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Engineering quantum control with optical transitions induced by twisted light fields
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A form of quantum control is proposed by applying twisted light, also known as optical vortex beams, to
drive ultranarrow atomic transitions in neutral Ca, Mg, Yb, Sr, Hg, and Cd bosonic isotopes. This innovative
all-optical spectroscopic method introduces spatially tailored electric and magnetic fields to fully rewrite atomic
selection rules, reducing simultaneously probe-induced frequency shifts and additional action of external ac
and dc field distortions. A twisted-light focused probe beam produces strong longitudinal electric and magnetic
fields along the laser propagation axis, which opens the 1S0 → 3P0 doubly forbidden clock transition with a
high E1M1 two-photon excitation rate. This long-lived clock transition is thus immune to nonscalar electro-
magnetic perturbations. Zeeman components of the M2 magnetic quadrupole 1S0 → 3P2 transition considered
for quantum computation and simulation are now selectively driven by transverse or longitudinal field gradients
with vanishing electric fields. These field gradients are manipulated by the mutual action of orbital and spin
angular momentum of the light beam and are used in presence of tunable vector and tensor polarizabilities.
A combination of these two different twisted-light induced clock transitions within a single quantum system,
at the same magic wavelength and in presence of a common thermal environment, significantly reduces
systematic uncertainties. Furthermore, it generates an optical synthetic frequency which efficiently limits the
blackbody radiation shift and its variations at room temperature. Engineering light-matter interaction by optical
vortices merged with composite pulses will ultimately benefit experimental atomic and molecular platforms
targeting an optimal coherent control of quantum states, reliant quantum simulation, novel approaches to atomic
interferometry, and precision tests of fundamental theories in physics and high-accuracy optical metrology.

DOI: 10.1103/PhysRevA.108.043513

I. INTRODUCTION

The quantum interactions of an atomic system with laser
radiation are governed by selection rules and interaction
strengths. The selection rules impose specific spatial orien-
tations of electric and magnetic fields driving the optical
transition depending on quantum numbers and parity of the
initial and final states. Usually, the strength determining
the light-matter interaction process is adapted to a specific
operation. For example, optical clocks require atom-laser
interactions with widely different strengths. At one side,
large optical power is required for laser cooling and spa-
tial confinement in optical lattices or tweezer arrays [1–4].
On the opposite side, ultranarrow dipole-forbidden transitions
with very weak strengths are required to increase the clock
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accuracy for quantum metrology. Electric-quadrupole or oc-
tupole transitions have been proposed as potential highly
accurate clocks searching for ultralight dark matter and
for testing fundamental theories beyond the standard model
[5–8]. At present, the 1S0 → 3P0 transition in two-electron
atoms has attracted the main attention as a robust opti-
cal lattice clock due to the doubly forbidden nature of
angular and spin momentum selection rules. The transi-
tion is opened by an excited state mixing produced in
fermions through the hyperfine interaction [9] and in bosons
by a small dc magnetic field [10–13]. Unfortunately, this
magnetic field leads to complex and hardly controllable
frequency shifts, an issue which has limited the perfor-
mances of the bosonic clocks so far [12]. Within a different
context, long-lived qubits based on the weakly allowed
magnetic quadrupole transition 1S0 → 3P2 in two-electron
systems are today investigated to form a rich experimental
platform for quantum computation and simulation [14–16].
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FIG. 1. A two-photon E1M1 clock transition and a magnetic
quadrupole M2 transition opened by highly focused TL fields with
monochromatic or bichromatic optical wavelengths. Orbital angular
momentum integer charge l and spin angular momentum helicity
σ from the structured light can be combined to selectively excite
Zeeman �m sublevels with a specific spatial distribution of fields
and gradients (top-left {l, σ } mixture). A linearly polarized TL is in-
troduced by l = ±1, σ ≡ 0 and circularly polarized TL is introduced
by l �= 0, σ = ±1.

Their advantages are the natural lifetime of hundreds of
seconds and the high flexibility in tuning the vector and tensor
parts of the atomic polarizability [7,8,17]. Whatever the target
is, laser spectroscopy always relies on the standard approach
of atoms interacting with an optical plane wave and additional
fields if necessary, a very good approximation for the central
spot of a laser Gaussian beam but always suffering from
probe-induced frequency shifts at various levels of magnitude
[10,18,19].

In this paper, we introduce an all-optical strategy based on
an unperturbed bosonic atomic system, where the selection
rules are satisfied by an ad hoc geometry of the electromag-
netic fields. Our simple and reliable scheme relies on the use
of a single or a superposition of highly focused twisted-light
(TL) running beams to open single- to triplet-state transitions
of bosonic isotopes as depicted in Fig. 1.

Several benefits are associated to our quantum control
scheme. The 1S0 → 3P0 two-photon optical E1M1 process is
activated by using longitudinal electric and magnetic fields
generated by a single focused TL beam, a situation not al-
lowed by a single running plane wave without an external
dc magnetic field for state mixing [10,11] or requiring a
sophisticated two-photon polarization scheme with counter-
propagating plane waves [20]. The use of specific light wave
structures for clock interrogation has been limited so far to
very specific cases, such as electric quadrupole (E2) and
octupole (E3) transitions [21–23] leading to a substantial re-
duction of light shift in comparison to excitation by a plane
wave. Here, we put forward the benefits of using a light
with a tailored-spatial structure to realize a specific multi-
pole clock interrogation allowing control of the amplitude
and gradient of the optical field associated to the mixture of
polarization and topological charge. We consider specifically
TL beams [24–27], which have proven a valuable tool with

