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Decoherence-induced strongly sub-Poissonian nonlocality
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Quantum decoherence tends to bring about the emergence of the classical from the quantum world through
the interaction of a quantum system with the environment, which is the main impediment to the realization of
quantum information processing. Counterintuitively, we propose that the decoherence enables the creation of
a bright source of strongly sub-Poissonian nonlocality. The absence of the decoherence makes such a source
impossible. Decoherence is devised to be adjustable and manipulable on the basis of the dressed-atom approach
and combination mode technique. The strong sub-Poissonianity and robust Bell violation are originated from the
large squeezing parameter of the reservoir pertaining to the controllable decoherence within the framework of
the reservoir theory.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen (EPR) illustrated the incon-
sistency between the complete description of reality of the
local realism and the completeness of quantum mechanics
[1]. This spurred the exploration of the quantum nonlocality
as one of the most profound features of quantum mechanics.
In response to a quantitative test on quantum nonlocality of
a composite system, Bell proposed an important inequality
imposed by the local hidden variable theory [2,3]. Apart from
being of fundamental significance [4–13], the Bell quantum
violation plays a crucial role in the security of quantum com-
munication protocols against individual attacks in quantum
information processing [14,15].

The dynamical evolution of nonclassical correlation should
be unitary in the ideal condition, thus quantum decoherence
would not take place. Nevertheless, the system of interest
can never be rigorously isolated from its surrounding envi-
ronment with a large number of degrees of freedom. As a
consequence, their interaction yields the decoherence of the
system. Naturally, two realistic and critical questions arise.
Is the nonlocal or nonclassical correlation sufficiently robust
against the decoherence? The answer to the question as to
what extent the nonlocal or nonclassical correlations like
Bell nonlocality and entanglement should hold when going
towards “classical” systems is as yet unknown. On the one
hand, the concept of decoherence plays a pivotal role in
understanding the appearance of noise in quantum systems
and exploring the boundary between the classical regime and
quantum realm. More often than not, the decoherence results
in the substantial degradation or even complete inhibition of
the nonlocal correlation of a target composite system [16–18].
The loss of quantum properties or the irreversible loss of
information on the system can be interpreted as a result of the
dynamical interaction between the system of concern and its
surrounding environmental degrees of freedom. On the other
hand, the decoherence has aroused great interest in quantum
technologies based on the principles of quantum mechanics
including quantum entanglement and quantum superposition.

Compared to the more realistic physical systems, the idealized
and isolated counterparts in the standard textbook of quantum
mechanics are inadequate to find widespread applications in
quantum information and nanotechnology, which require a
detailed analysis of the limits due to the system-reservoir
coupling. The decoherence corresponds to a tendency for the
qubits to be extremely fragile and unable to stay in a super-
position of quantum states or entangled states in the realistic
situation. As a consequence, the decoherence becomes one of
the biggest obstacles in quantum computing, and is, in partic-
ular, regarded as the quantum computer’s greatest impediment
owing to the irreversible loss of information. Therefore, it is
of paramount importance to modify and manipulate quantum
decoherence in an attempt to attain the desired spontaneous
emission and even strong nonclassical correlation. A typical
method is by tailoring the electromagnetic environment. Ex-
amples are the enhanced spontaneous emission [19], inhibited
spontaneous emission [20], suppression, and enhancement of
resonance fluorescence [21]. Another well-known way is by
application of the artificial atomic or cavity reservoir [22,23].

In this paper, we have recourse to the dressed-atom ap-
proach and the combination mode technique for the purpose
of not only controlling and manipulating the decoherence but
also gaining a better insight into the physical mechanism,
and obtain a bright source of strongly sub-Poissonian non-
locality by the dissipation mechanism at steady state. First,
the decoherence usually gives rise to the quantum-to-classical
transition. However, nothing in the principles of quantum
mechanics hinders the composite system from attaining sta-
tionary strong nonlocality by quantum decoherence [22,23].
Second, the decoherence is engineered to yield the stationary
pure two-mode squeezed vacuum state for the combination
modes, and thus ultimately pulls the combination modes into
the desired sub-Poissonian nonlocal regime with ultralarge
photon occupation number. The arbitrarily large squeezing
parameters are experimentally feasible in the atomic systems.
The robust nonlocality enables the protection of quantum
communication protocols from being eavesdropped on by the
third party [14,15]. Third, the sub-Poissonian state of light
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FIG. 1. The two-level atomic medium enclosed inside a doubly
resonant cavity. The atom is coupled with Rabi frequency � to a
coherent external field propagating transverse to the cavity axis and
treated classically. Two cavity modes a1 and a2 are built up along the
cavity axis and treated quantum mechanically.

