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Focusing of Smith-Purcell radiation from a two-dimensional particle array in the prewave zone
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A generalized theory of Smith-Purcell radiation (SPR) from a two-dimensional (2D) array of subwavelength
particles is presented. Unlike most theories of SPR, this one is valid in the prewave zone and the near zone. We
have obtained a generalized dispersion relation that determines the points of concentration of radiation in the
prewave zone rather than in the ordinary directions of propagation of the most intense radiation; in the wave
zone, the dispersion relation transforms into the ordinary one. Analytically, we derived that it is the parabolic
law that describes how the individual elements should be arranged for the most intense radiation to be achieved.
Interestingly, for the ultrarelativistic limit, the parabolic law turns into the hyperbolic one. Therefore, to focus the
radiation from ultrarelativistic electrons in the prewave zone, a hyperbolically arranged 2D grating should be used
instead of a rectangular one. Our findings suggest that the radiation intensity at a point of focus in the prewave
zone can be sensitive to numerically very small changes in the locations of the individual constituent elements
of the array determining the topology—the way the array’s elements are arranged. The theory is constructed for
particles with arbitrary dielectric properties, including metal ones; numerical analysis has been performed for
dielectric particles.
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I. INTRODUCTION

Smith-Purcell radiation (SPR) is emitted when electrons
move above a periodic structure [1–3]. The fact that the elec-
trons do not scatter on the target makes SPR very attractive not
only for nondestructive diagnostics [4–7] of relativistic and ul-
trarelativistic electron beams, but also for developing on-chip
radiation sources based on non- and moderately relativistic
electrons [8–13] (see also a fresh comprehensive review [14]).

One of the most modern trends in current research of free-
electron radiation is the problem of its shaping. The schemes
for radiation beam shaping were proposed for radiation in the
microwave [9], terahertz [15], optical [10,11], and recently
in the x-ray regime [16]. These proposed schemes are using
SPR from custom aperiodic gratings [12]. The most common
proposal, which was also recently demonstrated experimen-
tally in the optical regime [11], relied on a grating with a
chirp: a metagrating can serve for the emission of converging
wavefronts, with different wavelengths converging at different
positions. In [17,18] the directions in which Cherenkov radi-
ation could be concentrated are investigated, using conelike
targets, while in [13] a focused broadband transition radiation
was explored for the structure designed to effectively mimic
a porous hemispherical geometry using an engineered planar
lens.

All the above-mentioned studies, however, are based on
consideration of radiation in the wave zone remote from the
radiating structure. It is correct, for example, for diagnostics
of moderately relativistic beams, or when we need to know
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only the radiation characteristics far from the grating. Still, in
many applications the characteristics of radiation are required
in more near zones: e.g., when the radiation from an on-chip
source is used to transfer the signal to the nearby vicinity, or
when we need to concentrate the radiation in a certain point
at an arbitrary distance from the radiation source. The only
exception we know of is reported in Ref. [19], in which the
qualitative way was proposed to estimate the concentration
of radiation at a certain point that could be not in the wave
zone only; yet this qualitative consideration does not describe
analytically or experimentally the emitted field in these con-
ditions, intensity, and other radiation characteristics.

Below, we study the characteristics of SPR in the prewave
and near zones from relativistic electrons, and analyze the
opportunity to control the focusing of SPR, tailoring the struc-
ture of a radiating periodic, or near-periodic, two-dimensional
(2D) array constructed of separated subwavelength particles.
The array can be realized on the submicrometer scale, which
supports the optical range, and on the submillimeter scale,
which corresponds to terahertz radiation.

