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Position-controlled trapping of nanoparticles and quantum dots on a fiber taper
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We investigate numerically and experimentally the properties of a two-color optical fiber taper trap, for which
the evanescent field of the modes in the fiber taper give rise to a trapping potential with both radial confinement
and confinement along the fiber axis. Experimentally, we use the technique to confine colloidal nanoparticles
near the surface of an optical fiber taper, and show that the trapping position of the particles is adjustable by
controlling the relative power of two modes in the fiber. We also demonstrate a proof-of-principle application by
trapping quantum dots together with gold nanoparticles in a configuration where the trapping fields double as
the excitation field for the quantum dots. This scheme will allow the positioning of quantum emitters in order to
adjust coupling to resonators combined with the fiber taper.
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I. INTRODUCTION

The use of nanocrystal quantum emitters coupled to micro-
and nanophotonic resonators and waveguides to provide sin-
gle photons for quantum technologies has become a standard
part of the quantum optics toolbox [1]. One of the challenges
that remains in using such nanoemitters is positioning them
relative to the dielectric structure of nanophotonic devices. In
particular, since the waveguide or resonator mode intensity
(and hence the coupling between an emitter and the mode) is
typically defined by the dielectric structure itself, the ability
to adjust the position of an emitter relative to that structure
is required to maximize or minimize interfacing with the
nanophotonic device as necessary for the application at hand.
To this end, optical trapping of atoms near nano-optical de-
vices has been achieved in several settings in recent years.
Trapping using both waveguide modes [2,3] and side illumi-
nation techniques [4–6] can allow coupling between the atoms
and the structure to be adjusted.

On the other hand, solid-state quantum emitters in
nanocrystals are often utilized in colloidal form. The manip-
ulation of nanosized particles in liquid environments using
immersed nanowaveguides is proceeding apace from its initial
foundations [7,8], with a number of advances in selectiv-
ity [9–11], use of higher-order modes and particle binding
[12,13], angular momentum [14], and manipulation of novel
particles [10,15] achieved in the past few years. In particular,
the potential for counterpropagating modes to halt particles
moving along a waveguide has been noted before [9,16],
although only in the context of creating a region where no
axial force is present. In this case, diffusion is still possible
over the waveguide length because no restoring force exists.
True trapping of particles at a specific position determined by
the structure of a liquid-immersed nano-optical device is still
a challenge which requires a novel approach.

Here, we demonstrate the trapping of colloidal nanopar-
ticles with an adjustable trap position along a tapered fiber.

*mark.sadgrove@rs.tus.ac.jp

Using counterpropagating modes in the fiber of different
wavelengths, the axial force from the mode light pressure
on particles near the fiber due to the evanescent field falls
to zero at exactly one fiber diameter, i.e., at one point along
the taper, with a restoring force arising due to the differ-
ence in evanescent penetration depths of the modes [11]. By
changing the applied laser power, we show that the trapping
position can be moved along the taper. Note that although gold
nanoparticles are used for the experimental demonstration in
this paper, the method works in principle for any colloidal
particles which have sufficiently different polarizability at the
two wavelengths used in the experiment.

Although the basic taper-trapping phenomenon (i.e., abil-
ity to trap a particle at a point on the taper) was revealed
in Ref. [11], here we present additional results and insight
into the technique. In particular, the following three results
are emphasized: (i) numerical investigation of trapping pa-
rameters including trap depth and stiffness of the two-color
taper-trapping method which were not shown in Ref. [11];
(ii) demonstration and elucidation of basic properties of the
trap including the position-adjustable trapping mechanism
which is unique to the taper trap setup (the ability to position
particles along the taper was not shown in Ref. [11]); and
(iii) demonstration of an application where quantum dots are
trapped together with metal nanoparticles near the fiber taper.
In terms of significance, we note that although we do not
resolve or infer the fiber diameter at which trapping occurs in
the present work, due to our use of a tapered fiber, our results
imply that we can trap emitters at a specific fiber diameter, in
which case we can in principle trap them at a position which
optimizes their coupling to the fiber.

II. PHYSICAL PRINCIPLES AND THEORY

A. Trapping potential

The principle of the two-color taper trap technique is il-
lustrated in Fig. 1(a). The evanescent field of the fundamental
(HE11) mode in the fiber taper region has a penetration depth
into the surrounding medium (water in this research) which
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FIG. 1. (a) Illustration of the experimental concept. Counter-
propagating fiber modes with different wavelengths give rise to a
trapping potential at a certain position along the fiber taper, due to the
differing dependence of mode intensity on diameter. (b) Variation of
the intensity crossover position for different relative mode powers.
The results shown are for power ratios R = P640/P785 = 0.9 (green
dotted line), 1.0 (green solid line), and 1.1 (green dashed line). The
785-nm mode intensity is shown by the thick red line. (c) Trapping
potentials calculated for a 10-nm-radius gold particle. The values of
R are 0.2 (solid line), 0.225 (dashed line), and 0.25 (dotted line).
The potential minimum was set to zero in each case, after which the
maximum values of each potential were scaled to unity to allow for
easier comparison of the position of the trap minima.

depends on its wavelength. Furthermore, the rate of atten-
uation of the evanescent field intensity Iev as a function of
the fiber diameter is faster for shorter wavelengths leading
to a crossover point for the mode intensities which occurs
at a certain fiber diameter. We note that this mechanism is
related to the mechanism used in so-called two-color traps for
atoms using the evanescent portion of the modes of optical
nanofibers [2,17]. However, in that case, it was necessary for

the sign of the atomic polarizability to be different for each
wavelength used in order to create a restoring force for the
trap. In the present method, the restoring force arises due to
the counterpropagating nature of the modes which leads to
the dominant force changing direction about the point where
the optical force vanishes.