[16–18,24–27] serves as a direct measure of the particle aspect
of light in line with the field quantization, while both the
Poissonian and the super-Poissonian regimes reveal the wave
aspect of light.

The current scheme is based on the four-wave mixing and
associated with the dissipation from the two original cavity
modes by coupling to the two independent reservoirs, respec-
tively, in the ordinary vacuum states and the dissipation from
the atom via spontaneous emission into the background modes
other than the privileged cavity modes. The central focus is on
the recombination of the two cavity photon modes and on the
investigation of the possibilities to obtain nonclassical states
in the sub-Poissonian regime at a steady state and to study the
robustness of nonclassical states. It is the four-wave mixing
in combination with the suitable choice of the combination
modes that necessarily brings about the two-mode-squeezed
vacuum reservoir. The pair of combination modes is prepared
in the stationary nonclassical state by the dissipation, indepen-
dently of the initial state of the cavity modes.

II. MASTER EQUATION IN THE
DRESSED-ATOM PICTURE

We consider a doubly resonant cavity enclosing a two-
level atom with a ground state |1〉 and an excited state |2〉
(see the inset in Fig. 1). The two (original) cavity modes
a1,2 are coupled with strengths g1,2 to the atom, which is, in
turn, driven by a coherent external field with Rabi frequency
�. The present scheme illustrates a good prospect of the
application of the four-wave mixing. The application of the
external field to a single two-level atom saturates the atomic
transition and causes the separation of the states within an
atomic level and thus the formation of the dressed states [28],

which constitute a ladder of doublets with interdoublet sepa-
rated by the external field frequency and intradoublet spaced
by the generalized (detuned) Rabi frequency of the strong
driving field. In the dressed-atom basis the singly dressed
atomic system becomes a multilevel atom with three different
transition frequencies and four nonvanishing dipole moments
between the neighboring manifolds. The atom-cavity coupling
allows for the intrinsically deterministic photon emission. As
a consequence, the emission into the (original) cavity modes
is enhanced by the resonant coupling with the Rabi sidebands.
This is the underlying physical mechanism referred to as four-
wave mixing [29–37] in our scheme, where the two photons
of the pump modes are transformed into a pair of photons of
two distinct signal modes simultaneously, ensuring no vio-
lation of the conservation of energy. The four-wave mixing
process cannot occur in the scheme involving the interaction
of the atom with a single cavity mode [38–41]. The four-wave
mixing is one of the basic processes and opens an avenue for
the generation of nonclassical light [30,31,34–37].

To be noted, here we invoke not the usual bare-state
representation but the dressed-atom picture [28], which pro-
vides useful insight into the dynamics of this system and the
physical mechanism. Contrary to the master equation in the
bare-state representation shown in Appendix A, the counter-
part in the dressed-state picture is written in terms of the
combination modes as (for more details, see Appendixes B
and C)

�̇ = − i

h̄
[H, �] + Lat� + Lcav�, (1)

where H is written in the form

H =
{

h̄GA1σ+− + H.c., if � > 0,

h̄GA†
2σ+− + H.c., if � < 0.

(2)

Here the combination modes Al are connected to the original
individual operators al through the squeezing transformation
Al = SalS† (l = 1, 2), where the squeeze operator reads as
S = exp(ra1a2 − ra†

1a†
2) [16–18], with tanh r = tan2 β and

β = 1
2 arctan |�|

|�| , � = ω21 − ωL being the detuning of the
atomic resonance transition frequency ω21 from the driving
field frequency ωL. The coupling strength G is written as
G = g

√
cos(2β ), where we assume that |g1| = |g2| = g for

simplicity. σss′ = |s〉〈s′| are the atomic operators, (s, s′ = ±),
where |±〉 are the dressed states [28]

|+〉 = sin θ |1〉 + cos θ |2〉,
|−〉 = cos θ |1〉 − sin θ |2〉, (3)

with tan(2θ ) = |�|/� and |�| � (γ , κl , |gl〈al〉|), (l = 1, 2).
With reference to Eq. (2), the introduction of combination

modes results in the detuning-dependent coherent interaction
of the atom with the quantized radiation fields. The con-
struction of combination modes finds wide application in the
quantum beat laser, multimode squeezed states, and multi-
partite entanglement [42–47]. On the space spanned by the
combination modes, the resulting coherent interaction shows
dependence on the sign of the atom–driving-field detuning,
in analogy with a piecewise function in classical physics.
Moreover, the strength of the coherent interaction is depen-
dent on the ratio of the external driving field Rabi frequency
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(at resonance) to the atom-driving-field detuning. Appar-
ently, this differs from the standard Jaynes-Cummings models
extensively discussed in, e.g., Refs. [38–41]. As shown in
the preceding scenario, the interaction of the dressed atom
with one (the other) combination mode is described by the
Jaynes-Cummings (anti-Jaynes-Cummings) Hamiltonian for
the positive (negative) values of the detuning. This has roots
in the underlying four-wave mixing mentioned above.