II. SMITH-PURCELL RADIATION
IN THE PREWAVE ZONE

For a long time SPR was studied only for one-dimensional
(1D) systems—i.e., diffraction gratings periodic only along
one direction. Comprehensive information about associated
experiments and theoretical models can be found in the mono-
graphs [2,3]; the major properties of SPR can be seen from the
dispersion relation,

dx(β−1 − cosθ ) = sxλ, sx = 1, 2, . . . , (1)
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which links the only grating period dx and the relative velocity
of the charge β with the wavelength of radiation λ and the
polar angle θ . The natural number sx is called the diffraction
order. As the maximum of radiation lies in the plane perpen-
dicular to the grating surface and parallel to the particle’s
trajectory, the dispersion relation in Eq. (1) can be supple-
mented by the equality of the azimuthal angle of propagation
φ to zero:

φ = 0. (2)

From the dispersion relation it follows that contrary to
usual diffraction radiation, SPR has a strictly ordered spectral-
angular distribution of energy: along each direction there is
a set of quasimonochromatic lines corresponding to different
diffraction orders. One can easily tune the spectral and spatial
properties of SPR, adjusting two parameters in Eq. (1): dx and
β. Therefore, by means of the Smith-Purcell mechanism it is
possible to get radiation in a wide spectral range, including
THz [20], which is not so easy to achieve using traditional
sources.

Most of the theoretical approaches describing SPR, in-
cluding those mentioned above, however, are valid only in
the wave (far) zone: the distant area where radiation has the
properties of that from a point source. In a relativistic case, for
transition radiation it was found that the boundary of the wave
zone moves away from the source of radiation linearly with
the wavelength λ and quadratically with the Lorentz factor of
the charge γ [21]. The same applies to diffraction radiation.
Therefore, for long wavelengths and ultrarelativistic electrons
(or other charged particles), the wave zone of SPR might be
quite large.

The specific criterion for the distance r from a source of
SPR, corresponding to the wave zone, was established by
Karlovets and Potylitsyn [22]:

r � �. (3)

As expected, the quantity � is determined by the direction,
the wavelength of radiation, and the Lorentz factor. In addi-
tion, � depends on both the longitudinal L and transverse M
dimensions of the 2D array, which we call below a 2D grating
as well:

� = max

(
L2sin2θ

λ
,

ε2cos2φ

λ

)
, (4)

where

ε = min (M, γ λ) (5)

corresponds to the effective transverse size of the radiating
region. Therefore, Eq. (5) generalizes both cases: when the
Coulomb field of radius γ λ covers the grating completely, and
only partially.

At distances r < � a complex structure of radiation mani-
fests itself due to the finiteness of the grating, and Eqs. (1) and
(2) are no longer applicable. The vicinity of a source (r < λ),
where the nonradiative nature of the field prevails, is usually
called the near zone. To designate the region between the wave
zone and near zone (λ � r < �) we use the term “prewave
zone” proposed by Verzilov in regard to transition radiation
[21]. Criterion equation (3) actually has a well-known analog

FIG. 1. Scheme of a 2D rectangular grating with a passing
electron.

in optics, separating the Fresnel and Fraunhofer diffraction
zones [23].

For a better representation of the quantity �, below we
give some examples. According to Eq. (4) for a 5 cm long
grating and 1 mm wavelength of radiation, the parameter �
is equal to or more than 2.5 m in the direction normal to the
surface of the grating. This means that for the radiation to be
registered in the wave zone, a detector should be located at
least at a distance of r � 2.5 m from the grating. Moreover, in
the case of ultrarelativistic electrons, � reaches tens of meters
for the THz range of radiation. These estimates show that it
might be complicated to locate a detector in the wave zone
due to simple space limitations for an experimental setup, or
an additional optical system might be needed. Therefore, the
construction of the prewave zone theory is of great impor-
tance.

In fact, Ref. [22] presents such a theory, based on the
simple Huygens-Kirchhoff principle, which limits to some
extent its applicability, still leaving its results interesting and
important. For an ordinary 1D grating of an ideal conductor it
predicts spatial and spectral broadening of radiation peaks.

Presently the study of SPR in its wave zone has extended to
targets of different topologies. For instance, Ref. [24] contains
the theory of SPR from a bigrating surface, and Ref. [25]
is devoted to diffraction radiation from aligned nanometer
particles. Two-dimensional rectangular arrays of holes and
wells have been also considered recently [26,27].