applications ranging from the angular orbital momentum
transfer to a single trapped ion [28–30] to the engineering of
artificial gauge fields [31,32]. TL beams open new excitation
channels through longitudinal and transverse components of
the electromagnetic fields. Owing to the large magnetic field
gradient associated to the TL beam spatial inhomogeneity, an
optical clock with a very high excitation rate is realized for
the 1S0 → 3P2 magnetic quadrupole transition with vanishing
light shift in the beam center. Compensation of probe-induced
shifts can be realized by merging TL beams with composite
pulse protocols [33]. Thus, two different TL-induced clock
transitions in atoms trapped at a common magic wavelength
in an identical thermal environment allow the realization of
a synthetic frequency at room temperature that can suppress
by several orders of magnitude the blackbody-radiation shift
correction, one of the main contributions to the optical clock’s
long term instability [34,35]. TL beams are today a mature
technique and can thus easily be integrated to the recent gen-
eration of optical clocks based on optical tweezers [36–38].

The paper contains a main section subdivided into two
parts. Section II A introduces longitudinal electric and
magnetic fields produced by a highly focused TL beam
which open a two-photon E1M1 optical clock transition.
Excitation rates of a monochromatic and a bichromatic two-
photon excitation are evaluated with corresponding light
shifts. Section II B introduces the TL beam with trans-
verse and longitudinal gradients that are exciting a magnetic
quadrupole M2 transition. Corresponding multipole shifts are
also evaluated. As a conclusion, a common “magic” trapping
wavelength for a synthetic TL-induced optical frequency op-
erational mode, based on a combination of E1M1 and M2
multipolar excitations, can be found by tuning the vector and
tensor parts of the polarizability. All materials required for
calculation are presented in the Appendices.

II. OPTICAL TRANSITIONS INDUCED BY TL

We provide now a detailed study of the resulting associated
light shifts and magnetic sensibility which are dictated by
the light beam decomposition into Bessel or Laguerre-Gauss
modes near the center of the beam [25–27]. For TL photons,
the interplay between orbital angular momentum (OAM) and
spin angular momentum (SAM) near the beam axis in the
vicinity of the focusing spot leads to a strong modification of
the local polarization and energy propagation [24–26]. This
unusual local polarization effect is indeed enhanced when
orbital and spin momentum correspond to opposite helicities
(i.e., when these angular momenta have an opposite projection
along the propagation axis). Here we use this polarization and
wave structure in order to yield selection rules that open the
forbidden transitions while maintaining light shifts at a level
compatible with a very accurate clock operation.

A. TL-induced two-photon E1M1 excitation

To open the E1M1 two-photon transition and to excite
the M2 magnetic quadrupole transition with TL as shown in
Fig. 1, we need to evaluate coupling rates with appropriate
expressions of electric and magnetic fields. The electric dipole
E1 and magnetic dipole M1 elements required to excite the
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TABLE I. Reduced matrix elements for electric dipole E1, magnetic dipole M1, and magnetic quadrupole M2 transitions. Einstein’s
coefficients A for the quadrupole transition are given. Note that our 〈M1〉/μB reduced matrix element for the 1P1 → 3P0 transition in Sr is
consistent with the theoretical value reported by [18]. Second-order Zeeman shifts of �m sublevels of the 1S0 → 3P2 quadrupole components
are given. Our evaluation of second-order Zeeman shifts for �m = 0, ±1 components in Yb is consistent with the theoretical values reported
in [5]. Optical clock wavelengths λE1M1

ω and λM2
ω are indicated. (See the Appendices for additional information.)

1S0
1P1

1P1
3P0

1S0
3P1

3P0
3P1 λE1M1

ω AM2
1S0

3P2 �m = 0 �m = ±1 �m = ±2 λM2
ω

〈E1〉/ea0 〈M1〉/μB 〈E1〉/ea0 〈M1〉/μB (nm) (mHz) 〈M2〉/μBa0 (MHz/T2) (MHz/T2) (Hz/T2) (nm)

88Sr 5.28 [41] 0.023 [18] 0.15 [20] 0.816 [10] 1397 0.13 [45] 11 5.6 4.1 671
172Yb 4.40 [42] 0.103 0.54 [20] 0.815 1157 0.25 [5] 7.5 1.2 [5] 0.92 [5] −47 [5] 507
200Hg 2.80 [43] 0.140 0.46 [43] 0.804 531 3.6 [46] 3.8 0.45 0.34 227
24Mg 4.03 [41] 0.063 0.0057 [20] 0.814 916 0.44 [45] 7.6 52.5 39.3 456
40Ca 4.91 [41] 0.017 0.036 [20] 0.816 1319 0.13 [45] 10 20.6 15.4 655
112Cd 3.36 [44] 0.036 0.15 [44] 0.815 664 0.96 [46] 10 1.8 1.4 314

E1M1 clock transition are given by [26]

〈1S0|HE1|k〉⊥,z = −〈E1〉 ·
∫ 1

0
Ẽ⊥,z(ur)du,

〈3P0|HM1|k〉⊥,z = −〈M1〉 ·
∫ 1

0
uB̃⊥,z(ur)du (1)

where intermediate atomic states are labeled by |k〉 ≡
| 1P1〉, | 3P1〉. We decompose the electric and magnetic fields
by transverse ⊥ and longitudinal z components as follows
[26]:

