 − 1

n2
1

− λ

n1

dn1

dλ

)
, (1)

where ω0 is the optical frequency of the nonspinning res-
onator, c (λ) is the speed (wavelength) of light in a vacuum,
and n1 and r are the refractive index and radius of the
resonator, respectively. The dispersion term dn1/dλ, charac-
terizing the relativistic origin of the Sagnac effect, is relatively

small in typical materials (up to about 1%) [44,83]. By spin-
ning the resonator along the CCW direction, we have �F > 0
(�F < 0) for the case with the driven the CW (CCW) mode,
i.e., ωcw,ccw = ω0 ± |�F | [see Fig. 1(a)].

In the frame rotating at the drive frequency ωL, the Hamil-
tonian of the system reads (h̄ = 1)

Ĥ1 = (�L + �F )â†â + χ â†â†ââ + ξ (â† + â), (2)

where �L = ω0 − ωL is the optical detuning between the
driving field and the cavity field, â (â†) is the optical an-
nihilation (creation) operator, and χ = h̄ω2

0cn2/(n2
0Veff ) is

the Kerr parameter, with n0(n2) being the linear (nonlinear)
refraction index and Veff being the effective mode volume.
ξ = √

γ Pin/(h̄ωL ) is the driving amplitude with cavity loss
rate γ and driving power Pin.

The energy eigenstates of this system are the Fock states
|n〉 (n = 0, 1, 2, . . . ) with eigenenergies

En = n�L + n�F + (n2 − n)χ, (3)

where n is the cavity photon number. The positive and nega-
tive values of �F describe upper and lower shifts of energy
levels, respectively [Fig. 1(a)], and the values of |�F | are
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proportional to �. For the same input light, due to the opposite
frequency shift for the counterpropagating modes, nonre-
ciprocity can appear.

The experimentally accessible parameters we used here
are [82,84–88] λ = 1550 nm, Q = 5 × 109, Veff = 150 μm3,
n2 = 2 × 10−15 m2/W, n0 = 1.4, Pin = 0.2 fW, and r =
30 μm. In addition, we set angular velocity � = 3.8 and
5.8 kHz, which are experimentally accessible parameters in
Ref. [44]. We note that Veff is typically 102−104 μm3 [84,85]
and Q is typically 109−1012 [86,87]. The Kerr coefficient
can reach n2 = 2 × 10−15 m2/W for materials with potassium
titanyl phosphate [88], i.e., χ/γ = 1.3. The driving power
can reach Pin = 4 fW (i.e., ξ/γ = 0.36) in the experiment
[82]. Here, we have chosen the experimentally accessible
values χ/γ = 1.3 and ξ/γ = 0.08. Also we have confirmed
that even for the values taken in the experiment [82], i.e.,
ξ/γ = 0.36, the quantum nonreciprocal feature can still be
achieved, as shown in Fig. 1(d) (dashed curves).

III. CLASSICAL AND QUANTUM NONRECIPROCITIES

The classical features of this work can be characterized by
the mean photon number N :

N = 〈â†â〉. (4)

The condition of classical nonreciprocity (CNR) is

NCW �= NCCW. (5)

Note that in this work, we use the subscripts CW and CCW
to denote the cases with the driven CW and CCW modes,
respectively.

The quantum features can be characterized by the quantum
correlation function g(2)(0):

g(2)(0) = 〈â†2â2〉
〈â†â〉2 . (6)

The conditions g(2)(0) < 1 and g(2)(0) > 1 characterize
single-photon blockade and photon-induced tunneling
[89,90], respectively, which are two distinct quantum
effects with different photon-number statistics, i.e., photon
antibunching and bunching [91,92]. Thus, we refer to the
effect of photon antibunching in one direction and bunching
in the other direction as quantum nonreciprocity. Here, the
condition of quantum nonreciprocity (QNR) is given by

g(2)
CW(0) < 1, g(2)