The grating we are investigating in this paper is just both
2D and dotted: it is an array of identical subwavelength par-
ticles located in a plane. Previously, in Refs. [28,29], we
constructed the theory of SPR in the wave zone for a particular
case of such a grating—a 2D rectangular grating (see Fig. 1).
We demonstrated that in the case of a 2D rectangular grating
SPR keeps its main features, but a certain complication of the
diffraction pattern occurs, so the relation in Eq. (2) should be
replaced by

dy sin θ sin φ = syλ, sy = · · · ,−2,−1, 0, 1, 2, . . . , (6)

where dy is the second period of the grating and the integer sy

is the associated diffraction order.
In contrast to the 1D case, the radiation intensity maxima

are no longer concentrated near a certain single surface. This
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spatial complex structure of radiation is believed to provide
additional information for the beam diagnostics, better tuning,
and control of radiation generation.

Below we present the theory of SPR generated from a 2D
grating of subwavelength particles, valid in the prewave zone
and the near zone. We also derive analytically the expression
that describes how to arrange the elements of a 2D grating to
focus SPR in the prewave zone.

III. THEORY OF SMITH-PURCELL RADIATION
FROM SUBWAVELENGTH PARTICLES

The theory for the wave zone of the SPR generated by
a 2D grating of subwavelength particles was constructed in
[28,29]. For the theory to be extended to the prewave zone,
and even for the near zone, it becomes possible to use the
same approach. Now, however, we should take into account
the terms that are no longer negligible at finite distances from
the grating. Below we outline the concept of the theoretical
model for the SPR from subwavelength particles.

We assume that only a single charge e is passing over the
grating. Such one-particle consideration will make it possible
in the future to describe the beam profile in detail. Using
microscopic Maxwell’s equations one can always express
electric E and magnetic H fields via the total current density
jtot . These relations are simpler for the Fourier transforms in
variables (q, ω):

E(q, ω) = −4π i

ω

q(q · jtot (q, ω)) − k2jtot (q, ω)

q2 − k2
, (7)

H(q, ω) = 4π i

c

[
q × jtot (q, ω)

]
q2 − k2

, (8)

where c is the speed of light in vacuum and k is the wave
number, which is equal to ω/c. The problem is that the current
density, in turn, is determined by the electromagnetic fields.
To obtain the solution analytically, we can simplify this inter-
connection. The total current density consists of two parts: the
current density of the passing charge j0 and the current density
j excited in the grating. We can assume the passing charge e to
be free, neglecting its energy loss during interaction with the
grating,

j0(r, t ) = evδ(r − r0 − vt ), (9)

where v is the constant velocity of the charge, r0 is its initial
position, and δ is the Dirac delta function.

At the distances large in comparison with the size of sub-
wavelength particles we still can use the dipole approximation
to describe the other part of the current density,

j(r, t ) = ∂

∂t

∑
m

dm(t )δ(r − rm), (10)

where dm is the dipole moment of the particle with index m
located at the point rm; the sum is over all N particles the
grating consists of. It is easy to establish the form of the
dipole moments after introducing one more approximation: if
the interaction between the particles is negligible then every
dipole moment is determined by the free charge’s Coulomb
field E0 only:

dm(ω) = α(ω)E0(rm, ω), (11)

where α is the polarizability of the particle.

For the charge e with initial position r0 = (0, 0 , h) mov-
ing along the OX axis, the spectral Fourier transform of the
Coulomb field E0 is given by

E0(r, ω) = exp

(
i
kx

β

)
eω

πv2γ

×
{
−iK0

(
ρω

vγ

)
ex + γ K1

(
ρω

vγ

)
ρ

ρ

}
, (12)

where K0 and K1 stand for the modified Bessel functions of
the first kind and of the zero and first orders, ρ = (0, y, z−h),
and ex is the unit vector along the OX axis.