Ẽ(r) = Ẽ⊥(r )̂r + Ẽz(r )̂z,

B̃(r) = B̃⊥(r )̂r + B̃z(r )̂z (2)

where the expressions of Ẽ⊥(r) and B̃⊥(r) and
Ẽz(r) and B̃z(r) are given in Appendix A. The nondegenerate
two-photon E1M1 transition using a bichromatic angular
frequency is [20,39,40]

�E1M1
⊥,z (r) =

∣∣∣∣∣∣
∑

k

∑
i �= j

〈1S0 |Hi
E1|k〉⊥,z〈k|H j

M1| 3P0〉⊥,z

h̄ωi − E (k)

∣∣∣∣∣∣ (3)

where we have defined E (1S0) = 0. One sum is over interme-
diate nonresonant atomic state |k〉 and the second one is for
each of-degenerate ωi photon frequency. For a monochromatic
excitation, the summation over i �= j in Eq. (3) is not applied
(see Appendix B). For the bichromatic two-photon E1M1
transition driven by ω1 and ω2 photons, Eq. (3) includes two
separate contributions with the permutation of i and j indices
into electric and magnetic field. Reduced 〈E1〉 and 〈M1〉 ma-
trix elements are reported in Table I for different atoms using
Mizuchima formulas given in Appendix C.

We address the problem of the light shift associated to
the E1M1 clock excitation. The dominant contribution is
coming from electric dipole scalar terms that are effectively
shifting the 1S0 and 3P0 atomic states. We have reported the
evaluation of the E1M1 transition rate and the light-shift
effect in Fig. 2(a) for a 88Sr atom localized at the center
of the beam. As expected, electric and magnetic longitudi-
nal field components Ẽz(r) and B̃z(r) are producing a large
two-photon transition rate near the beam center while the
transverse Ẽ⊥(r) and B̃⊥(r) electromagnetic fields are vanish-
ing. In experimental situations, atoms are not anymore well

FIG. 2. (a) E1M1 monochromatic two-photon excitation rate of
the 88Sr two-photon transition at 1397 nm vs spatial position around
the laser beam axis center. We have used OAM with l = ±1 and
SAM with σ = ∓1 (z, longitudinal component; ⊥, transverse com-
ponent). The associated light shift of the clock transition induced
by the monochromatic excitation is reported along the vertical right
axis. Laser power is P1397 ≈ 1 mW with a waist of w1397 ≈ 2 µm.
(b) E1M1 bichromatic excitation rate at 3236 and 890 nm vs spatial
position around the laser beam axis center. The associated light
shift of the clock transition induced by the bichromatic excitation
is reported along the vertical right axis. Laser power is P3236 ≈ 0.3
mW (P890 ≈ 13 mW) with a waist of w3236 ≈ 4 µm (w890 ≈ 2 µm).
Curves are plotted for a well-localized atomic distribution in space.
Note that typical peak values of longitudinal electric and magnetic
oscillatory fields are respectively below 500 kV/m and 1 mT for the
specific choice of laser parameters.
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TABLE II. Three possible sets of bichromatic E1M1 laser ex-
citation parameters with significant excitation rates to reduce or
compensate for the total light shift affecting the 88Sr clock transition
with delocalized atoms around rm = 0 described by a typical spatial
width ρ⊥,z = 300 nm.

λ wλ Pλ �
E1M1
z (0) �

E1M1
⊥ (0) �

LS
z (0) �

LS
⊥ (0)

(nm) (µm) (mW) (Hz) (Hz) (kHz) (kHz)

890
3236

2
4

13
0.3

18 5.6
+30
−52

+23.4
−1.4

441
1200

2
2

0.35
2

7 12.5
−8
+30

−32
+10

375.6
813.4

2
2

0.1
20

2 6.3
−0.25

0
−1.3

0

localized spatially and explore a few hundred nanometers in
the transverse and longitudinal direction. Assuming a realistic
scenario, the transition rate given by Eq. (3) is weighted by a
Gaussian spatial distribution of the atomic sample in trans-
verse and longitudinal directions. Averaging transition rate
and light-shift contributions leads to corrected expressions as
follows:

�
E1M1
⊥,z (rm) = 1

2πρ2
⊥,z

∫
�E1M1

⊥,z (r)e
− (r−rm )2

2ρ2⊥,z d2r,

�
LS
⊥,z(rm) = 1

2πρ2
⊥,z

∫
�LS

⊥,z(r)e
− (r−rm )2

2ρ2⊥,z d2r (4)

where rm is the most probable impact parameter and ρ⊥,z

is the width of the atomic distribution. The on-axis and off-
axis atomic excitations by twisted light as a function of the
impact parameter, i.e., the distance from the r position, were
investigated in [47]. An accurate analysis with an integration
over the impact parameter was presented in [48]. The spatial
distribution of the excitation rate and light shift is related to
the spatial shape distribution of transversal Ẽ⊥(r) and longi-
tudinal Ẽz(r) electric fields. The average process at rm = 0
gives a corrected longitudinal two-photon Rabi field excitation
of 4 Hz and a transverse contribution of 2 Hz setting a width
ρ⊥,z = 300 nm with a laser power of P1397 = 1 mW and a
waist of w1397 = 2 µm. The average longitudinal light shift

�
LS
z (0) of the clock transition is found to be 35 kHz while the

transverse contribution �
LS
⊥ (0) reaches 7 kHz. Those light

shifts are due to the presence of strong electric fields shown
in Fig. 2(a) following the vertical right axis. However, there is
some experimental flexibility by playing simultaneously with
the waist size or the laser intensity to reduce the light shift
below a few kHz while keeping a two-photon excitation rate
at the Hz level.