CCW(0) > 1

or

g(2)
CW(0) > 1, g(2)

CCW(0) < 1. (7)

To better study the classical and quantum nonreciprocities
of this system, we define the classical and quantum nonre-
ciprocity ratios as R1 and R2, respectively, which are written
as

R1 = 10 log10
NCCW

NCW
, R2 = 10 log10

g(2)
CCW(0)

g(2)
CW(0)

. (8)

When NCW and NCCW do not satisfy the condition of non-
reciprocity in Eq. (5), i.e., classical reciprocity, R1 = 0.
Similarly, when both g(2)

CW(0) and g(2)
CCW(0) are larger or

smaller than 1 (i.e., the same quantum effects with identical
photon-number statistics occur in both directions), we refer to
this effect as quantum reciprocity. Thus, we set R2 = 0 for
this case.

According to the quantum-trajectory method [93], the op-
tical decay can be included in the effective Hamiltonian

Ĥe1 = Ĥ1 − i
γ

2
â†â, (9)

where γ = ω0/Q is the cavity loss rate with quality factor Q.
Under the weak-driving condition (ξ � γ ), the Hilbert space
can be truncated to n = 2. The state of this system can be
expressed as

|ϕ(t )〉 =
2∑

n=0

Cn(t )|n〉, (10)

with probability amplitudes Cn. Based on the effective Hamil-
tonian in Eq. (9) and the wave function in Eq. (10), we can
obtain the following equations of motion for the probability
amplitudes Cn(t ):

Ċ0(t ) = −iE0C0(t ) − iξC1(t ),

Ċ1(t ) = −i
(

E1 − i
γ

2

)
C1(t ) − iξC0(t ) − iξ

√
2C2(t ),

Ċ2(t ) = −i(E2 − iγ )C2(t ) − iξ
√

2C1(t ), (11)

where E0 = 0, E1 = �L + �F , and E2 = 2(�L + �F ) + 2χ .
In the weak-driving case, these probability amplitudes have
the following approximation expressions: C0 ∼ 1, C1 ∼ ξ/γ ,
and C2 ∼ ξ 2/γ 2. According to the perturbation method [94]
for solving the above equations, we can obtain the following
probability amplitudes:

Ċ0(t ) = −iE0C0(t ),

Ċ1(t ) = −i
(

E1 − i
γ

2

)
C1(t ) − iξC0(t ),

Ċ2(t ) = −i(E2 − iγ )C2(t ) − iξ
√

2C1(t ). (12)

In an initially empty cavity, the initial conditions can be set as

C0(0) = C0(0),

C1(0) = C2(0) = 0. (13)

Therefore, we can obtain the solution of the zero-photon am-
plitude:

C0(t ) = C0(0) exp (−iE0t ). (14)

We introduce the slow-varying amplitudes to solve this equa-
tion:

C1(t ) = c1(t ) exp
[
−i

(
E1 − i

γ

2

)
t
]
, C1(0) = c1(0),

C2(t ) = c2(t ) exp [−i(E2 − iγ )t], C2(0) = c2(0). (15)

Then, based on the solution of the zero-photon amplitude in
Eq. (14) and the above equations, we can obtain the solutions
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of the equations of motion for the probability amplitudes,

C0(t ) = C0(0)A0,

C1(t ) = −ξC0(0)(A0 − A1)/
(

E1 − i
γ

2

)
,

C2(t ) =
√

2ξ 2C0(0)(B0 − B1)/
(

E1 − i
γ

2

)
, (16)

where

A0 = exp (−iE0t ),

A1 = exp [−i(E1 − iγ /2)t],

A2 = exp [−i(E2 − iγ )t],

B0 = (A0 − A2)/(E2 − E0 − iγ ),

B1 = (A1 − A2)/(E2 − E1 − iγ /2), (17)

and for the infinite-time limit, we have exp(−At ) → 0 (t →
∞); then the solutions should be