The method used here is also reminiscent of the coun-
terpropagating beam methods proposed and demonstrated by
Ishihara and co-workers [9,18], although we note that mode
behavior in the taper region played no role in those studies,
and thus trapping along the fiber axis was not present.

In order to analyze this phenomenon quantitatively, it is
useful to define the ratio R = Pλ1/Pλ2 which is the ratio of
the power Pλ1 in the shorter wavelength mode (wavelength
λ1) to that of the power Pλ2 in the longer wavelength mode
(wavelength λ2). Figure 1(b) shows how the crossover point
changes for R values of 0.9 (dotted green line), 1.0 (solid
green line) and 1.1 (dashed green line). In all cases, the red
line shows the intensity at the surface of the fiber for a mode
with λ2 = 785 nm and the green lines show the intensity at
the fiber surface for a mode with λ1 = 640 nm, as the fiber
diameter is increased from 400 to 1000 nm. Here, we assume
a quasi-y-polarized fundamental mode (denoted HEy

11). The
relevant axes are indicated in the inset of Fig. 1(b), and the
position of the gold nanoparticle is assumed to be at the “top”
of the fiber as indicated in the inset, due to the fact that the
radial potential from the gradient force is strongest there. (Due
to the mode symmetry, there is also an identical trap position
at the bottom of the fiber). For brevity, we do not reproduce
the calculations of the mode fields here as they may be found
in well-known textbooks [19].

Although the basic trapping mechanism is well understood
heuristically in terms of the crossover of mode intensities,
in general, the power ratio required to achieve a taper trap
at a given fiber diameter depends on the polarizability of the
particle being trapped at both of the wavelengths used. In par-
ticular, for metal nanoparticles with a well-defined plasmon
resonance, the response to the shorter wavelength is typically
stronger, leading to a zero crossing of optical forces occurring
at a larger diameter than the crossover of optical intensities.

We explicitly demonstrate this in Fig. 1(c) for a spherical
gold particle of radius 10 nm. This radius is sufficiently small
compared to λ1,2 that we may use the Rayleigh approxima-
tion. Then, following Svoboda and Block, we write [20]

Fscatt = 8π3εmIs
|α|2
3cλ4

,

Fabs = 2πεmIs
Im(α)

λc
, (1)

F = Fscatt + Fabs.

Here, Fscatt and Fabs are the z-directed scattering and absorp-
tion forces, respectively, and F is the total radiation pressure
force at wavelength λ. Is is the mode intensity at the surface
of the fiber taper, α is the nanoparticle polarizability, and εm

is the relative electric permittivity of water.
Using the above expressions and the standard expression

for the polarizability of a spherical particle (using wavelength-
dependent permittivities for gold from Johnson and Christy
[21]), we first calculate the total force F = F640 − F785, where
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the subscripts indicate the wavelength in nanometers, and
then, using the relation

U (z) =
∫ z

−∞
F (z′) dz′,

we numerically integrate the total force to give the potential
shown in Fig. 1(c) for three different R values. Note that the
minimum of the potential energy is adjusted to zero and the
maximum value is then scaled to 1 to allow easy discernment
of the relative position of the trap minimum (i.e., the trapping
position). The trapping position may be seen to increase as R
is increased.

Although the above analytical results are instructive re-
garding the basic behavior of the two-color taper-trapping
scheme, in our experiments the nanoparticle radius was
75 nm—outside the regime where the Rayleigh approxima-
tion may be reasonably expected to hold. In this case, it
is necessary to perform numerical simulations of Maxwell’s
equations in order to achieve results which may be compared
to experimental measurements. Indeed, we find quantitative
differences in the values of R required for trapping using the
full numerical results, as compared with the simple analytical
results, although the analytic calculations do provide useful
order-of-magnitude comparisons. We will discuss the relevant
numerical simulations and their results in the following sec-
tion.

B. Particle motion in the trap

As we will show numerically in the following section, the
particle motion in the two-color taper trap turns out to be in
the strongly overdamped regime, as with most optical traps in
fluids. If we approximate the potential as harmonic, then the
motion of a particle in the trap is governed by the Langevin
equation [22,23]

mz̈ + γ ż + Sz =
√

�ζ (t ),

where m is the particle mass, γ is the damping coefficient
of the motion, S is the trap stiffness, � = 2γ kBT at room
temperature T , and ζ (t ) is a fluctuation term with units√

Hz satisfying 〈ζ (t1)ζ (t2)〉 = δ(t1 − t2). In the strongly over-
damped regime, where γ 2 � 4Sm, we can ignore the inertial
term [23] and, assuming fluctuations can be neglected on the
timescale of the particle entering the trap, we write

γ ż + Sz = 0.

This equation has the solution

z = A exp (−
+t ) + z0, (2)

where 
+ = S/γ . (Note that even with a non-negligible fluc-
tuation term, the time-averaged solution can be shown to be
the same [23].) This exponential relaxation to the trap center
at z0 is found to happen on the scale of seconds in the experi-
ment.

III. NUMERICAL RESULTS

For our numerical calculations, we used a commer-
cial finite-difference time-domain (FDTD) Maxwell equa-
tion solver (Lumerical) and numerically evaluated the

Maxwell stress tensor T using the fields calculated at the
surface ∂V of a cubical region V encompassing the gold
nanoparticle, but not the fiber. This allowed the optical force
to be calculated by numerically evaluating the area integral

F =
∮

∂V
T · n dA,

where n is the unit normal vector to the surface ∂V . The gold
nanoparticle was situated so that its surface was separated by
10 nm from the fiber surface. In our calculations, we assumed
that the particle was trapped by the optical gradient force at the
“top” of the fiber [i.e., at a position (x = 0, y = a)] (where
the electric field of the quasi-y-polarized fundamental mode
is strongest). That is, the particle position was assumed to
be as depicted in the inset of Fig. 1(b). We will discuss our
assumption of quasi-y-polarized fundamental modes later.