The damping term Lat� in Eq. (1) is recast into the form

Lat� =
3∑

j=1

� jD[Oj]�, (4)

where the superoperator D[O]� is defined as D[O]� =
O�O† − 1

2 (O†O� + �O†O). The operators Oj in Eq. (4)
are explicitly given by O1 = σ−+, O2 = σ+−, and O3 =
σ++ − σ−−, with �1 = γ cos4 θ , �2 = γ sin4 θ , and �3 =
γ cos2 θ sin2 θ . The term D[O1]� indicates the spontaneous
emission from the dressed state |+〉 within the upper manifold
to the dressed state |−〉 within the lower manifold, D[O2]�
reveals the incoherent excitation from |−〉 within the lower
manifold to |+〉 within the upper manifold, and D[O3]� rep-
resents the decay of the atomic polarization [48].

The damping term Lcav� is rewritten as

Lcav� = κ (N + 1)
∑
l=1,2

D[Al ]� + κN
∑
l=1,2

D[A†
l ]�

− κM
∑
k �=l;

k,l=1,2

(D[Ak, Al ]� + H.c.), (5)

where D[O1, O2]� = O1�O2 − 1
2 (O2O1� + �O2O1), we as-

sume that κ1 = κ2 = κ . The parameters N and M account
for the effect of the external environment on the modes
A1,2. The effective mean photon number per mode of the
engineered reservoir N takes the form N = sinh2 r and the
intermode correlation function M also signifies the “squeez-
ing” of the reservoir and is given by M = 1

2 sinh(2r).
Furthermore, the squeezing effect of the current reservoir
is enhanced with the decrease in the coupling strength
G in Eq. (2).

As indicated from Eq. (5), the introduction of combination
modes opens up interesting possibilities for the emergence
of the intrinsic two-mode-squeezed vacuum reservoir. With
the suitable choice of the combination modes, the four-wave
mixing yields the two-mode-squeezed vacuum reservoir in
a natural fashion. The reservoir is present on the space
spanned by the pair of the combination modes, but absent
on that spanned by the two (original) individual modes.
There are, in principle, two key quantities characterizing
the squeezed vacua. One is the mean photon number of
the bath vacua, and the other is the magnitude or strength
of the two-photon correlations associated with the phase-
sensitive properties. Both quantities account for the frequency
dependence of the vacuum modal density for the specified
surrounding environment [16–18,38–41], and rest with the
intrinsic property of the environment itself. More often than
not, the functional dependence on the frequency is suppressed
for simplicity. However, for the present scheme, the resultant
squeezing parameter is determined by the external driving

field Rabi frequency (at resonance) and the atom–driving-field
detuning. More importantly, the controllable squeezing pa-
rameter varies continuously from negligibly small to infinitely
large values. This is also applicable to the mean photon
number of the squeezed vacuum and the magnitude of the
two-photon correlations.

It follows from the master equation (1) that in the limit of
|�| → 0 the combination modes A1,2 are prepared asymptot-
ically into the stationary two-mode squeezed vacuum state

|ψ〉ss = S†(|0〉1 ⊗ |0〉2), (6)

which is generated at the rate of κ by the dissipation.

III. LANGEVIN EQUATIONS

In the following, attention is turned to addressing the time
evolution of the field operators for simplicity. Our focus is
first concentrated on the case of � > 0. Having available the
master equation (1) and the cyclic properties of the trace [17],
the Langevin equations for A1,2 are derived as

Ȧ1 = −κ

2
A1 − iGσ−+ + FA1 ,

Ȧ2 = −κ

2
A2 + FA2 ,

(7)

where FA1 and FA2 are Langevin noise operators with vanish-
ing mean values. As a matter of fact, these equations for the
atomic operators contain higher-order terms involving both
field and atomic operators [38–47,49]. This yields a hierarchy
of coupled equations. At steady state, we obtain 〈A2〉 = 0. It
is extremely difficult to obtain the stationary state solution
to the expectation values of the other operators. We proceed
with the case of � < 0. The Langevin equations for A1,2 are
obtainable as

Ȧ1 = −κ

2
A1 + FA1 ,

Ȧ2 = −κ

2
A2 − iGσ+− + FA2 ,

(8)

where FA1 and FA2 are similar Langevin noise operators.
Similarly, we arrive at the stationary solution 〈A1〉 = 0. It is
easily seen that the other steady-state solutions are hard to
obtain by the same token.