Calculations of the inverse Fourier transform of Eqs. (7)
and (8) read

E(r, ω) =
∑

m

dm

(
k2

Rm
+ ik

R2
m

− 1

R3
m

)
eikRm

+
∑

m

Rm(Rm · dm)

(
− k2

R3
m

− 3ik

R4
m

+ 3

R5
m

)
eikRm ,

(13)

and

H(r, ω) = ik
∑

m

(dm × Rm)

(
ik

R2
m

− 1

R3
m

)
eikRm , (14)

with Rm = r − rm and dm ≡ dm(ω).
Since no assumptions have been made about the relation of

the distance r to the dimensions of the radiating system or to
the radiation wavelength, Eqs. (13) and (14) are applicable for
all zones (wave, prewave, near).

It is easy to verify that the obtained general equation (13)
agrees well with the theory for the wave zone [28,29]. Indeed,
at far distances (kr � 1) Eq. (13) reads

E(r, ω)|kr�1 =
∑

m

k2

R3
m

[Rm × (dm × Rm)]eikRm . (15)

For r � L, M Rm should be expanded into a Taylor series:

Rm = r − (rm · n) + |rm × n|2
2r

+ . . . , (16)

where n is a unit vector along r. From Eq. (16) is easy to see
how the wave zone criterion is obtained: if Eq. (3) is fulfilled,
then, in the argument of the exponent in Eq. (15), one can
neglect all the terms of the expansion of Eq. (16) but for the
two first linear terms. Finally, for the wave zone we obtain

E(r, ω)|r��

= k2

r
eikr

[(
n ×

∑
m

dme−ik(n·rm )

)
× n

]
, (17)

which coincides with the results of [28,29].
The theory constructed here does not consider interaction

between the particles. It means that the influence from the
neighboring particles is negligible, which needs the condition

(Rparticle/Rbetween )3 � 1 (18)

to be fulfilled; here Rparticle is the size of the particle and
Rbetween is the distance between two neighboring particles. For
Eq. (18) is correct for the particles made of the material with
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a not too high dielectric constant; in a more general situation,
this criterion depends on the value of the dielectric constant.
Interestingly, this estimation leads to the very close, qualita-
tively and numerically coinciding results both for the case of
only two interacting particles (see Eqs. (10)–(12) in [30] and
the conditions when the key coefficients V and W in Eq. (12)
in [30] differ from unity), and for N � 1 interacting particles
[31] (in this case it is called a local field effect; see the denom-
inators in Eq. (21) in [31]). Yet, in the case of conditions of a
resonance, the interaction between particles becomes crucial
[30,31], especially when the distance between particles is sub-
nanometers, when the quantum regime of tunneling changes
the electromagnetic properties of coupled systems drastically
[32]. In this study we do not consider the interaction be-
tween individual particles composing the 2D array, meaning
that the distances between the particles considerably exceed
nanometers, and that the particles are not in conditions of
a resonance that require very fine, well-selected parameters.
Besides theoretical estimations in [30,31], we demonstrated
that the theory based on the assumption about noninteracting
particles in a 2D array similar to the one considered here is
able to describe the experimental data with very high precision
[33].

Let us now calculate the radiation according to Eqs. (13)
and (14) and discuss the properties of SPR from a 2D ar-
ray in the prewave zone. In practice, of most interest is
the region free of the moving electrons and their Coulomb
field (r � γ λ). This region corresponds to the prewave zone.
Therefore, in this paper we restrict our analysis to the prewave
zone and leave the discussion of the near zone for the future.