The previous method can be extended to a bichromatic
two-photon twisted-light scheme to efficiently compensate
for the overall light shift affecting the clock frequency mea-
surement. Complete elimination of the two-photon light shift
during a E1M1 excitation is possible with dual frequencies
[20]. We have reported the bichromatic excitation rate and the
light-shift compensation in Fig. 2(b) using the first set of two
different wavelengths and TL intensity given in Table II. After
averaging over a spatial delocalization ρ⊥,z = 300 nm, total

transverse and longitudinal light shifts �
LS
⊥,z(0) ≈ ±22 kHz

can mutually compensate quite efficiently.
Nondegenerated two-photon E1M1 excitation, where one

of the lasers is blue detuned with respect to the main electric
dipole transition, might facilitate the practical implementa-
tion of the scheme. Indeed, a blue detuned TL beam offers
a transversally stable trapping condition which also secures
that a single trapped atom will be located at the center of
the TL beam, minimizing systematic errors due to beam
misalignments [49]. As an illustrative example, we take the
parameter values of both lasers in the second line in Table II
and we find a trap height around 21 µK in temperature units
with a trapping frequency around 7 kHz (done in the parax-
ial approximation), which are small values but still suitable
for optical tweezer operation with Sr atoms cooled on the
intercombination line [50]. Signal to noise ratio can be dras-
tically increased considering a few hundred atoms trapped
in individual TL optical tweezers using recently developed
tweezers-array techniques [4,36–38]. A third set of parame-
ters from Table II can be used where one of the laser lights is at
the metrological magic wavelength to trap atoms [2] with zero
light shift while the second laser excitation wavelength has a
small contribution to the overall light shift that can be easily
reduced to a vanishing correction by autobalanced Ramsey
spectroscopy [51,52].

B. TL-induced single-photon M2 excitation

Turning to the second narrow clock transition shown in
Fig. 1, the excitation rate by a TL beam of the 1S0 → 3P2

magnetic quadrupole can be simply approximated as

�M2
⊥,z(r) = −1

6
〈M2〉 · ∇r

∫ 1

0
uB̃⊥,z(ur)du (5)

where the quadrupole tensor component has been replaced
by a reduced matrix element 〈M2〉. Coupling elements 〈M2〉
are derived from Einstein’s coefficients reported in Table I
for different atoms with first-order and second-order Zeeman
shifts estimated within Appendix D. The vectorial and ten-
sorial nature of the quadrupole transition makes it possible to
selectively excite all Zeeman components while compensating
the light shift not only by circular or linear polarized TL beam
modes [28–30] but also through the tunability of the atomic
state polarizability [7,8,17]. Note that Zeeman components of
a quadrupole transition are driven by TL excitation and the
angular dependence of the vector spherical harmonics related
to the quantization axis orientation [21,28]. The magnetic-
insensitive Zeeman �m = 0 component, reported in Fig. 3,
can be used as a clock transition driven by a linear polarized
TL vortex beam with a Laguerre-Gauss (LG) or a Bessel mode
where electric fields are vanishing in the beam axis center
[28]. If desired, magnetically sensitive �m = ±1 (�m = ±2)
components are also efficiently excited by a combination of
OAM l = ±2 (l = ±1) and SAM σ = ∓1 (σ = ±1) still with
vanishing electric fields (see also Appendices E and F). Resid-
ual electromagnetic fields and gradients lead to multipole
shifts (see Appendix G) below 200 mHz due to off-resonant
M1, E2, and M3 decay channels [5,45], all synchronized
with TL excitation pulses and thus easily removed by com-
posite pulse spectroscopy [33]. In addition to our innovative
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FIG. 3. Excitation rate of the Zeeman magnetic-insensitive M2
quadrupole clock transition of the 88Sr induced by a TL beam at
671 nm. The associated light shift of the clock transition is reported
along the vertical right axis. Laser power is fixed to P671 ≈ 1 mW
with a waist of w671 ≈ 2 µm.

approach, achieving a triple-state magic trapping condition at
the metrological 813.4-nm wavelength for all Zeeman com-
ponents is realized by tuning either the vector or the tensor
contribution through polarization ellipticity of the trapping
light or by suitably adjusting polarization angles along the
quantization axis as recently demonstrated in Sr [17] and in
Yb [7]. Our TL scheme based on the M2 quadrupole transition
benefits from the additional tunability of the vector polariz-
ability realizing suppression of ac Stark shifts for �m = ±2
sublevels at the 671-nm clock frequency when the magic ellip-
ticity γ = 0.026π defined by [17] is reached. These additional
control knobs and magic angle conditions for the magnetic
quadrupole components of 88Sr are reported in Fig. 4 based
on the material presented in Appendix E. Finally, the second-
order Zeeman shift, given in Table I, can exhibit a magnitude

FIG. 4. Tunability of 88Sr atomic state polarizabilities of the
1S0 → 3P0 and 1S0 → 3P2 clock transitions including Zeeman com-
ponents �m for different trapping wavelengths under various sets of
polarization angle ellipticity γ and projection angle β as defined in
[17]. We have used 1 a.u.= 4πε0a3

0 where ε0 is the vacuum permittiv-
ity and a0 is the Bohr radius. Magic wavelengths are marked by black
squares. Only the �m = 2 light shift of the quadrupole transition can
be eliminated by a magic polarization angle ellipticity γ = 0.026π

at the clock wavelength excitation of 671 nm. Note that gray short
dashed dots and green short dots are nearly indistinguishable.

ten times smaller than the conventional 1S0 → 3P0 fermionic
or bosonic clock transition for some atomic species [5,6,8].