IV. INTERMODE CORRELATION

We first focus on the quantum correlation between the two
combination modes. For this purpose, the linear correlation
coefficient is defined as

C = 〈δN1δN2〉√
〈(δN1)2〉 〈(δN2)2〉

, (9)

where Nl = A†
l Al is the photon number operator of the lth

combination mode, (l = 1, 2). C has a lower bound 0 and an
upper bound 1, which are imposed by the Cauchy-Schwarz
inequality. For a two-mode state without intermode correla-
tion, C = 0. This is due to the vanishing covariance 〈δN1δN2〉
in Eq. (9). But for the state |ψ〉ss in Eq. (6), we can easily
obtain the average photon number in the individual combi-
nation mode 〈Nl〉 = N . Correspondingly, the auto and cross
correlations are written in a compact form as 〈δNkδNl〉 = M2,
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FIG. 2. (a) The intermode correlation C and (b) the Mandel Q
parameter as a function of �/γ . The parameters are |�| = 8γ , |g1| =
|g2| = 2γ , and κ1 = κ2 = 3γ .

(k, l = 1, 2). It follows that the pure two-mode squeezed vac-
uum state always takes the maximum value of 1 and thus
exhibits the maximal intermode correlation.

We would like to study the intermode correlation for the
current composite system. As shown in Fig. 2(a), the in-
termode correlation is present over the entire region except
� = 0. Furthermore, the correlation becomes stronger with
the decrease in the magnitude of |�|. In the limit of |�| → 0
due to the relaxation the combination modes are led asymp-
totically to the state |ψ〉ss. As a result, the maximal intermode
correlation emerges asymptotically owing to the mediation of
the reservoir. For the sufficiently large values of the detuning
�, the intermode correlation asymptotically approaches zero
(rigorously C → 0+). This originates from the asymptotic
factorization of the numerator in Eq. (9) in such a situation.

V. SUB-POISSONIAN NUMBER DIFFERENCE

We proceed with the quantum fluctuation of the relative
number, which is connected to the Mandel Q parameter
[24,25,35–37] through the relation

Q = 〈(δN−)2〉
〈N+〉 − 1, (10)

where N± = N1 ± N2, with the denominator representing the
sum of the shot-noise figures of the two combination modes
[25,35–37]. The Mandel Q parameter is a measure of the pho-
ton statistics of a light source, and discloses the departure of
the occupation number distribution from Poissonian statistics.
The positive values of Q correspond to super-Poissonianity,
the zero ones to Poissonianity, and the negative ones to sub-
Poissonianity without any classical analog. The Mandel Q
parameter has a lower bound −1, corresponding to the perfect
squeezing: 〈(δN−)2〉 = 0. The number difference operator is

FIG. 3. The inverse of the Mandel parameters Q1,2 as a function
of �/γ . The parameters are the same as those in Fig. 2.

linked to the state |ψ〉ss through the relation: N−|ψ〉ss = 0.
Therefore, we arrive at 〈(δN−)2〉 = 0. The pure two-mode
squeezed vacuum state has the maximal sub-Poissonian rel-
ative number, i.e., Q = −1.

We move to an exploration of how the sub-Poissonian
relative number persists for the current system. As shown
in Fig. 2(b), the relative number squeezing takes place over
the entire region except � = 0. Moreover, the sub-Poissonian
relative number turns more prominent with the decreasing
values of |�|. In particular, for |�| → 0, we have 〈Nl〉 →
N → ∞ and Q → −1, i.e., both of the combination modes
are, on the one hand, ultrabright, and on the other hand,
possess the ultrastrong number difference squeezing. When
the detuning � is sufficiently large, the Mandel Q param-
eter asymptotically approaches zero (rigorously Q → 0−).
The reason is presented as follows. In this extreme case,
the autocorrelation (viz., the numerator) in Eq. (10) tends to
factorize, and the numerator is ultimately reduced to the sum
of the mean photon occupation number per (combination)
mode. In other words, we are asymptotically left with the
shot-noise limit or standard quantum limit pertaining to the
both combination modes. Therefore, the photon statistics is
approximate to the Poissonianity, or equivalently, the pair of
the combination modes evolves towards the quantum-classical
boundary.