C0 ≡ C0(∞) = 1,

C1 ≡ C1(∞) = −ξ

(E1 − iγ /2)
,

C2 ≡ C2(∞) = −√
2ξC1

(E2 − iγ )
. (18)

According to the normalized coefficient of the state

M = 1 + |C1|2 + |C2|2, (19)

we can get the probabilities of finding n photons in the
resonator as

Pn = |Cn|2
M . (20)

The mean photon number is denoted by N and can be obtained
from the above probability distribution as

N = 〈
â†â

〉 =
2∑

n=0

nPn. (21)

For �L = 0, the mean photon number becomes

N = ξ 4

χγ 2�F + 4χ�3
F + 2

(
�2

F + χ2 + γ 2/4
)(

�2
F + γ 2/4

)

+ ξ 2

�2
F + γ 2/4

. (22)

The origin of classical nonreciprocity can be understood from
the terms of the Sagnac-Fizeau shift (∝ �F ) and its cubic
terms (∝ �3

F ).
The equal-time (namely, zero-time-delay) second-order

correlation function is written as

g(2)(0) = 〈â†2â2〉
〈â†â〉2

� (�L + �F )2 + γ 2/4

(�L + �F + χ )2 + γ 2/4
. (23)

For �L = 0, photon antibunching [g(2)(0) < 1] and bunching
[g(2)(0) > 1] occur under the conditions of �F > −χ/2 and
�F < −χ/2, respectively. Therefore, the condition of quan-
tum nonreciprocity, R2 �= 0, is given by

� >
χ

2α
, α = n1rω0

c

(
1 − 1

n2
1

− λ

n1

dn1

dλ

)
. (24)

This result is in agreement with the results of Fig. 1(b); that is,
the transition between quantum reciprocity and nonreciprocity
occurs at � ≈ 1.93 kHz.

To obtain more exact results, we numerically study the
full quantum dynamics of the system by solving the master
equation [95,96]

˙̂ρ = i

h̄
[ρ̂, Ĥ1] + γ

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â), (25)

where ρ̂ is the normalized density matrix of the system. The
photon-number probability is Pn = 〈n|ρ̂ss|n〉, with ρ̂ss being
the steady-state solutions of the master equation.

Figure 1(b) shows the switching between CNR and QNR
when the optical detuning �L = 0. For a nonspinning res-
onator (� = 0), both classical and quantum effects are
reciprocal at this point, i.e., R1 = 0 and R2 = 0. When the
angular velocity � is below 1.93 kHz, the classical nonre-
ciprocity appears (R1 > 0) since the rotation-induced Sagnac
effect breaks the degeneracy of the CW and CCW modes,
leading to a mode splitting, which makes the light transpar-
ent in one direction and opaque in the other, i.e., one-way
transmission of the light [44]. At the same time, the quan-
tum nonreciprocity ratio R2 is always equal to zero, and the
quantum effect is reciprocal.

When � = [1.93 kHz, 17 kHz], the quantum nonreciproc-
ity (R2 > 0) emerges due to the interplay of both the
rotation-induced Sagnac effect and the nonlinearity-induced
anharmonicity. The Kerr nonlinearity leads to an anhar-
monic energy space, which can be further shifted by the
Sagnac effect. When the rotation speed is large enough, the
energy level of the system satisfies the conditions for pho-
ton antibunching in one direction and bunching in the other
direction [46].

When � exceeds 17 kHz, R1 gradually approaches zero,
but the quantum nonreciprocity still remains (R2 > 0); this
means that quantum nonreciprocity exists even when there
is no classical nonreciprocity. We note that quantum nonre-
ciprocity can exist independently of classical nonreciprocity,
as shown in a recent experiment [75]. The fundamental
reason is that classical and quantum nonreciprocities are
two essentially different concepts, which are defined via the
mean-photon number and quantum fluctuation. With optical
nonlinearity, quantum fluctuations with the same mean-
photon number can be different [75]. With such a device, the
different nonreciprocities can be tuned by tuning the angular
velocity.