To illustrate the characteristics of the radiation in the pre-
wave zone we calculate the amount of energy passing through
a sphere of finite radius r with a 2D grating in its center per
unit solid angle and per unit frequency interval,

d2W (r, ω)

d (h̄ω)d�
= cr2

h̄
Re(n · [E(r, ω)×H∗(r, ω)]), (19)

where H∗ is the complex conjugate of H.
Below we consider the radiation from a 2D rectangular

grating having Nx rows along the OX axis and Ny rows along
the OY axis. The polarizability of the particles α is assumed to
be constant in the frequency range under consideration, which
is reasonable until we are far from resonances caused by the
denominators of α; for Fig. 2 we took the polarizability of a
spherical particle of radius a = 0.1 mm made of material with
the dielectric constant equal to 2.

Figure 2 demonstrates the angular dependences at four
different distances: 23 m, 230 cm, 576 mm, and 72 mm. The
first (black solid line) corresponds to the explicit wave zone;
the second (blue dashed line) is equal to the parameter � − a
critical distance delimiting the wave and prewave zones [see
Eq. (4)]; the third (green dotted line) is equal to γ 2λ; and the
last one (red dash-dotted line) is 3γ λ − the shortest distance
from the grating at which space can still be considered free of
the Coulomb field.

At the distance r = � the radiation is close to that in
the wave zone: the main peak decreases and broadens, but
insignificantly. At the distance r = γ 2λ these changes become
essential: the peak is twice as low, and the width is twice as

FIG. 2. The polar distribution of SPR at four different distances
r. Parameters: λ = 1 mm, φ = 3◦, dx = 3 mm, dy = 2 mm, Nx = 17,
Ny = 13, h = 1 mm, α = 25×10−5 mm3, γ = 24.

large. Finally, at the distance r = 3γ λ, the radiation loses the
form of pronounced peaks characteristic of the wave zone.

Similarly, the radiation intensity given by Eq. (19) behaves
in the spectral region; see Fig. 3. In the prewave zone radiation
is significantly less monochromatic than in the wave zone. In
contrast to the angular dependence, the spectral intensity peak
not only broadens with decreasing r, but also becomes asym-
metric. In fact, this asymmetry is present in the wave zone as
well, both due to the factor k6 and the Coulomb field depen-
dence on k through the Bessel functions. The broadening of
the peak in the prewave zone only reveals this asymmetry.

These prewave zone effects for a 2D grating are very
similar to the conventional grating effects described in [22].
The spectral and spatial broadening of radiation peaks in the
prewave zone is a common feature of both transition and
diffraction radiation. This is called the “defocusing effect,”
which is characteristic of the prewave zone.

FIG. 3. The spectral distribution of SPR at four different dis-
tances r. Parameters: θ = 90◦, and the others (except for the λ) are
like in Fig. 2.

043515-4



FOCUSING OF SMITH-PURCELL RADIATION FROM A … PHYSICAL REVIEW A 108, 043515 (2023)

IV. GENERALIZED DISPERSION RELATION

For the radiation to be maximum at the point of observa-
tion, the phase difference between the signals from a fixed
particle of the grating and all the others must be a multiple of
2π . For convenience, we fix the particle with index “1” and
place it in the origin of the coordinate system (R1 = r). The
condition for the maximum of radiation then might be written
as a system of N−1 equations for the radius vector r,

β−1xm + Rm = r + smλ, m = 2, 3, . . . , N, (20)

where sm is an arbitrary integer, individual for every particle
(but not necessarily unique).

Unlike the conventional dispersion relations valid for the
wave zone, the solutions of Eq. (20), if they exist, define not
only directions of the most intense radiation, but the points of
its concentration in the prewave zone and the near zone. This
generalized dispersion relation contains the location of every
single particle.

To verify that for a 2D rectangular grating system, (20)
transforms into the conventional dispersion relations in the
wave zone, we can use the Taylor series expansion of Rm

again. Then Eq. (20) might be written as follows:

β−1xm − (n · rm) = smλ, m = 2, 3, . . . , N. (21)

In a rectangular grating with periods dx and dy the radius
vector of a particle rm is expressed as

rm = mxdxex + mydyey, (22)

with integers mx and my being the numbers of rows along the
grating axes. Then Eq. (21) reads

mxdx(β−1 − cos θ ) − mydy sin θ sin φ = smλ,

m = 2, 3, . . . , N. (23)

This system of N−1 equations is absolutely equivalent to
a system of two dispersion relations; see Eqs. (1) and (6):

dx(β−1 − cos θ ) = sxλ

dy sin θ sin φ = syλ. (24)

Indeed, any equation of the system in Eq. (23) is just a
linear combination of the two equations from Eq. (24).