In what follows, we would like to explore the photon
statistics of these two individual combination modes. The
Mandel parameter Ql for the lth combination mode takes
the form as Ql = 〈(δNl )2〉

〈Nl 〉 − 1, (l = 1, 2). For the two-mode
squeezed vacuum state (6), the Mandel parameter of either
combination mode is the same and can easily be shown to
be Ql = sinh2 r. Hence both modes exhibit super-Poissonian
photon statistics, and the symmetry between the pair of com-
bination modes is witnessed. We shall discuss how either of
their photon-counting statistics depends on the current sys-
tem parameters. Obviously, either of the combination modes
possesses the super-Poissonian statistics over the entire region
except � = 0, as shown in Fig. 3. With the decrease in the
values of |�|, the super-Poissonianity is enhanced. In the limit
of |�| → 0, Ql goes to infinity. Likewise at the sufficiently
large detunings, Ql asymptotically goes to zero, i.e., both of
the combination modes behave as the optical fields in the
coherent states.
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VI. VIOLATION OF BELL’S INEQUALITIES

We are now in a position to exploit the Bell test on the two-
mode state for a pair of combination modes A1 and A2. For
this purpose, the Bell inequalities for two modes are mapped
into the counterparts for two qubits through the local un-
conditional transformation. Correspondingly, the single-mode
pseudospin (vector) operator S, analogously to the spin angu-
lar momentum vector, is introduced and comprised of a triplet
of operators S = (S1, S2, S3) as follows [11]:

S1 =
∞∑

n=0

|2n〉〈2n + 1| + |2n + 1〉〈2n|,

S2 = 1

i

∞∑
n=0

|2n〉〈2n + 1| − |2n + 1〉〈2n|,

S3 =
∞∑

n=0

|2n〉〈2n| − |2n + 1〉〈2n + 1|,

(11)

satisfying the Lie algebra [Sj, Sk] = 2iε jklSl and S2
l = 1,

where ε jkl is the Levi-Civita symbol, j, k, l ∈ {1, 2, 3}. For
the two light fields in the combination modes A1 and A2, the
Bell operator is defined as

B = (a · S(1) ) ⊗ (b · S(2) ) + (a · S(1) ) ⊗ (b′ · S(2) )

+ (a′ · S(1) ) ⊗ (b · S(2) ) − (a′ · S(1) ) ⊗ (b′ · S(2) ), (12)

with a, b, a′, and b′ denoting unit vectors in the real three-
dimensional space and S(l ) being the pseudospin operator of
the lth combination mode, (l = 1, 2). The local hidden vari-
able theory imposes the Bell’s inequality

|〈B〉| � 2, (13)

where the angle brackets stand for the averaging over a
given two-mode quantum state. The Bell’s inequalities in the
infinite-dimensional Hilbert space are realized through the
joint measurement on dichotomic observable S, in an analogy
to the case for the spin formalism.

We proceed to uncover the nonlocality of the light field
in the combination modes, and thus invoke the Horodecki
nonlocality criterion [7]. The nonlocality is guaranteed if the
following inequality is satisfied:

Bmax = 2
√

u1 + u2 > 2, (14)

where u1 and u2 are two largest eigenvalues of the matrix
U = VT V, with the superscript “T ” representing the trans-
position and the elements of matrix V taking the form Vkl =
〈S(1)

k ⊗ S(2)
l 〉, (k, l = 1, 2). Once the inequality (14) holds,

the two-mode quantum state in question displays quantum
nonlocality for some vectors a, b, a′, and b′. The maximal
Bell violation corresponds to the upper bound 2

√
2, which

is predicted by quantum mechanics [4]. It is easy to obtain
Bmax = 2

√
1 + tanh2(2r) with respect to the state |ψ〉ss in

Eq. (6). This is shown by the black dash-dotted line in Fig. 4. It
follows that the pure two-mode squeezed vacuum state always
violates the Bell’s inequalities and hence exhibits nonlocal
feature. In the limit of r → ∞, such state approaches the
original EPR state. As a consequence, Bmax is convergent to
the maximum value 2

√
2.

FIG. 4. Bmax as a function of �/γ . The parameters are the same
as those in Fig. 2. The red dotted line stands for the limit set by
quantum mechanics, the green dashed line for the limit set by the
local hidden variable theory, and the black dash-dotted line for the
idealized two-mode squeezed vacuum state (6).