In addition, we note that the switching between classical
nonreciprocity and pure quantum nonreciprocity can also be
achieved by tuning the optical detuning �L [Figs. 1(c) and
1(d)]. As an illustration, for a spinning cavity, by driving the
CW (CCW) mode, we have �F > 0 (�F < 0), thus leading to
quantum nonreciprocity at �L = −4.38 kHz, i.e., g(2)

CW(0) ∼
0.28 and g(2)

CCW(0) ∼ 7. At this point, Ncw = Nccw, the classical
effect is reciprocal. When the maximum difference of mean
photon numbers from driving the setup from the right and left
sides is generated, NCW ∼ 0.001, and NCCW ∼ 0.0245. This
is a clear signature of classical nonreciprocity. At the same
time, we have quantum reciprocity, i.e., g(2)

CW(0) ∼ 0.45 and
g(2)

CCW(0) ∼ 0.12.
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(a)

FIG. 2. Quantum and classical nonreciprocities with backscattering. (a) The spinning Kerr resonator with defect-induced backscattering.
The CW and CCW modes are coupled via backscattering with strength J . (b) The classical (quantum) nonreciprocity ratio R1 (R2) versus the
angular velocity � for �L = 0, where the solid (dashed) curve indicates R1 (R2). (c) The mean photon number N and (d) the second-order
correlation function g(2)(0) as a function of �L for different input directions at � = 3.8 kHz (i.e., �/γ = 0.016). The solid curves and markers
(squares, circles) are analytical and numerical solutions, respectively. We note that the backscattering rate can reach J/γ = 15 in the experiment
[97], and the mode splitting induced by backscattering is easily experimentally observable for J/γ > 1/2 [98]. Here, the parameter of the
backscattering rate is chosen to be J/γ = 2; the other parameters are the same as those in Fig. 1.

These results show that a single device switching between
a classical isolator and a quantum one-way device can be
achieved by adjusting multiple degrees of freedom [51].

IV. QUANTUM AND CLASSICAL NONRECIPROCITIES
WITH BACKSCATTERING

Now, we further extend our present study to a more gen-
eralized situation. In practice, device imperfections, such
as surface roughness and material defect, can cause optical
backscattering, as shown in Fig. 2(a). Thus, we discuss the
role of backscattering in quantum and classical nonreciproc-
ities. For this aim, we introduce backscattering, as described
by the coupling strength J between the CW and CCW modes.
The system’s Hamiltonian, given in Eq. (2), is transformed to

Ĥ2 =
∑
j=1,2

� j â
†
j â j +

∑
j=1,2

χ â†
j â

†
j â j â j

+ 2χ â†
1â1â†

2â2 + J
(
â†

1â2 + â†
2â1

)
+ ξ (â†

1 + â1), (26)

where â1 (â†
1) and â2 (â†

2) are the annihilation (creation) op-
erators of the CW and CCW modes, respectively. � j = �L ±
|�F | ( j = 1, 2), and 2χ â†

1â1â†
2â2 is the cross-Kerr interaction

[14,16,99,100] between the CW and CCW modes.

Optical decay can be included in the effective Hamiltonian
[93],

Ĥe2 = Ĥ2 −
∑
j=1,2

iγ â†
j â j/2. (27)