III. CONCLUSION

Having a set of two clock interrogation schemes with
different sensitivity to external fields will help to reduce
systematic uncertainties [6,53], for instance in the synthetic
frequency operational mode [34,35]. This interrogation mode
will be supported by a bicolor resonance excitation at the same
magic wavelength simplifying interleaved sequential clock
operations to probe common environmental distortions [6].

In conclusion, we propose an all-optical spectroscopic
method replacing the plane-wave interaction by polychro-
matic TL beams probing ultranarrow atomic resonances with
multiphoton excitations. Our proposed scheme represents a
way based on the use of two different atomic transitions in
the same quantum system and well-controlled parameters of
the exciting TL laser. Beyond frequency metrology, forbid-
den transitions are natural candidates as resilient qubits for
quantum information processing due to their large coherence
time. The integration of TL beams and forbidden transitions
into quantum computing architectures such as scalable arrays
of optical tweezers represents a valuable technique for opti-
cal clocks, quantum computation, and simulation [4,36–38].
Matter-wave interferometry can be envisaged manipulating
quantum interferences by TL beams and spatially movable
optical tweezer traps [54,55].
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APPENDIX A: ELECTRIC AND MAGNETIC FIELDS
OF TWISTED-LIGHT BEAMS

TL fields are characterized by the OAM called a topo-
logical charge l which is adding to the SAM defined by
the helicity (polarization) σ of the laser beam. Electric and
magnetic components that are propagating along the Oz axis
are introduced as follows [26,56]:

E(r, t ) = 1
2 Ẽ(r)ei(qzz−ωt ) + c.c.,

B(r, t ) = 1
2 B̃(r)ei(qzz−ωt ) + c.c. (A1)

where c.c. means complex conjugate. Electric and magnetic
fields are decomposed into a transverse ⊥ component and a
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longitudinal z component as [26,56]

Ẽ(r) = Ẽ⊥(r )̂r + Ẽz(r )̂z,

B̃(r) = B̃⊥(r )̂r + B̃z(r )̂z (A2)

where Ẽ⊥(r )̂r = Ẽx(r )̂x + Ẽy(r )̂y and B̃⊥(r )̂r = B̃x(r )̂x +
B̃y(r )̂y.

Nonparaxial expressions of transverse and longitudinal
electromagnetic fields of the twisted light are for Bessel beams
given by [26]

Ẽx(r) = iE0Jl (qrr)eilϕ,

Ẽy(r) = − σ E0Jl (qrr)eilϕ,

B̃x(r) = σ B0

[(
1 + q2

r

2q2
z

− q2
r

2q2
z

ei2σϕ

)
Jl (qrr)eilϕ

+ q2
r

2q2
z

(l + σ )
2

qrr
Jl+σ (qrr)ei(l+2σ )ϕ

]
,

B̃y(r) = iB0

[(
1 + q2

r

2q2
z

+ q2
r

2q2
z

ei2σϕ

)
Jl (qrr)eilϕ

− q2
r

2q2
z

(l + σ )
2

qrr
Jl+σ (qrr)ei(l+2σ )ϕ

]
,

Ẽz(r) = σE0
qr

qz
Jl+σ (qrr)ei(l+σ )ϕ,

B̃z(r) = − iB0
qr

qz
Jl+σ (qrr)ei(l+σ )ϕ (A3)

where q2
r + q2

z = (nω/c)2, 1/qr is a measure of the beam
radius defined as qr = 2π

w
, w is the waist, n is the refractive in-

dex of the medium, ω is the angular frequency, B0 = qzE0/ω,
r =

√
x2 + y2, and ϕ = arctan[y/x].

We note that TL or vortex beams are usually decomposed
over Laguerre-Gauss modes including the general case of
elliptic polarization [25,57].

APPENDIX B: MONOCHROMATIC TWO-PHOTON
TRANSITION RATE

We derive the monochromatic two-photon expression used
in the main text to evaluate the E1M1 excitation rate in Hz.
By repeating the treatments of [39,40], the admixture for the
wave function from the oscillatory field at angular frequency
ω = E (3P0)/2h̄ is given by

|3P′
0〉 ≈ |3P0〉 +

∑
k

〈k|HM1| 3P0〉
�k − h̄ω

|k〉

≈ |3P0〉 + 〈1P1 |HM1| 3P0〉
�1 − h̄ω

|1P1〉

+ 〈3P1 |HM1| 3P0〉
�2 − h̄ω

|3P1〉. (B1)

Then the two-photon excitation rate expression is

〈1S0|HE1|3P′
0〉 ≈ 〈1S0 |HE1| 1P1〉〈1P1 |HM1| 3P0〉

�1 − h̄ω

+ 〈1S0 |HE1| 3P1〉〈3P1 |HM1| 3P0〉
�2 − h̄ω

(B2)

FIG. 5. Single-photon decay channels from the 3P2 state of
alkaline-earth atoms [45].

with �1 = E (3P0) − E (1P1) and �2 = E (3P0) − E (3P1). The
monochromatic two-photon transition rate is then [40]

�E1M1
⊥,z =

∑
k

〈1S0 |HE1|k〉⊥,z〈k|HM1| 3P0〉⊥,z

h̄ω − E (k)
(B3)

where |k〉 ≡ | 1P1〉, | 3P1〉. The bichromatic version of the two-
photon excitation rate is given in the main text. In addition, a
trichromatic version of a three-photon excitation rate expres-
sion can be elaborated and is theoretically derived in [58].