We turn to studying the question as to what extent
the nonlocal correlations of the two combination modes
should hold when going towards “classical” systems. For
the negligibly small detuning, the two-mode state under
consideration is close to a pure one. With the increase in
the detuning, the combination modes evolve into the mixed
states. As depicted in Fig. 4, Bmax is larger than 2 in the
region −1.286 � �/γ � 1.286 excluding � = 0. This
discloses the formation of quantum nonlocal states of the
two combination modes. In particular, for |�| → 0, Bmax

converges to the maximum value of 2
√

2. The combination
modes are eventually pulled by the dissipation into the EPR
state which maximally violates the Bell’s inequality (13).
Beyond the aforementioned parameter regime, one cannot
achieve the violation of the Bell’s inequalities.

We are now in a position to review the quantum cor-
relations which attract wide interest not only due to their
fundamental importance in quantum mechanics, but owing
to their promising applications in high-efficiency quantum
computation and quantum information tasks. There exists a
hierarchy of distinct types of quantum correlations, including
quantum entanglement, EPR steering (also called quantum
steering), and Bell nonlocality. The EPR steering serves as
a bridge between the entanglement and the Bell nonlocality
in quantum mechanics, and is viewed as the subtle intermedi-
ate quantum correlation in between. Quantum entanglement,
quantum steering, and Bell nonlocality all originate from the
famous EPR Paradox or “spooky action at a distance” [1],
and have no classical counterparts. Not every entangled state
is steerable and not all steerable states lead to the violation
of Bell’s inequality [50]. In other words, all steerable states
are entangled, and Bell nonlocality exhibits steering, but not
vice versa [12,51–55]. In the language of sets, the steerable
states are a strict subset of the entangled states, and a strict
superset of the nonlocal Bell states [52]. With reference to
Fig. 4, the Bell violation makes it impossible to interpret the
nonlocal correlation between the outcomes of measurement
on the composite system consisting of the two orthogonal
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combination modes by use of the local hidden variable theory.
Furthermore, the Bell nonlocality implies the two-way EPR
steering of the combination modes, and the EPR steering
signifies the entanglement between the combination modes.
However the reverse is not true [51].

We proceed to identify the difference between the inter-
mode correlation (9) and the entanglement. The intermode
correlation (9), which obeys the Cauchy-Schwarz inequal-
ity, possesses a classical analog and always has nonnegative
values ranging from zero to unity. In a marked contrast,
the quasiprobabilities necessarily exhibit negative values for
the entangled states [56]. In the field of quantum optics,
the negative probability is often employed as an indicator of
nonclassicality with regard to the classical statistics [16–18].
The negative probability approach reveals the contradiction
between the classical and quantum predictions on the Bell’s
theorem [2]. The intriguing correlations are found to be
stronger than can be interpreted classically. As a fundamen-
tal aspect of quantum mechanics, the violation of the Bell’s
inequalities occurs [57]. The quantum nonlocality is part of
a hierarchical structure, i.e., the entangled states constitute a
superset of steerable states which, in turn, form a superset
of the quantum states with Bell nonlocality. As a classical
correlation, the intermode correlation is a necessary condition
to exhibit the Bell nonlocality but not a sufficient one. As a
consequence, the intermode correlation exists for a large range
of detunings but violation of Bell’s inequality only happens
for a very narrow range of detunings near zero, as shown in
Figs. 2(a) and 4.

Before conclusion, we shall make a remark on the advan-
tages of our scheme as follows.

(i) The desired nonclassical state is generated without
use (or preparation) of the initially squeezed or entangled
sources. Hence no sophisticated experiments is necessitated.
Our model may be easier to implement in the laboratory. The
pair of original individual cavity modes is coupled directly to
the ordinary vacua instead of one or two squeezed vacua, as
described by the cavity damping terms in the master equa-
tions in Appendixes A and B. Apparently, this is contrary
to the schemes in the literature [38–41], where a single-
mode squeezed vacuum is injected into the cavity through
the (leaky) output end mirror, and hereby of interest are the
effects of the squeezed vacuum on the power spectrum of
the scattered radiation and the second-order intensity corre-
lation function of the fluorescent light radiated by the atom
into the background modes other than the privileged cavity
mode. While the measurement of the fluorescence spectrum
unveils the information on the first-order correlation function
of the light, the measurement on the second-order correlation
function discloses the bunching or antibunching effect of the
light field. The two-time intensity correlation function of the
fluorescent field can be expressed in light of the atomic cor-
relation function [17]. The well-known photon antibunching
effect was found in the atomic resonance fluorescence [58].
This is attributed to the quantum nature of the scattering. The
detection of one photon pulls the atom into the ground state,
so it is very unlikely that another photon emitted from the
atomic excited state will be detected simultaneously (with
no time delay). While the photon antibunching and sub-
Poissonian photon statistics discloses the quantum nature of