We performed simulations for a positive-z propagating
mode with wavelength λ1 = 640 nm and a negative-z prop-
agating mode with wavelength λ2 = 785 nm. In order to map
simulations performed as a function of the taper diameter to
results depending on position (which is what can be measured
experimentally) it was necessary to assume a shape for the
fiber given by D0 exp(z/L0), where D0 is the constant diameter
of the waist region of the taper, and L0 is the waist length.
We used the nominal parameters D0 = 400 nm, as measured
from scanning electron microscope observations of the fiber,
and L0 = 1 mm, which is the nominal value set during the
fabrication process.

We first discuss our simulation results for the position z0

of the trap minimum as a function of R, which is the result
of principle interest in our present paper. The trap minimum
was found directly from the force data by finding the power
ratio which satisfied the condition FTot = F640 − F785 = 0 for
a given diameter, and mapping that diameter to a distance �z
from the start of the taper assuming an exponential taper shape
[24] as shown in the inset of Fig. 1(c). The simulation results
are shown in Fig. 2(a) by red points. The solid line shows
a linear fit to the data, where the gradient was found to be
1.1 mm per unit increase in R. The linear variation of the
trap position as R changes is due to the approximately linear
variation of the field intensity with diameter in the region con-
sidered. Roughly speaking, the trapping point is determined
by the crossing point of the intensities of each mode, and since
these mode intensities show approximate linear dependence
on R [see Fig. 1(b)] so too does the trap position.

Note that the linearity of the positional change with R is
important for experimental checks of the taper trap. Due to the
linearity, there is no need to know absolutely “where” along
the taper a particle is. Instead, it is good enough merely to
observe the change in position as R is varied to check the
model.

Next, we consider the trap stiffness S as a function of R
which we also calculated directly from numerical simulations
of the force. Specifically, we fitted a line to the points near the
zero crossing of FTot whose gradient gives the trap stiffness
at 1 mW of power in the longer wavelength beam. Results
are shown in Fig. 2(b). Note that for the trap stiffness and
trap potential depth results, no analytical form exists for the
results. We therefore illustrate the trend in the data by using
smoothed spline interpolations, as shown by solid curves in
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(a) (b)

(c) (d)

FIG. 2. FDTD simulation results for 1 mW in the longer wavelength mode. (a) Trap position as a function of mode power ratio R for the
640- and 785-nm configurations (red points). The red line shows a linear fit to the data. (b) Trap stiffness as a function of R (red points). The
red line shows a spline interpolation of the data to guide the eye. (c) Trap depth ±100 µm from the trap center as a function of R (red points).
The red curve shows a spline interpolation of the data to guide the eye. (d) Radial trap depths as a function of fiber diameter 2a for 785-nm
(blue triangles, dotted blue curve) and 640-nm (green triangles, dashed green curve) modes. Black points with a black curve show the potential
depth of the total potential. In all cases, the curves show spline interpolations of the data intended to guide the eye.

Figs. 2(b)–2(d). The trap stiffness is seen to peak at about
3.6 pN/mm before dropping off steadily as R increases, and
its average value is S ≈ 3 pN/mm. The qualitative behavior of
S is due to the fact that the surface intensity has a maximum
at an optimum fiber diameter corresponding to R ∼ 0.5. For
larger R, the trap position is pushed further up the taper where
the evanescent field of both modes becomes weaker, leading to
lower trap depths and, accordingly, lower trap stiffness. Note
that because the force is proportional to optical intensity and
thus power, the trap stiffness S′ at a different power P′ in
milliwatts can be found from the data shown in Fig. 2(b) at
the same value of R by calculating S′ = (P′/1 mW)S.

The trap stiffness results also allow us to classify the trap-
ping regime of the two-color taper trap. In particular, using
Stokes’s law, and ignoring the effect of the fiber, we can
estimate the coefficient of damping to be γ0 = 6πηans, where
η ≈ 1 × 10−3 Pa s is the viscosity of water at room tempera-

ture and ans = 75 nm is the radius of the nanoparticles, and
calculating the particle mass as m = ρAu × 4/3πa3

ns, where
ρAu = 19 300 kg m−3, we find γ 2 ≈ 1.6 × 10−18 kg2 s−2 �
4Sm ≈ 5.2 × 10−24 kg2 s−2. Also, assuming the above value
of γ , the diffusion term in the Langevin equation is found
to be

√
� = √

2γ kBT ≈ 3.2 × 10−15 kg m s−3/2. Therefore,
the trap is in the strongly overdamped regime, and we expect
particles to move in an exponential trajectory towards the
trap center without oscillating about it, as discussed in the
preceding section. It is important to note at this point that the
true trapping potential is anharmonic because the evanescent
mode intensity eventually falls to zero as the fiber diameter
becomes large compared to the wavelength. This reduction in
the trap potential relative to an ideal harmonic trap will lead to
a reduction of the trap stiffness experienced by particles which
enter the trap from outside the area approximately ±100 µm
of the trap center.
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FIG. 3. Experimental setup. (a) Model of the principle elements of the setup showing the insertion of the waist region (nanofiber region)
of a tapered optical fiber into a water droplet on a glass slide. Imaging takes place through the glass slide using an objective lens. (b) Detailed
schematic diagram of the setup. Here, LPF denotes long-pass filter, CMOS denotes complementary metal-oxide semiconductor, and SPF
denotes short-pass filter.