APPENDIX C: EINSTEIN COEFFICIENTS AND
MULTIPOLE MOMENT EVALUATION

Electric 〈E j〉 and magnetic 〈M j〉 multipole reduced matrix
elements are required with Einstein coefficients AEj ,Mj ( j =
1, 2) to evaluate Rabi excitation rates associated to dipole or
quadrupole transitions in various atomic species. We apply
Mizuchima expressions that are for the electric multipole ex-
citation given by [59]

〈E j〉 = 1

ea j
0

√
AEj

(2 j + 1){(2 j − 1)!}2(4π h̄ε0c2 j+1)

j( j + 1)ω2 j+1
(C1)

and for the magnetic multipole excitation given by [60]

〈M j〉 = 1

μBa j−1
0

√
AMj

j( j + 3/2)(4π h̄ε0c2 j+3)

( j + 1)(2 j + 1)ω2 j+1
(C2)

where ( j + 3/2) is the Gamma function. Angular frequency
of the transition is ω, the Bohr magneton is μB, the Bohr
radius is a0, the electric charge is e, and the vacuum permit-
tivity is ε0. We have evaluated with Eqs. (C1) and (C2) not
only the magnetic quadrupole coupling element 〈M2〉 of the
1S0 → 3P2 clock transition but possible single-photon decay
channels for various atomic species [45] as shown in Fig. 5.
We have reported the resulting quantities in Tables I and III.

APPENDIX D: ZEEMAN INTERACTION OF A 3PJ ATOMIC
STATE IN INTERMEDIATE COUPLING

1. States and matrix elements

The |1,3Pj, mj〉 two-electron states in intermediate coupling
are written as expansions of the pure Russell-Saunders cou-
pling states (indicated by superscript zero) as [9,61]

|3P2, mj〉 = ∣∣3
P0

2 , mj
〉
,

|3P1, mj〉 = α
∣∣3

P0
1 , mj

〉 + β
∣∣1

P0
1 , mj

〉
,
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TABLE III. Estimation of reduced 〈M1〉, 〈M2〉, and 〈E2〉 matrix elements by using Eqs. (C1) and (C2) related to M1 and E2 decay
channels with Einstein’s coefficients reported from several references. Note that Sr, Mg, and Ca decay channels of the 3P2 state have been also
evaluated by [68]. Recent experimental values for Mg have been reported in [70] and for Sr in [71].

AM2
3P2 → 1S0 λM2

ω AE2
3P2 → 3P0 λE2

ω AE2
3P2 → 3P1 AM1

3P2 → 3P1 λE2,M1
ω

(×10−3 s−1) 〈M2〉/μBa0 (nm) (×10−6 s−1) 〈E2〉/ea2
0 (µm) (×10−6 s−1) 〈E2〉/ea2

0 (×10−3 s−1) 〈M1〉/μB (µm)

88Sr 0.13 [45] 11 671 1 [45] 16.7 17.3 0.3 [45] 24.4 0.83 [45] ≈0.7 25.7
172Yb 0.25 [5] 7.5 507 4.1 67 [5] ≈0.7 5.8
200Hg 3.6 [46] 3.8 227 1.56 2.15
24Mg 0.44 [45] 7.6 456 3 × 10−6 [45] 7.9 163 1 × 10−6 [45] 12.2 9.12 × 10−4 [45] ≈0.7 242
40Ca 0.13 [45] 10 655 10−3 [45] 13.4 63.3 3 × 10−4 [45] 20 1.6 × 10−2 [45] ≈0.7 94.4
112Cd 0.96 [46] 10 314 5.8 8.5

|1P1, mj〉 = −β
∣∣3

P0
1 , mj

〉 + α
∣∣1

P0
1 , mj

〉
,

|3P0, 0〉 = ∣∣3
P0

0 , 0
〉

(D1)

where the (α, β ) parameters are reported in Table IV.
Because the M1 transition satisfies �S = 0, the only mag-

netic contributions different from zero are within the same
Russell-Saunders multiplet. The Wigner-Eckart theorem al-
lows us to write for the q component of the magnetic dipole
moment within the Russell-Saunders basis〈

n,3 P0
J , mj

∣∣dq
M1

∣∣n,3 P0
J ′ , m′

j

〉 = 〈M1〉〈J, mj |J ′, m′
j ; 1, q〉,

with 〈M1〉 the reduced dipole moment and the last term rep-
resenting the Clebsch-Gordan coefficient all equal to 1 or
the J = 0 → J = 1 transitions of our interest. Following the
treatment of [65], both the 〈M1〉 reduced dipole moment and
each of the matrix elements are equal to

√
2/3, as in [9,10,58].

The α and β corrections for the intermediate coupling states
of Eqs. (D1) lead to

〈3P0, 0|dM |3P1, 0〉 = α

√
2

3
,

〈3P0, 0|dM |1P1, 0〉 = −β

√
2

3
. (D2)

2. First-order Zeeman effect

The first-order Zeeman correction �E (1)
Z (3Pj ) for a boson

with a zero nuclear spin (I = 0) can be evaluated in interme-
diate coupling by the following expression [61]:

�E (1)
Z (3PJ ) = g′

j (
3Pj )mjμBB (D3)

TABLE IV. Coefficient mixing parameters α and β in the
Russell-Saunders coupling configuration in order to evaluate the
first- and second-order Zeeman shifts for selected atomic species.