In the weak-driving case (ξ � γ ), the Hilbert space of the
system can be restricted to a subspace with few photons.
Here, in order to calculate the expressions for the second-
order and third-order correlation functions, this Hilbert space
is truncated to a subspace with three-photon numbers, i.e.,
N = m + n = 3; the wave function of the system can be
expressed as

|ψ (t )〉 =
3∑

N=0

N∑
m=0

Cm,N−m|m, N − m〉, (28)

where Cmn are probability amplitudes corresponding to state
|m, n〉. By solving the Schrödinger equation

i|ψ̇ (t )〉 = Ĥe2|ψ (t )〉, (29)

we can obtain the above probability amplitudes Cmn. When
a weak-driving field is applied to the cavity, it may excite
a few photons in the cavity. Therefore, we can approximate
the probability amplitudes of the excitations as Cm,N−m ∼
(ξ/γ )N . Here, we use the perturbation method [94] to
solve the equations of motion for the probability amplitudes
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Cm,N−m(t ). Then, we have the equations of motion for proba-
bility amplitudes,

˙iC00(t ) = 0,

iĊ01(t ) = �4C01(t ) + JC10(t ),

iĊ10(t ) = �3C10(t ) + JC01(t ) + ξC00(t ),

iĊ02(t ) = 2�6C02(t ) +
√

2JC11(t ),

iĊ11(t ) = (�5 + �6)C11(t ) +
√

2JC20(t ) +
√

2JC02(t )

+ ξC01(t ),

iĊ20(t ) = 2�5C20(t ) +
√

2JC11(t ) +
√

2ξC10(t ),

iĊ03(t ) = 3�8C03(t ) +
√

3JC12(t ),

iĊ12(t ) = (�7 + 2�8)C12(t ) + 2JC21(t ) +
√

3JC03(t )

+ ξC02(t ),

iĊ21(t ) = (2�7 + �8)C21(t ) +
√

3JC30(t ) + 2JC12(t )

+
√

2ξC11(t ),

iĊ30(t ) = 3�7C30(t ) +
√

3JC21(t ) +
√

3ξC20(t ), (30)

where

�3 = �1 − iγ /2, �4 = �2 − iγ /2,

�5 = �3 + χ, �6 = �4 + χ,

�7 = �5 + χ, �8 = �6 + χ. (31)

By considering the initial condition C00(0) = 1 and setting
Ċmn(t ) = 0, we can obtain the steady-state solutions of the
probability amplitudes,

C10 = ξ�4

η1
, C01 = −ξJ

η1
,

C02 = J2ξ 2σ1√
2η1η2σ2

, C11 = −Jξ 2�6σ1

η1η2
,

C20 = ξ 2
(
�4�6/σ2 + J2χ

)
√

2η1η2σ2

,

C03 = − J3ξ 3�4√
6σ2μη1η2

, C12 = J2ξ 3�8�4√
2σ2μη1η2

,

C21 = Jξ 3[�3 − �3η3(�3 + 4χ )]√
2σ2μη1η2

,

C30 = ξ 3(η3�1 − �8�2)√
6σ2μη1η2

, (32)

with

σ1 = �4 + �5, σ2 = �5 + �6,

σ3 = �7 + �8, ζ = σ 2
2 + σ3�7 − 4J2,

η1 = J2 − �3�4, η2 = J2 − �5�6,

η3 = J2 − �7�8, μ = η3
(
η3 − 2σ 2

3

)
,

�1 = (σ3 + �7)(J2χ + σ2�4�6),

�2 = J2[2σ1(J2 + 2σ3�6) − χζ ] + σ2�4�6ζ ,

�3 = (
2�2

8 − η3
)
[J2χ + �6(σ2�4 + 2σ1�7)],

�4 = σ1(η3 − 4�6�7) − 2(J2χ + σ2�4�6). (33)

The probabilities of finding m photons in the CW mode and
n photons in the CCW mode are given by

Pmn = |Cmn|2
M , (34)

with the normalization coefficient

M =
3∑

N=0

N∑
m=0

|Cmn|2. (35)

The mean photon number is expressed as

N = 〈â†
1â1〉 � P10 + P11 + 2P20

=
∣∣∣∣ξ�4

η1

∣∣∣∣
2

+
∣∣∣∣−Jξ 2�6σ1

η1η2

∣∣∣∣
2

+ 2

∣∣∣∣∣
ξ 2

(
�4�6/σ2 + J2χ

)
√

2η1η2σ2

∣∣∣∣∣
2

.