We also calculated the taper trap depth by numerically
integrating the force over the z axis to evaluate the potential
energy. Because of the asymmetric and anharmonic shape of
the trap far from its center, the trap depth is difficult to define.
We approximated the trap depth as the average of the potential
difference relative to the trap center at positions ±100 µm
about the trap center. We make the following observations
about the results which are shown in Fig. 2(c). First, it is
notable that the trap depth is large compared with kBT for
room temperature T , rising to almost 5000 in kBT units. This
is essentially because the trapping range is large—the restor-
ing force works on the particle over hundreds of micrometers
until it reaches the trap center. Second, we note that the trap
depth falls when R becomes large because as the power in the
shorter wavelength mode increases, the particle is pushed to
thicker and thicker parts of the taper, where the evanescent
field intensity becomes less, leading to less overall force.

We used the FDTD simulations to calculate how the “ra-
dial” trap depth changes along the y axis as a function of fiber
diameter as shown in Fig. 2(d). To calculate the radial trap
depth, we used separate FDTD simulations from those used to
produce the results shown in Figs. 2(a)–2(c). In particular, the
y position of the particle was moved from a position distant
from the fiber to a position 10 nm from the particle surface
and the force calculated for each position. The forces were
then integrated over the y axis to estimate the potential depth
along this (radial) direction. We performed these simulations
separately for 640-nm and 785-nm wavelength modes. The
640-nm mode trap depth peaks near a diameter of 420 nm
while that for the 785-nm mode peaks near a fiber diameter of
570 nm. These diameters correspond to the effective diffrac-
tion limits at the two mode wavelengths for a fiber immersed
in water. The total trap depth is given by the sum of the trap
depths for the individual modes. It is notable that the trap
depths for the radial trap and the taper trap along the z axis
differ by nearly three orders of magnitude. This is largely at-
tributable to the very different range over which the forces act,
with the radial gradient force being non-negligible only within

one or two wavelengths of the fiber surface (�1 µm) while the
taper trap forces act over a range of hundreds of micrometers.
For this reason, the trap lifetime is largely attributable to the
radial trap depth. Above a fiber diameter of 1 µm, the radial
trap depth may become too shallow to support long trapping
times for reasonable input laser powers. Regarding the az-
imuthal trap depth, this requires a well-defined polarization
state, in order to be well defined itself, but experimentally
we do not control the polarization. Therefore, consideration
of the azimuthal trap potential is not relevant to the results
we consider in the present work, and we focus on the radial
potential along the y axis.

The above numerical exploration of the two-color taper-
trapping scheme characterizes its basic behavior. Note that in
experiments, the relative trap position and trap stiffness can be
measured in principle, while the trap depth cannot.

IV. EXPERIMENTAL SETUP

We now move on to the experimental portion of this work,
starting with the experimental setup. Figure 3(a) shows a an
overview of the main experimental elements. A tapered fiber
(typical transmission 95%, typical waist diameter ∼400 ±
50 nm) is prepared from commercial optical fiber (Thorlabs
780HP) using a standard heat-and-pull method [25] in a two-
stage pull. The first stage produces a gradual taper which is
adiabatic and leads to minimal loss through the core-mode
cutoff regime. The second stage of the taper occurs in the few-
mode regime where the adiabatic condition is easier to satisfy
and rapidly reduces the fiber diameter, producing a relatively
steep taper gradient which is suitable for the taper-trapping
application considered here. Typical tapers produced by this
method have a constant-diameter waist region of only a few
hundred microns in length. The taper satisfies the adiabatic
condition for all wavelengths used in the experiment, and
since the input mode is the fundamental mode in all cases,
we do not expect higher-order modes to be present even in the
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thicker part of the taper where the single-mode condition does
not hold.

The fiber taper is introduced to a droplet of pure deion-
ized water atop a glass slide. From below, the fiber can be
imaged using a microscope objective (20×, Sigma Koki) lens
followed by a 50-mm-focal-length plano convex imaging lens
(“tube lens”) in a homemade microscope setup. Insertion of
the fiber into the droplet is achieved by moving the glass slide
up towards the mounted fiber taper until the taper just touches
the water surface. The taper is then sunk into the droplet by
applying deionized water droplets from a micropipette di-
rectly above the fiber. Postinsertion, the transmission typically
drops by between 0% and 5%. After insertion into the droplet,
colloidal gold nanospheres with no surface functionalization
(Nanopartz A11-150-BARE-DIH) are introduced using a mi-
cropipette producing a concentration of approximately 105

particles per microliter.
In principle, the taper’s constant-diameter waist region cor-

responds to a region of local maximal scattering intensity
when the taper is viewed through the objective lens. We note
that while we are able to focus on this region of maximum
intensity, our knowledge of the exact position along the taper,
and therefore our ability to reconstruct the fiber diameter at
each point within our microscope observations, is not ac-
curate, due to uneven scattering. We would conservatively
estimate at least ±100 µm of uncertainty in the position of
the fiber center. Due to the sharp gradient of our fiber near
its center, this limits our ability to be sure about the absolute
diameter of the taper at the position where trapping occurs.
For this reason, we focus on the more easily observable pa-
rameter of relative trap position in the current experiments.
As discussed in the previous section, this is good enough to
allow quantitative comparison with the numerical results.

Figure 3(b) shows a more detailed schematic diagram of
the experiment. Light of both wavelengths was generated
by separate free-running diode lasers which were coupled to
optical fibers. The shorter wavelength mode (λ1 = 640 nm)
enters from the left end of the fiber through a 650-nm cutoff
short-pass filter (SPF), while the longer wavelength mode
(λ2 = 785 nm or λ2 = 660 nm) enters from the right through
a 650-nm long-pass filter (LPF1). The filters prevent light
from the counterpropagating lasers from entering the oppo-
sitely situated laser. Note that no optical isolators are used,
and the lasers are unstabilized free-running diode lasers with
bandwidths of order 1 nm.