V. RADIATION FOCUSING

From the dispersion relations it is easy to perceive the
reason of the defocusing effect: if a 2D rectangular grating
fulfills Eq. (21) for an infinitely distant point, then it princi-
pally cannot fulfill Eq. (20) for a finite distant point in the
same direction due to the appearance of additional terms of
expansion in Eq. (16). The conditions for the pure interference
are broken, both for the constructive and destructive one. As a
result, SPR intensity peaks decrease and broaden.

From this consideration, we can propose how to suppress
the defocusing effect in the prewave zone. Usually, additional
and special optics is used for that (using lenses [34] or con-
cave mirrors [35]), but it is possible to achieve the same or
even better effect (better, because there will be no distortion
from additional optical elements) based on rearranging the
positions of the individual particles that make up a 2D array.

For solid nonperiodic gratings (which exclude considera-
tion of SPR), there is a way close to what we suggest in this
study: to change the form of the target so that the radiation
from it could be concentrated. The focusing of transition radi-
ation of relativistic electrons with parabolic surfaces was first
proposed by Ryazanov and Tilinin [36], who used an analogy
with optic devices. Although their pioneering paper [36] was
about focusing of the radiation at large distances, much later
this effect of focusing was explored to suppress the prewave
zone effect. This effect was verified experimentally for the
electrons of moderate energy [37], and after that the focusing
with concave [38] and spherical [39] targets was investigated
as well. The only study for a periodic structure (1D, a con-
ventional diffraction grating), applicable for focusing of SPR,
was conducted experimentally by Naumenko with coauthors
for a parabolic geometry [40]. In [41] we also attempted to
consider the spherical geometry for the SPR focusing, but the
effect was almost invisible, and below we show why: the law
of arranging the particles’ locations proves to be nonspherical.

The idea to change the target form to suppress the prewave
zone effect seems to be the most prospective and interesting,
as this method does not bring frequency limitation and does
not require an additional focusing system, bringing additional
distortions. Although in [37–40] successful radiation focusing
was reported, the question about the choice of topology of
the target remains open (parabolic, hyperbolic, spherical?, or
another form?). Thus, the topology of the focusing grating for
SPR is an open problem; for the 2D gratings (like photonic
crystals, including photonic crystal slabs, metagratings, meta-
surfaces) this problem has not been considered yet. Below, on
the basis of the theory constructed above, we investigate this
issue. We will proceed from the fact that Eq. (20) makes it
possible not only to determine the points in space at which
the radiation is maximal, but, vice versa, to find the grating
topology, in which the radiation is maximum at the selected
point.

If we square Eq. (20) with a fixed sm and consider it as an
equation for rm, it turns out to determine one of the two sheets
of a circular hyperboloid:

(ym − y)2

b2
m

+ (zm − z)2

b2
m

− (xm − am)2

γ 2β2b2
m

= −1xm < β(r + λsm), (25)

where

am = βγ 2(r + smλ − βx),

bm = γ (βr + βsmλ − x). (26)

One can see that the major axis of the hyperboloid sheet
is parallel to the particle’s trajectory. The surface is concave
towards the approaching charge. The focus of the sheet is
the point with radius vector r. The hyperboloid sheets of
Eq. (25) corresponding to different integers sm have different
curvatures and are embedded one into another; the vertices
of the sheets are not located periodically. In [19], for a 1D
grating, a qualitative indication of the hyperbolic law was
also obtained, but without calculating of SPR radiation field
or intensity characteristics.
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For the limiting case of infinite Lorentz factor γ → ∞
Eq. (20) corresponds to a paraboloid,