(36)

Similarly, for �L = 0, the Sagnac-Fizeau shift and its odd
power, which are included in P11 and P20, lead to clas-
sical nonreciprocity with a resonant drive, as shown in
Fig. 2(b).

The second-order correlation function is written as

g(2)(0) =
〈
â†2

1 â2
1

〉
〈â†

1â1〉2
� η2

1(�4�6/σ2 + J2χ )2

η2
2σ

2
2 �4

4

. (37)

The correlation function can be calculated numerically by
solving the quantum master equation [95,96]

˙̂ρ = i[ρ̂, Ĥ2] +
∑
j=1,2

γ

2
(2â j ρ̂â†

j − â†
j â j ρ̂ − ρ̂â†

j â j ). (38)

The photon-number probability is Pmn = 〈m, n|ρ̂ss|mn〉,
which can be obtained from the steady-state solutions ρ̂ss of
the master equation. Excellent agreement between the analyt-
ical and numerical results is seen in Figs. 2(c) and 2(d).

Figure 2 shows quantum and classical nonreciprocities
with backscattering. In Fig. 2(b), for the resonant cases, we
find that the switch between CNR and QNR can still be
achieved by tuning the angular velocity � after considering
the effect of backscattering. When � from 0 to 6 kHz, the
classical nonreciprocity (R1 �= 0) appears, but there is no
quantum nonreciprocity (R2 = 0). Adding � beyond 17 kHz,
the opposite occurs.

Different from the above resonant cases, Fig. 2(c) shows
that no classical nonreciprocity occurs at �L = −0.98 kHz
by fixing the rotational speed to � = 3.8 kHz. In addition,
for J/γ = 2, the number of peaks of N increased from one
to two, compared with an ideal resonator (Fig. 1). A similar
feature can also be identified in the number of dips of g(2)(0) in
Fig. 2(d). The reason is that the energy-level splitting caused
by backscattering provides the possibility of more photon
jumps. This means we can explore the richer significance of
nonreciprocity by combining backscattering and mechanical
rotation.

As shown in Fig. 3(a), for J/γ < 0.7, the second-
order correlation functions of the two modes are reciprocal
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FIG. 3. (a) The classical nonreciprocity ratio R1, the quantum nonreciprocity ratio R2, and the higher-order quantum nonreciprocity ratio
R3 obtained as a function of backscattering rate J and angular velocity �. (b) The purely higher-order quantum nonreciprocity (PH-QNR)
versus J and �. The other parameters are the same as those in Fig. 1.

(R2 = 0) for smaller angular velocity � < 1.9 kHz, which
occurs because the mode splitting due to backscattering and
the Sagnac-Fizeau shift due to rotation are both small. When
J/γ > 0.7, the minimum angular velocity required for the
emergence of quantum nonreciprocity (R2 �= 0) increases
with increasing backscattering rate. Also, we find that var-
ious kinds of nonreciprocity can be switched by tuning the
backscattering and mechanical rotation of the resonator for
resonant cases (Fig. 3). Further, we extend our research to
the higher-order quantum nonreciprocity of this system. The
third-order correlation function can be obtained analytically
as

g(3)(0) =
〈
â†3

1 â3
1

〉
〈â†

1â1〉3
� η4

1(η3�1 − �8�2)2

μ2η2
2σ

2
2 �6

4

. (39)

The condition g(3)(0) < 1 [g(3)(0) > 1] indicates third-order
sub-Poissonian (super-Poissonian) statistics, which was also
interpreted as three-photon antibunching (bunching) in recent
experiments on multiphoton blockade [101] and photon-
induced tunneling [102]. Like in Eq. (8), we define a
higher-order quantum nonreciprocity ratio R3, which is
written as

R3 = 10 log10
g(3)

CCW(0)

g(3)
CW(0)

. (40)

We set R3 = 0 for the cases in which both g(3)
CCW(0) and

g(3)
CW(0) are smaller or larger than 1. The difference is that the

condition of PH-QNR needs to satisfy not only R3 �= 0 but
also the condition of reciprocity of the classical mean pho-
ton number (R1 = 0) and quantum second-order correlation
function (R2 = 0).