Particles which are sufficiently close to the fiber taper sur-
face can be trapped by the radial gradient force after which
they are propelled along the fiber towards the center of the
taper trap. Scattered light from such particles is captured
by the microscope objective and focused on the sensor of a
CMOS camera (Thorlabs DC1545). Video recordings of this
scattered light constitute the basic raw data of the experiment.
However, only the light along the fiber axis is relevant to the
experiment. We therefore extract the pixels along the axis of
the fiber in each video frame and concatenate the results to
form a reduced raw data set which displays the “trajectories”
of particles, their z position being a function of time.

We provide brief descriptions of nonideal aspects of the
experiment and data analysis techniques in Appendixes A and
B, respectively.

(a) (b)

FIG. 4. (a) Raw data exhibiting transporting trajectories for an
experiment where 9 mW of 660-nm-wavelength light was present in
the fiber taper. (b) Raw data for the case where 8 mW of the 785-nm
mode was present in the fiber taper. In both cases, the detected peaks
in the data are shown by green circles to enhance the visibility of the
trajectories. Red dotted lines show fits to trajectories which started at
z > 0.75 mm.

V. EXPERIMENTAL RESULTS

A. Evaluation of γ

Examples of raw data from the experiment when only one
mode is present in the fiber taper are shown in Figs. 4(a) and
4(b). In the figures, we overlaid detected peaks in the data
as green circles to make the trajectories clearer. In Fig. 4(a),
only the positive z propagating 660-nm mode (power 9 mW)
is present, and in Fig. 4(b), only the positive z propagating
785-nm mode (power 8 mW) is present and in both cases only
transporting trajectories are seen. This allows us to calculate
the velocity of the particle and estimate the damping coeffi-
cient γ by comparing the results to simulations. Note that by
performing the same calculation for two separate wavelengths
660 and 785 nm (the difference in simulated optical force
for 660 and 640 nm is negligible, so we only consider the
660-nm mode here), we can ascertain whether other effects
are at play, as ideally γ should be independent of wavelength.
Here, the choice of where to fit a straight line has an impact
on the results. Tapered fibers have a constant-diameter region
at their very center (which, when of submicron dimension,
is referred to as a “nanofiber”) where the evanescent field
intensity and thus optical force are constant. In this region,
the particle velocity rapidly reaches a constant value due to
the velocity-dependent damping force. After the taper begins,
the evanescent field reduces, and the force reduces, leading to
a change in velocity. The exact nature of the velocity change
is somewhat complicated by the fact that the decreasing radial
gradient force may allow the particle to move away from the
fiber surface and thus encounter less resistance. We do not
account for this effect here.

In Fig. 4(b), straight line trajectories were seen for z above
0.75 mm. Below 0.75 mm the trajectories have clearly started
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FIG. 5. (a) Sample raw data from an experiment where 8 mW
of the 785-nm mode and 4 mW of the 640-nm mode are counter-
propagating within the fiber. The horizontal red dashed line shows
the estimated position of the trap. The vertical black line shows the
time at which the 640-nm laser was blocked. The vertical red line
shows the time at which the 640-nm laser was restored. (b) Move-
ment of the trap as the power ratio R is changed from 0.6 at 15 s
(vertical solid red line) to 0.89 at 30 s (vertical dashed blue line). The
horizontal solid red line shows the position of trapping at R = 0.6,
while the horizontal dashed blue line shows the position of trapping
at R = 0.89.

to curve, suggesting this region of the fiber is tapered. How-
ever, the exact point where the taper begins between 0.75
and 1 mm is not possible to ascertain. We conservatively
chose to fit lines to detected trajectories with starting points
above z = 0.75 mm. For the 660-nm-wavelength mode, we
found an average velocity of v = 237 ± 54 µm s−1, and for
the 785-nm-wavelength mode the average velocity was v =
137 ± 20 µm s−1. The FDTD calculated optical forces for a
fiber diameter of 400 nm were 3.89 and 1.45 pN for 660-
and 785-nm-wavelength modes, respectively. We calculated
the values of γ at each wavelength to be γ660 = 16 ± 3.7
nN m−1 s, and γ785 = 11 ± 1.6 nN m−1 s. Although it is not
possible to rule out effects other than damping contributing
to these results, we note that these values overlap within their
respective one-standard-deviation errors as would be expected
if damping alone gave rise to the terminal velocities of the
particles. We take the mean of these two values as our value of
the damping constant for use in the calculation of trap stiffness
later, i.e., γ = 13 ± 2 nNm−1 s.

We emphasize again that for these calculations, we as-
sumed that effects due to particle-particle interactions, and
thermal effects (convection, viscosity change, etc.), are neg-
ligible. All differences were attributed to differing values
of γ .