Atomic species α, β

88Sr 0.9996, −0.0285 [9]
172Yb 0.9920, −0.1260 [62]
200Hg 0.9851, −0.1717 [63]
24Mg 0.9970, −0.0775 [10]
40Ca 0.9997, −0.0209 [64]
112Cd 0.9989, −0.0449 [63]

where g′
j (

3Pj ) for each state of the multiplet, in a Russell-
Saunders coupling configuration, are

g′
j (

3P2) = g j (
3P2) = 3/2,

g′
j (

3P1) = α2g j (
3P1) + β2g j (

1P1),

g′
j (

3P0) = 0, (D4)

and

g j
(2S+1

LJ
) = gl

J (J + 1) + L(L + 1) − S(S + 1)

2J (J + 1)

+ gs
J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(D5)

where gl = 1 and gs = 2 is the electron-spin value. For 88Sr,
we have found a linear Zeeman shift of 21 GHz/T (2.1
MHz/G) to split each magnetic sublevel, which is consistent
with the experimental value reported in [17].

3. Second-order Zeeman correction

For a boson, the second-order Zeeman shift �E (2)
Z (3Pj ) is

[9,61]

�E (2)
Z (3PJ ) = −

∑
k

|〈k||Hz||3PJ〉|2
E (k) − E (3PJ )

(D6)

where E (k) is the energy of the k state and Zeeman matrix
elements are explicitly [9,61]

〈3P0, 0|Hz|3P1, 0〉 = α(gs − gl )

√
2

3
μBB,

〈3P0, 0|Hz|1P1, 0〉 = −β(gs − gl )

√
2

3
μBB,

〈3P2, mj |Hz|3P1, mj〉 = α(gs − gl )

√
4 − m2

j

12
μBB,

〈3P2, mj |Hz|1P1, mj〉 = −β(gs − gl )

√
4 − m2

j

12
μBB,

〈3P2, 0|Hz|3P0, 0〉 = 0. (D7)

Again, α and β are listed in Table II. As an example,
we compare our second-order Zeeman shift for �m = 0,

±1 components of the Yb magnetic quadrupole transition,
to be respectively 1.2 MHz/T2 (12 mHz/G2) and 0.92
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MHz/T2 (9.2 mHz/G2), consistent with theoretical val-
ues reported in [5]. For Zeeman sublevels mj = ±2, the
quadratic Zeeman-shift components 〈3P2, mj |Hz| 3P1, mj〉 and
〈3P2, mj |Hz| 1P1, mj〉 are zero. The residual second-order Zee-
man shift is due to the M1 decay channels within states of
different configurations. These matrix elements are small due
to the orthogonality of the wave functions and suppressed by
large-energy denominators [5]. The only available value for
mj = ±2 components of the Yb magnetic quadrupole tran-
sition was theoretically estimated by [5] and is reported in
Table I of the main text.

APPENDIX E: SCALAR, VECTOR, AND TENSOR
POLARIZABILITIES OF 1S0 AND 3PJ ATOMIC STATES

In this subsection, we estimate the electric dipole polar-
izabilities for atomic states defining the E1M1 (1S0 → 3P0)
clock transition and the M2 magnetic quadrupole (1S0 → 3P2)
transition. We use the most recent work by [17,66] where the
dynamic polarizability αi of any atomic state |i〉 can be decom-
posed into a scalar polarizability αs

i , a vector polarizability αv
i ,

and a tensor polarizability αt
i as [17,66]

αi = αs
i + αv

i sin(2γ )
mJi

2Ji

+ αt
i

3 cos2(β ) − 1

2

3m2
Ji

− Ji(Ji + 1)

Ji(2Ji − 1)
(E1)

where γ is the ellipticity angle of the polarization and cos(β )
is the projection of the polarization vector onto the quantiza-
tion axis. The scalar contribution of a state |i〉 with angular
momentum Ji is expressed as [17,66]

αs
i = 1

3(2Ji + 1)

∑
k

2

h̄

|〈k|D|i〉|2ωki

ω2
ki − ω2

+ αc
i . (E2)

The summation is over the dipole-allowed transitions to states
|k〉 using the corresponding dipole matrix element 〈k|D|i〉.
The vector contribution is given by [17,66]

αv
i = −

√
6Ji

(Ji + 1)(2Ji + 1)

∑
k

(−1)Ji+Jk

{
1 1 1
Ji Jk Ji

}

× |〈k|D|i〉|2ωki

h̄

(
1

ωki − ω
− 1

ωki + ω

)
(E3)

and the tensor contribution is [17,66]

αt
i = −

√
10Ji(2Ji − 1)

3(Ji + 1)(2Ji + 1)(2Ji + 3)

∑
k

(−1)Ji+Jk+1

×
{

1 2 1
Ji Jk Ji

}
2

h̄

|〈k|D|i〉|2ωki

ω2
ki − ω2

. (E4)

All required information to compute polarizabilities of 1S0 and
3PJ atomic states for 88Sr can be extracted from [17,66]. We
are now able to evaluate the differential polarizability between
1S0 and 3P0 states for the E1M1 clock transition and the
differential polarizability between 1S0 and 3P2 states for the

M2 clock transition following the final expression [17,66]

�α =
(

αs
e + αv

e sin(2γ )
mJ

2J

+ αt
e

3 cos2(β ) − 1

2

3m2
J − J (J + 1)

J (2J − 1)

)
− αs

g. (E5)

The transversal and longitudinal clock light shift are related to
the differential polarizability by the expression

�LS
⊥,z(r) ≡ �E1

⊥,z(r) = − 1
4�αẼ2

⊥,z(r) (E6)

where we have used Ẽ2
⊥,z(r) = 2I⊥,z(r)/(cε0) and the inten-

sity at the center of the beam is given by I0 = P/πw2
λ at the λ

wavelength. The differential light shift of the 1S0 → 3P0 clock
transition is entirely scalar while vector and tensor polariz-
abilities give important contribution to the 1S0 → 3P2 clock
transition depending on the polarization angle of the light with
respect to the quantization axis.