light, the photon antibunching has a subtle relation to the sub-
or super-Poissonian photon-counting statistics. The photon
antibunching characterizes the tendency of the photons from
a light field to be more equally spaced than those from a
coherent laser field. The light beam(s) with the sub-Poissonian
photon statistics has (have) less intensity noise compared to
the shot-noise figure(s) associated with the beam(s). On the
one hand, the sub-Poissonian statistics need not imply photon
antibunching, but can be associated with bunching [24]. On
the other hand, the antibunching does not necessarily signify
sub-Poissonian statistics [27]. While the fluorescence photons
always have a tendency to be further apart more frequently
than close together, this is not true for the photons in the cavity
modes [59]. In addition, it is worth noting that the preparation
of the initially squeezed or entangled sources is required in
the scheme for the quantum state transfer between the flying
photons and stationary atoms [60–63].

(ii) The decoherence pulls the combination modes into
the strongly sub-Poissonian nonlocality of radiation by the
dissipation. On one side, the decoherence has a tendency to
cause the transition from quantum to classical. The explo-
ration of the nonclassical states paves the way for gaining
a deep insight into the quantum-classical boundary. On the
other side, the decoherence makes possible the generation of
a highly Bell nonlocality in the sub-Poissonian regime as the
steady state. It should be noted that either of the combination
modes exhibits super-Poissonian statistics while their inten-
sity difference noise is reduced to below the shot-noise limit.
The desired nonclassical state cannot be achieved without the
dissipation of the combination modes. The four-wave mixing
process in combination with the suitable choice of the com-
bination modes gives rise to the two-mode squeezed vacuum
reservoir, responsible for the emergence of the nonclassicality.
Moreover, the nonclassical state is created deterministically
by use of the system parameters, which is distinct from those
dependent on the probabilistic measurements [64–66]. In this
sense, this is an instance of decoherence-assisted formation
of the nonclassical states within the framework of cavity
quantum electrodynamics. Our scheme is an important step
towards the secure quantum communication protocols with
the atom-photon interfaces.

VII. CONCLUSION

It is shown how the bright source of strongly sub-
Poissonian nonlocality is achieved at steady state. The central
focus is on recombining the two photon modes within the
cavity and exploring the resultant correlation in the stable
state. The physics behind is the four-wave mixing. It is the
four-wave mixing process combined with the suitable choice
of the combination modes that contributes to the engineered
reservoir in the two-mode squeezed vacuum state, and hence
enables the generation of bright light beams with strongly
sub-Poissonian nonlocality by the relaxation of the dissipative
dynamics.
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APPENDIX A: MASTER EQUATION IN THE
BARE-STATE REPRESENTATION

The time evolution of the current composite system can be
described by the reduced density operator ρ, which obeys the
master equation in an appropriate rotating frame and in the
dipole approximation as

ρ̇ = − i

h̄
[H1 + H2, ρ] + Lspρ + Lcavρ, (A1)

where the Hamiltonians take the form

H1 = h̄�σ22 + h̄

2
(�σ21 + �∗σ12),

H2 = h̄(g1a1σ21 e−iδ1t + g2a2σ21 e−iδ2t ) + H.c.
(A2)

Here H1 stands for the free Hamiltonian for the atom and
the coupling of the atom to the external field, and H2 describes
the interaction of the atom with the cavity fields. al and a†

l
are the annihilation and creation operators. σkl = |k〉〈l| are the
usual atomic operators (k, l = 1, 2). � = ω21 − ωL is the de-
tuning of the atomic resonance transition frequency ω21 from
the driving field frequency ωL. δl = νl − ωL are the detunings
of the cavity-mode frequencies νl from the driving field fre-
quency ωL. Lspρ and Lcavρ represent the damping of the atom
by spontaneous emission with the rate γ and that of the cavity
fields al by cavity decay with the rates κl , and take the form

Lspρ = γD[σ12]ρ,

Lcavρ =
∑
l=1,2

κlD[al ]ρ, (A3)

where the superoperator D[O]ρ is defined as D[O]ρ =
OρO† − 1

2 (O†Oρ + ρO†O).