(ym − y)2 + (zm − z)2 = −cm(xm − dm)

xm < r + λsm, (27)

with

cm = 2(r + λsm − x),

dm = (r + λsm + x)/2. (28)

The electron moves parallel to the major axis of the
paraboloid. We recall that the same scheme was proposed
in [36] for transition radiation from relativistic electrons. In
optics, the parabolic mirrors are well known to focus plane
waves that move along its axis. This fact agrees well with
our result and Ryazanov’s prediction, since the field of a
relativistic particle is similar to a plane wave and the virtual
photon approximation is often used to describe the radiation
processes. The paraboloids determined by Eq. (27) with dif-
ferent sm are embedded one into another with their vertices
located periodically.

To construct a plane grating, we should take a correspond-
ing section of the set of the surfaces defined by Eq. (25) or
(27). Let the plane be zm = 0. The result is obviously the set
of hyperbolas (and parabolas for ultrarelativistic electrons).
In contrast to the parabolic gratings considered by Naumenko
[40], the axes of our parabolas are parallel rather than perpen-
dicular to the particle’s trajectory.

Of considerable interest is also the condition for the essen-
tial curvature of the hyperbolic rows. This can be formulated
as the comparability of the transverse size of the grating M
with the value of the minor semiaxis of the hyperboloid bm.
Assuming that the transverse size of the array is comparable
with the size of the effective field, we roughly obtain

r = λ. (29)

Hence, a hyperbolic array, ideally, should be used at
distances of the order of the radiation wavelength, which cor-
responds to the near zone; yet, as we will demonstrate below,
it works well for farther distances in the prewave zone as well.

We consider 2D particle arrays, while the obtained hyper-
bolas are continual lines. To construct a focusing 2D array, we
place the particles along the hyperbolas at a fixed distance dy

between them along the OY axis. Taking the parameters dy,
λ, γ , Nx, and Ny used for Fig. 2, below we demonstrate the
view of the hyperbolic 2D arrays focusing directly above their
centers r = (0, 0, r) at distances r = γ 2λ and r = 3γ λ; see
Figs. 4 and 5, correspondingly.

In Fig. 4, the black rings correspond to the particles of
the initial rectangular array, while green circles correspond
to the focusing array with the changed particles’ positions.
In the central region the circles and rings overlap well. A
significant shift of circles is seen on the left and right edges
of the grating. Although for the parameters taken this is more
like a parallel shift of outer rows to the left, the true position
of the green circles is described by the hyperbolic law. Such
a topology recalls the varied line-space gratings widely used
in spectrometry both to disperse and to focus radiation [42].
For the distance r = 3γ λ, the bent array (red circles) becomes
distinct from a rectangular one (black rings) (see Fig. 5); i.e.,

FIG. 4. A scheme of 2D arrays. Black rings: a rectangular ar-
ray; green circles: a hyperbolic array with the focus at r = γ 2λ =
576 mm; other parameters are like in Fig. 2. For clarity, the array
is shown not at scale: the particles’ radius is shown in a 2.25 times
larger scale.

to focus the radiation nearer to the surface, one should take
more curved rows.

Figure 6 presents the angular dependence of intensity from
the arrays focusing SPR at different distances.

In contrast to the rectangular grating (Fig. 2), radiation
curves of focusing gratings for different distances practically
coincide starting from r = γ 2λ = 576 mm and farther. For
the distinction to be observed, one must examine the peak
carefully. Nevertheless, for r = 3γ λ the defocusing effect still
takes place as the red dash-dotted curve broadens and de-
creases, albeit insignificantly (compare with Fig. 2). It means
that the hyperbolic design of the grating allows getting typical
wave zone spatial properties of the SPR near one of its chosen
peaks in essentially the prewave zone. It seems interesting that
such small changes in the array topology lead to such signifi-
cant changes in the radiation intensity distribution depending
on the distance at which the radiation is observed.