B. Qualitative properties of taper trapping

In Fig. 5(a), we show raw data from an experiment where
counterpropagating 785- and 640-nm-wavelength modes were
present in the fiber taper at powers of 8 and 4 mW,

respectively. These data reveal a number of qualitative charac-
teristics of the experiment which we now comment on. First,
we describe the overall nature of the trajectories seen. For
this power ratio R = 0.5, particles are loaded into the trap
by traveling in the negative z direction to the trap position
at ∼0.25 mm. The 640-nm light propagates in the negative
z direction while the 785-nm light propagates in the positive z
direction. In the experiment for the data shown, the 640-nm-
wavelength mode was blocked at about 11 s and reintroduced
at about 16 s, as shown by vertical black and red lines, respec-
tively. Our first observation regarding the data is that multiple
particles may enter the trap. For nanoparticles of the size
used, the nanoparticles remain in suspension over the duration
of the experiment, and there is no way to deterministically
control the number of particles which enter the trap. The
average particle number can be nondeterministically adjusted
by diluting the nanoparticle solution, with the caveat that this
can make trapping events rare and data hard to procure. Our
observations suggest that multiple particles being in the trap
do not significantly alter the trap position or other discernible
trap properties at least for a particle number n � 5 which was
typically seen in our experiments. Nonetheless, small changes
are possible, as suggested in the data at time ∼6 s, for exam-
ple. The presence of multiple particles also makes estimates of
the trap lifetime difficult in the current experiments. We can
only say that, qualitatively, the traps appear to have lifetimes
on the scale of tens of seconds, which is not in conflict with
the deep potential wells found by FDTD simulation of the
taper trap. Second, we note that the observed trajectories are
in agreement with the prediction of an overdamped trap, with
particles relaxing in an approximately exponential trajectory
to the trapping point without oscillating about it. Third, we
note that our resolution of the position of the trapped particles,
as determined from the standard deviation from a Gaussian fit
to the trajectory cross section, is � = 23 µm. This is consid-
ered to be the minimum uncertainty in our measurements of
the trap position. Although this uncertainty is far above the
diffraction limit for the wavelengths used here, it is sufficient
for our purposes, as the movement of the trap position which
we seek to measure is of the order of hundreds of microns.

In Fig. 5(b), data are shown for a different tapered fiber
than that used in Fig. 5(a). Here, we slowly increased the
power of the 640-nm mode, taking R from 0.60 to 0.89 over
a time of about 15 s. The trap position at R = 0.60 was
z = 1.34 ± 0.08 mm while that for R = 0.89 was z = 0.88 ±
0.1 mm. The errors in this case are the standard deviations
of Gaussian fits to the trajectory cross sections. Note that
the trajectory widths are several times larger than those for
the data in Fig. 5(a), presumably due to the larger numbers
of particles in the trap. The absolute value of the rate of
change of the trap position as a function of R was found to
be 1.6 ± 0.4 mm per unit change in R.

C. Trapping of gold nanoparticles as a function of R

We now move on to our principle experimental results. Our
main aim in the experimental investigations was to confirm
the unique characteristic of the taper trap scheme: the ability
to control the trap position by varying R. Although the effect
was qualitatively confirmed by the data shown in Fig. 5(b),
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FIG. 6. (a) Sample trajectories for the 640- and 785-nm config-
uration as a function of R (value shown above each panel). Black
tracks show raw data, with detected trajectories overlaid as solid
curves. The position of the trapping trajectories may be seen to move
as the power ratio changes. (b) Exponential fits to detected trajecto-
ries in (a) (solid curves) are shown along with the mean position of
detected trapping trajectories (horizontal red dashed lines).

it is necessary to check the behavior at multiple values of R
to ascertain the nature of the dependence of trap position on
R. Experimentally, this was achieved by fixing the power of
the longer wavelength and adjusting the power of the 640-nm
mode. At least 10 s of video data were taken at each different
640-nm mode power. The trapping position was identified
using a Hough-like method described in Appendix B.

Data sets are shown for each R value in Fig. 6(a), with
the values of R shown above each panel. Clear trapping was
seen for the cases R = 0.38 through R = 0.75, with a clear
variation in the position of the horizontal trapping trajectories
seen. In addition, although a horizontal trajectory was not seen
in the case of R = 0.12, the longer of the two trajectories
observed clearly becomes nearly horizontal near its end point,
signifying the onset of trapping. Although such nonlinear

behavior can also arise due to the taper itself (i.e., the field
weakens as the fiber thickens, leading to the particle slowing
down), this is not the reason for the flattening of the trajectory,
as may be seen by the fact that, for R = 0.25 and higher,
straight-line trajectories are seen in this region. We therefore
used a fit of Eq. (2) to the R = 0.12 data to extract the trap
position z0 and used this value in our analysis of the movement
of the trapping position.

On the other hand, we note that for R = 0.25, no significant
trajectories were seen during the allotted detection time. The
most likely reason for this is the nondeterministic nature of
particle loading in the experiment; i.e., sometimes there are
not sufficient numbers of particles near the fiber for trajecto-
ries to be observed. Because we try to perform the experiment
in a short time to prevent particle sticking, and perform exper-
iments for each R for a similar amount of time to avoid bias,
a lack of trajectories at certain R values sometimes occurs.
However, we note that similar behavior was seen in Ref. [11]
also for a value of R which was close to the onset of trapping.
This suggests another possible interpretation for the relative
scarcity of trapped particles: there is almost no light-pressure
force along the fiber axis of the waist region in this regime.
The onset of trapping occurs when the longitudinal forces
due to each mode cancel in the fiber waist region. Therefore,
there is expected to be essentially no transport from the fiber
waist region into the trapping region for R values near the
onset of trapping, possibly giving rise to the observed lack
of trapping and transporting trajectories. Since the current
experiment was not designed to probe these details, the above
interpretation is speculation, although it is plausible in our
opinion.

A related observation is that at smaller R, particles can
approach the trap from both sides, while as R increases, par-
ticles only enter with negative velocities. This is due to the
fact that as the trapping position moves up the taper due to
stronger 640-nm light, it is more likely for a particle to be
radially trapped in the thinner region of the fiber, where the
evanescent field intensity is higher, and then transported to
the trap position.