APPENDIX B: MASTER EQUATION IN THE
DRESSED-STATE PICTURE

We would like to eliminate the exponential factors of
the Hamiltonian H2 in Eq. (A2) through a unitary transfor-
mation. For this purpose, we make the substitution |1〉 →
|1〉 eiφ0 , a1 → a1 ei(φ0−φ1 ), and a2 → −a2 ei(φ0−φ2 ), where
φ0 = arg(�), φl = arg(gl ), (l = 1, 2). The dressed states are
obtained, see Eq. (3) in the main text. The eigenenergies are
E± = h̄λ±, with λ± = 1

2 (� ± �R) and �R =
√

�2 + |�|2.
Thus the Hamiltonian H1 in Eq. (A2) is transformed to the
diagonal form as H1 → H̃1 = h̄λ+σ++ + h̄λ−σ−−.

Here we are confined to the case of δ1 = −δ2 = �R. We
then perform the unitary transformation with the unitary op-
erator U = exp(− i

h̄ H̃1t ), and ignore the rapidly oscillating
terms. The master equation is derived in the dressed-state
picture as

�̇ = − i

h̄
[Hr + Hb, �] + Lat� + Lcav�, (B1)

where � = UρU†, Hr , and Hb are written in the form

Hr = h̄g̃1a1σ+− + H.c.,

Hb = h̄g̃2a†
2σ+− + H.c., (B2)

with g̃1 = |g1| cos2 θ and g̃2 = |g2| sin2 θ . The damping terms
in the master equation (A1) are cast into the form

Lat� =
3∑

j=1

� jD[Oj]�,

Lcav� =
∑
l=1,2

κlD[al ]�, (B3)

where Oj and � j are explicitly shown in the main text.

APPENDIX C: CONSTRUCTION OF THE
SQUEEZE OPERATOR

This section is dedicated mainly to constructing the two-
mode squeeze operator in attempt to gain a deep insight into
the dynamics and physical mechanism. Without loss of gener-
ality, we are concerned with the consumption of |g1| = |g2| =
g, and arrive at

Hr + Hb = h̄g(a1 cos2 θ + a†
2 sin2 θ )σ+− + H.c. (C1)

In what follows, we shall discuss three cases in terms of the
dressed states (3) in the main text.

(i) � > 0, i.e., θ = θ1 ∈ (0, π/4).
We first define tanh r1 = tan2 θ1 < 1 and then obtain

Hr + Hb = h̄g
√

cos(2β1) A1σ+− + H.c., (C2)

where the combination mode A1 takes the form

A1 = a1 cosh r1 + a†
2 sinh r1, (C3)

with β1 = 1
2 arctan( |�|

�
) .

(ii) � < 0, i.e., θ = θ2 ∈ (π/4, π/2).
We define tanh r2 = cot2 θ2 < 1 and find

Hr + Hb = h̄g
√

| cos(2θ2)| A†
2σ+− + H.c.

= h̄g
√

cos(2β2) A†
2σ+− + H.c., (C4)

where the combination mode A2 is given by

A2 = a2 cosh r2 + a†
1 sinh r2, (C5)

with β2 = 1
2 arctan( |�|

|�| ).
It is easy to see

tanh r1 = tanh r2 = tan2 θ1 = cot2 θ2, (C6)

for a fixed value of |�| with opposite sign of the detuning
�. Here we invoked the trigonometric identities arccot(−x) =
π − arccot(x) and arctan(x) + arccot(x) = π/2, (x ∈ R). Fi-
nally, the two combination modes of concern are written as

A1 = a1 cosh r + a†
2 sinh r,

A2 = a2 cosh r + a†
1 sinh r,

(C7)

where tanh r = tan2 β, with β = 1
2 arctan |�|

|�| . The pair of
modes Al is connected to the original individual operators al

through the relation Al = SalS† (l = 1, 2), where the squeeze
operator of concern is expressed in the form

S = exp(ra1a2 − ra†
1a†

2). (C8)
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It is apparent to obtain

Hr + Hb =
{

h̄GA1σ+− + H.c., if � > 0,

h̄GA†
2σ+− + H.c., if � < 0,

(C9)

which is, in essence, equivalent to Eq. (2) in the
main text, together with G = g

√
cos(2β ). Furthermore,

the second equation in Eq. (B3) can be reexpressed
in terms of Eq. (C7) as the same form as that
in Eq. (5).

(iii) � = 0, i.e., θ = π/4.
In this case we cannot achieve the two-mode squeeze oper-

ator or squeezing transformation.
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