Figure 3(b) shows the relationship of PH-QNR with
backscattering and angular velocity for the resonant cases.
We find that PH-QNR occurs as the backscattering rate J
increases beyond a certain point. For J/γ = 2 [Fig. 3(b),
(i)], PH-QNR emerges with angular velocity 5.56 � � �
6.17 kHz. This result is in agreement with the results in
Figs. 4(a) and 4(b). Increasing J/γ to 2.9, the range of angu-
lar velocity � corresponding to the appearance of PH-QNR
is 10.13–11.28 kHz [Fig. 3(b), (ii)]. By further increasing
the backscattering rate (J/γ = 3.8), the corresponding � is

increased to 16.59–17.74 kHz [Fig. 3(b), (iii)]. This shows that
the minimum angular velocity � required for the emergence
of PH-QNR increases with increasing backscattering rate J .
We also find that PH-QNR can be achieved by controlling the
angular velocity and the backscattering rate of the resonator
for the resonant cases [Fig. 3(b)].

Figures 4(a) and 4(b) show that PH-QNR occurs around
�L = −0.67 kHz. At this point, for different input direc-
tions, the third-order correlation functions are nonreciprocal
[g(3)

CW(0) ∼ 0.86, g(3)
CCW(0) ∼ 272.68], but the second-order

correlation functions and the mean photon numbers are recip-
rocal, i.e., g(2)

CW(0) > 1, g(2)
CCW(0) > 1, and NCW = NCCW. As

far as we know, this purely higher-order quantum nonreciproc-
ity was not revealed in previous works on the nonreciprocal
effect.

To clearly show the difference in nonreciprocities between
the ideal cavity (J = 0) and the realistic cavity (J/γ = 2), we
compare the nonreciprocity ratios of the above different cases,
as shown in Figs. 4(c)–4(h). We find that backscattering has
a small effect on the classical nonreciprocity [see Figs. 4(c)
and 4(f)] but a large effect on the quantum nonreciprocity;
for example, the negative value of R3 appears in Fig. 4(h).
By comparison, we note that the purely higher-order quantum
nonreciprocity occurs in the realistic cavity due to the effect
of backscattering but not in an ideal cavity.

V. CONCLUSIONS

In summary, we studied the coherent switch of classical
and quantum nonreciprocities of photons and realized purely
higher-order quantum nonreciprocity by using a spinning Kerr
resonator. Our findings contain three main features. First, we
showed a single device switching between a classical iso-
lator and a purely quantum directional system by adjusting
multiple degrees of freedom (the optical detuning �L and
angular velocity �). Furthermore, we presented the purely
higher-order quantum nonreciprocity, which provides a richer
degree of freedom for one-way optical control; that is, it
is able to achieve one-way quantum communication while
classical communication is reciprocal. More interestingly, in
practical devices, backscattering is unavoidable, but it can
induce purely higher-order quantum nonreciprocity. These
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FIG. 4. The backscattering-induced PH-QNR. (a) and (b) The correlation functions g(3)(0) and g(2)(0) and the mean photon number N
versus the optical detuning �L for J/γ = 2 and � = 5.8 kHz (i.e., �/γ = 0.024). (c)–(h) For the generation of PH-QNR, the comparison
between the cases with and without backscattering. The other parameters are the same as those in Fig. 1.

results offer the possibility of new developments in nonrecip-
rocal devices and have potential applications in nanoparticle
sensing. We believe that our work can be extended to spin-
ning photonics and spinning optomechanics with similar
backscattering.
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