In Fig. 6(b), we show exponential fits to transporting tra-
jectories for each value of R (magenta and green lines for
negative and positive transporting trajectories, respectively)
along with detected trapping positions (dashed red lines).
These exponential fits allow us to extract 
+ from which the
trap stiffness may also be calculated if γ is known. The exper-
imentally measured values of the difference in trap position
|�z| as R was varied are shown in Fig. 7(a) as red points.
Here, the difference is taken with respect to the value found in
the R = 0.12 case. The error bars show ±1 standard deviation
of the z positions in the trajectory. A fit to the position data
is shown by the solid red line. The gradient of the fit is
1.4 ± 0.1 mm per unit change in R. We note that this value
is close to the prediction of simulations of 1.1 mm per unit
change in R. Purple triangles in Fig. 7(a) show values of 
+
extracted from fits to the trajectories at each value of R.

In Fig. 7(b), we plot calculated values of the trap stiffness
S as purple triangles with a dashed magenta line connecting
the points to guide the eye. Error bars are calculated from the
error in γ (see Sec. V A) and show one standard deviation. We
also include points scaled by the maximum correction factor
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FIG. 7. (a) Red circles show detected trapping positions at each value of R. In the R = 0.12 case only the trap position was estimated from
the fitted value of z0 of the positive transporting trajectory seen for that R value in Fig. 6(b). In all other cases, the values come from the mean
of the detected trapping trajectories shown by red dashed lines in Fig. 6(b). The solid red line shows a linear fit to the data. The gradient of
the fitted line is 1.4 ± 0.1 mm per unit change in R. Magenta triangles connected by a dashed line show the value of 
+ at each R value.
(b) Magenta triangles connected by a dashed line show the calculated value of S at each R value, whereas the points connected by a dotted
line show the same data multiplied by the maximum value of 1/CP (see Appendix A) to show the maximum correction due to polarization
misalignment. In all cases, error bars show ± one standard deviation. The dashed horizontal line shows the mean value S′ of the trap stiffness
predicted by simulations.

due to the uncertainty in the polarization state 1/CP = 0.63−1

(see Appendix A) and join them by a dotted line. The shaded
region in between is where the value of S is expected to lie
in the case where systematic errors are dominated by the
polarization uncertainty. Note that since there is no way to as-
sign a probability distribution to the polarization state, a more
rigorous calculation of the confidence interval for S cannot
easily be given. The dashed horizontal magenta line shows
the numerically calculated mean value of the trap stiffness
S′ = 8S = 24 pN/mm, where the factor of 8 accounts for the
power of 8 mW used in the experiment. (Numerical results
were evaluated for 1 mW in the 780-nm mode).

The maximum value of S is found to be ≈20 pN/mm. This
is still less than the average value expected from simulations
when the 785-nm-mode power is 8 mW [horizontal dashed
line in Fig. 7(b)], suggesting that other effects, including the
anharmonicity of the trap, may be non-negligible. We note
that the qualitative form of the variation in S with R also
does not match the numerical predictions, although this is
not surprising, since, unlike the case for �z, matching would
require exact knowledge of the local taper diameter in the
experiments.

D. Transport and trapping of quantum dots adhered
to gold nanoparticles

Our second set of experimental results used a variation of
the two-color taper trap considered so far. Our goal was to
trap quantum dots adhered to gold nanoparticles close to the
fiber taper using a taper trap, with the trapping modes also
serving as excitation light for the quantum dots (Invitrogen
Qdot 800 ITK). Because the quantum dots we used have
a broad emission spectrum between 750 and 800 nm, we
chose the long-wavelength mode to have a wavelength of λ2 =

660 nm for this experiment. This allowed the filtering of light
scattered from the modes by the gold nanoparticles so that
only fluorescence from the quantum dots was measured by
the CMOS camera.

We note that the use of relatively close wavelengths for the
two modes makes the trap position more sensitive to power
fluctuations because both wavelengths are close to the plas-
mon resonance of the gold particles. We also note that for this
reason, modeling the system with FDTD is more difficult as it
requires a more exact match between the model of the gold
nanoparticle polarizability and the true experimental value.
Nonetheless, the qualitative behavior of the trap is similar to
that seen for the 785- and 640-nm configuration, with the main
difference being that the ratio where trapping occurs is close
to R = 1.

In Fig. 8 we show the results for the case when both gold
nanoparticles and quantum dots are present in the solution.
Trajectories were detected with a 750-nm long-pass filter in-
stalled before the CMOS camera so that only the quantum
dot fluorescence was recorded. The three values of R used
were 0.9, 1.1, and 1.2 for Figs. 8(a)–8(c), respectively. The
detected fluorescence signal was much weaker than the scat-
tered light signal, leading to a much reduced signal-to-noise
ratio for these data even at the most sensitive settings for
our camera. Raw data with overlaid trajectory fits are shown
in Fig. 8. As before, overlaid purple curves show detected
negative-directed trajectories, green curves show positive-
directed trajectories, and red horizontal lines show trapping
trajectories.

Trapping trajectories were detected for both R = 0.9, with
a mean position zmin = 190 ± 30 µm and R = 1.1 with a mean
position zmin = 200 ± 20 µm. The variance is clearly larger in
the R = 0.9 case, where the trapped trajectory drifted widely
about the mean value. For R = 1.1 a relatively stable trapping
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FIG. 8. Experimental results for the 640- and 660-nm configu-
ration. Here, both gold nanoparticles and quantum dots are present
in the solution. The values of R are (a) 0.9, (b) 1.1, and (c) 1.2.
Exponential fits to detected negative transporting trajectories and
positive transporting trajectories are shown by dashed curves. The
mean position of detected trapping trajectories is shown by a hori-
zontal red dashed line in the R = 0.9 and 1.1 cases. Note that for
R = 0.9 and R = 1.1, trapped trajectories were observed, while at
R = 1.2, only transporting trajectories were seen.

position is observed. This likely occurs due to the fact that for
R = 0.9 a zero force region can exist over the entire ∼0.5-
mm-long constant-diameter waist region of the taper. Here
there is no restoring force, so the particles may drift due to
Brownian motion. For R = 1.1, a true taper trap is expected to
exist, leading to a more stable trapping position.