VI. EFFECT OF PARTICLE POSITION IRREGULARITY

Now let us discuss the influence of the particle position ir-
regularity on radiation distributions, which can appear during
manufacturing of the arrays. For this purpose we calculate the
radiation intensity from a hyperbolic array, each particle of
which is randomly shifted from its exact location according to

FIG. 5. The same as in Fig. 4, but the red circles correspond to
the hyperbolic grating with the focus at r = 3γ λ = 72 mm.
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FIG. 6. The polar distribution of SPR at four different distances
r from a hyperbolic array. The other parameters (except for dx) are
like in Fig. 2.

Gaussian distribution with standard deviation σ (see Fig. 7),
and see how it will affect the focusing.

In Fig. 8 we demonstrate the polar distribution of SPR from
hyperbolic irregular gratings with four different deviations
defining random Gaussian noise. For clarity, we value the
standard deviation σ according to the particles’ radius a. One
can see that the defocusing effect caused by irregularity is
significant for deviations comparable to the particles’ radius
and larger (see the green dotted and red dash-dotted curves
in Fig. 8). The existing technologies allow manufacturing of
the arrays with much higher accuracy: e.g., for the parameters
close to those used in Fig. 2 a similar array was manufactured,
see [33], with accuracy in the particles’ positions about 2 mi-
crons and for the particle radius about 150 microns. Therefore,
it is correct to expect that in practice the accuracy of manu-
facturing will not be a problem: Fig. 8 clearly demonstrates
that for such small mean deviations the defocusing effect is

FIG. 8. The polar distribution of SPR from a hyperbolic array
with focus at r = 72 mm and four different values of the deviation
σ ; other parameters are like in Fig. 2.

negligible. Figure 7 illustrates a particular concrete case of
a focusing array, for which Fig. 8 shows a strong defocusing
effect due to irregularities in the particles’ position: it happens
if the standard deviation σ is twice as large as the particles’
radius; i.e. the array in Fig. 7 corresponds to the red dash-
dotted curve in Fig. 8.

VII. CONCLUSION

In this study we considered Smith-Purcell radiation from
flat arrays constructed of single particles. The analytic theory
of SPR from 2D gratings was constructed for the prewave
zone. Similarly to SPR from conventional gratings our results
show that at distances comparable to the wave zone criterion,
the radiation properties from a 2D grating are very close
to those of the wave zone. In the prewave zone, however,
significant distinctions occur.

FIG. 7. Scheme of a part of the 2D arrays with focus at r = 72 mm; contrary to Figs. 4 and 5, this scheme is in scale. Black rings: a
hyperbolic regular array; red circles: hyperbolic irregular array with σ = 2a; other parameters are like in Fig. 2.
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A generalized dispersion relation for SPR has been ob-
tained. It allows tailoring the topology of the grating determin-
ing the positions of its individual elements, so that the grating
can focus the radiation at chosen points in space. The analysis
shows that hyperbolic and parabolic arrangement plays a key
role in designing the topology of such 2D gratings in view of
their focusing properties. Although the focusing design was
obtained for dotted gratings of subwavelength particles it is
applicable for continual 1D gratings of narrow strips.

Although, as we have shown, the irregularities of the man-
ufactured structure can lead to defocusing, our numerical
simulations demonstrate that the effect of defocusing caused
by the Gaussian noise in the positions of single particles
is negligible for the accuracy provided by existing level of
technologies.

There is one more interesting issue about the prewave
zone effect. Although this effect is classical, it can play an

important role in revealing the quantum wave nature through
spontaneous emission of free electrons due to the close anal-
ogy between the zone of formation of radiation determined
by the classical coherence effects, and the delocalized size of
the wave packets describing quantum electrons and radiation
beams; details of this interesting recent discussion can be
found in [43–47]. Then the effect of focusing in the prewave
zone can be important in view of possible experiments on this
problem.
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