APPENDIX F: TL BEAM EXCITATION OF THE 1S0 → 3P2

MAGNETIC QUADRUPOLE COMPONENTS

Driving a particular Zeeman component of a quadrupole
transition by a specific TL beam is dependent on the angle
orientation between the quantization axis defined by a weak
external static magnetic field and the TL beam propagation
axis. A TL beam can be seen as a coherent superposition of
multiple plane waves with transverse and longitudinal compo-
nents related to spherical harmonics where atomic selection
rules are modified by spatially structured lights [21,28,67].
For simplicity, we have ignored here this additional treatment.

We report in Figs. 6(a1)–6(c1) excitation rates �M2
⊥,z(r)

of Zeeman �m = 0,±1,±2 components driven by a single
TL beam versus the spatial beam position. The magnetic
quadrupole excitation rate by a TL beam is given by Eq. (5)
where the magnetic quadrupole tensor component has been
replaced by a reduced matrix element 〈M2〉 reported in Table I
(Table III).

(1) The magnetically insensitive Zeeman �m = 0 compo-
nent shown in Fig. 6(a1) can be driven by a linear polarized TL
vortex beam along the Ox axis. The TL beam is decomposed
into a superposition of SAM σ = ±1 helicities coupled to
OAM with l = 1 by a LG or Bessel mode where electric fields
are vanishing in the beam axis center as expected [28]. We
have reported the light shift in Fig. 6(a1) (vertical right axis).

(2) The magnetically sensitive Zeeman �m = ±1 compo-
nents shown in Fig. 6(b1) can be driven by a circular polarized
TL vortex beam with OAM l = ±2 and SAM helicity σ =
∓1. The corresponding light shift is reported in the same
figure (vertical right axis).

(3) The magnetically sensitive Zeeman �m = ±2 compo-
nents shown in Fig. 6(c1) can be driven by a circular polarized
TL vortex beam with OAM l = ±1 and SAM helicity σ =
±1. The corresponding light shift is also reported in the same
figure (vertical right axis).

The flexibility in addressing one particular Zeeman com-
ponent of a magnetic quadrupole transition by a TL excitation
is demonstrated with Figs. 6(a1)–6(c1). The corresponding
light shift �LS

⊥,z(r) ≡ �E1
⊥,z(r) from off-resonant electric dipole

transitions can be efficiently reduced to a vanishing level
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FIG. 6. Excitation rates �M2
⊥,z(r) (in kHz, vertical left axis) and light shifts �LS

⊥,z ≡ �E1
⊥,z (in kHz, vertical right axis) of magnetic quadrupole

Zeeman components in 88Sr. (a1) Zeeman insensitive clock component �m = 0 by a linear polarized TL beam along the Ox axis. (b1) Zeeman
sensitive clock components �m = ±1 by a TL beam with OAM l = ±2 and SAM helicity σ = ∓1. (c1) Zeeman sensitive clock components
�m = ±2 by a TL beam with OAM l = ±1 and SAM helicity σ = ±1. (a2–c2) Associated multipole shifts �M1,E2

⊥,z (r) (in mHz, vertical
left and right axis) of Zeeman components induced by M1 and E2 decay channels. Laser power is fixed to P671 ≈ 1 mW with a waist of
w671 ≈ 2 µm.

of correction by composite TL pulse protocols associated to
composite pulse protocols and autobalanced Ramsey spec-
troscopy [33,51,52].

APPENDIX G: MULTIPOLE SHIFTS OF THE 1S0 → 3P2

CLOCK TRANSITION

We are finally looking at residual multipole shifts due to
decay channels shown in Fig. 5 that affect the quadrupole
clock transition probed by a TL beam. We estimate reduced
〈E2〉 and 〈M1〉 coupling elements using Einstein’s coeffi-
cients related to decay channels 3P2 → 3P0 and 3P2 → 3P1

reported in Table III. By applying a second-order perturbation
theory, we evaluate the magnetic dipole shift (ac Zeeman
shift) �M1

⊥,z(r) based on the following expression [69]:

�M1
⊥,z(r) = −1

4

|〈3P1 |HM1| 3P2〉|2⊥,z

E (3P1) − E (3P2)
(G1)

where the coupling element related to a magnetic TL excita-
tion is given by

〈3P1|HM1| 3P2〉⊥,z = −〈M1〉 ·
∫ 1

0
uB̃⊥,z(ur)du. (G2)

The residual ac electric quadrupole shift is given by a similar
expression:

�E2
⊥,z(r) = −1

4

∑
k

|〈k|HE2| 3P2〉|2⊥,z

E (k) − E (3P2)
(G3)

where |k〉 ≡ | 3P0〉, | 3P1〉. The electric quadrupole excitation
rate is approximated by

〈k|HE2| 3P2〉⊥,z = −1

6
〈E2〉 · ∇r

∫ 1

0
Ẽ⊥,z(ur)du (G4)

with the electric quadrupole tensor component replaced by a
reduced matrix element 〈E2〉 reported in Table III. We have
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reported in Figs. 6(a2)–6(c2) the resulting clock frequency
corrections from off-resonant M1 and E2 light excita-
tions induced through decay channels. Again, the frequency

corrections induced by these multipole shifts are below 150
mHz and easily reduced to a manageable level of correction
by hyper-Ramsey spectroscopy [33].
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