We also extracted the values of S in each case from fits to
the observed trajectories. The calculated values were S = 8 ±
2 pN mm−1 for R = 0.9, and S = 17 ± 3 pN mm−1 for R =
1.1. It may be seen that for R = 1.2 no trapping was observed
in the observation window, and it is possible that the taper trap
ceased to exist because the trap position was pushed out of
the region where a sufficiently strong radial evanescent field
gradient force exists.

VI. DISCUSSION AND CONCLUSION

In this work, we first numerically demonstrated the ability
to vary the trap position of a particle along a fiber taper, and
systematically evaluated the characteristics of the two-color
taper trap, including trap stiffness and trap depth. The strongly
overdamped nature of the trap was also confirmed numeri-
cally. Experimentally, we confirmed the ability to move the
trap position by adjusting the power ratio, and observed a
dependence of the relative trap position on R that was in
good agreement with numerics. We also measured the trap
stiffness, S, and found it to be smaller than the expected value
even after allowing for uncertainties in polarization. The most
likely explanation is trap anharmonicity: the trap shape is only
approximately parabolic over a range of about ±200 µm about
the trap center, but trajectories were observed over scales of
∼1 mm. However, without the development of sophisticated

dynamical simulations of the particle motion, it is difficult to
quantitatively evaluate the effect of the trap shape.

Next, by adjusting the longer wavelength mode’s wave-
length to a value outside the emission spectral range of a
quantum dot, we were able to use the method to trap quan-
tum dots adhered to gold nanoparticles near the fiber taper.
Regarding this last experiment, it is important to consider
another possible interpretation of the data. Because we mixed
quantum dots and gold nanoparticles in this experiment, quan-
tum dots were able to adhere to the fiber itself. This raises
the possibility that, rather than movement of quantum dots
adhered to gold nanoparticles, the trajectories we observed
were just those of gold nanoparticles which enhanced the
fluorescence from quantum dots adhered to the fiber [26,27]
as they passed over the position of the quantum dots. We
were able to rule out this interpretation by performing the
experiments with gold nanoparticles with a different sur-
face functionalization (Nanopartz A11-150-CIT) which did
not lead to quantum dot–gold nanoparticle conglomerates. In
this case, although gold nanoparticles were observed to be
transported and trapped when scattered light was observed,
no trajectories were observed when the long-pass filter was
inserted and only fluorescence from the quantum dots was
detected.

Additionally, note that at present, we have no estimate for
the number of quantum dots adhered to the gold nanoparticles.
In terms of surface area, the gold nanoparticles are hundreds
of times larger than quantum dots. Assuming that quantum
dots adhere to the gold nanoparticles, but not to each other,
it is possible that many tens of quantum dots are attached
to each particle in the current experiments. At present, we
believe it is more pertinent to focus on the issue of coupling
fluorescence from trapped emitters to the fiber. Once this is
achieved, efforts to reduce the number of emitters present may
lead to novel single-photon sources using this technique.

Another point to consider is whether the taper trap ef-
fect can really be useful for creating interfaces between
quantum emitters and nanophotonic devices. The positioning
demonstrated here is only accurate to the level of tens of
micrometers, whereas state-of-the-art fabrication techniques
can achieve nanopositioning, and optical trapping of atoms
near nanodevices achieves trap sizes below 1 µm. The reason
we believe our technique is of interest despite these ostensibly
unfavorable comparisons is that it is already useful to be able
to trap a quantum emitter at a diameter-dependent position
on a waveguide. The reason for this is that emitter-waveguide
coupling depends sensitively on the waveguide diameter (as
demonstrated for nanofibers in Refs. [28,29]). Therefore, hav-
ing a trapping technique which allows trapping at a given fiber
taper diameter allows maximization of emitter-fiber coupling.
Conversely, as mentioned above, in the present experiment,
we do not have an accurate way to determine the diameter
at which a particle is trapped from microscope measurements
alone. The position of the fiber center is uncertain by at least
100 µm and the average change in diameter in the taper
region we use is approximately 1 µm per 1 µm change in
position along the fiber. This also ignores the uncertainty in
the fiber waist diameter which typically fluctuates by ±10%
for a given taper. Luckily, these uncertainties in the exact
diameter at which an emitter is trapped do not prevent the
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optimization of emitter-fiber coupling by simply observing the
coupled fluorescence from a trapped emitter and maximizing
it by adjusting the trapping position using the power ratio.
Furthermore, taking the uncertainty in the position of trapped
particles to be 23 µm, this corresponds to the same uncertainty
in diameter, which for an average taper of 600 nm is about 4%.
This uncertainty in diameter does not create a large change in
coupling efficiency to the fiber modes [28,29]).

Another situation where the resolution of the current tech-
nique might be sufficient is where a resonator couples to a
fiber taper at a given point, such as in the case of whispering
gallery mode resonators. In this case, our method could be
used to trap an emitter at the region where the resonator
couples to the fiber taper. In the situations given above, po-
sitioning at the level of hundreds of nanometers, as necessary
for maximizing coupling to a photonic crystal cavity, is sim-
ply not necessary and sufficiently good positioning can be
achieved with a taper trap.

In conclusion, we have established numerically and exper-
imentally the basic and unique properties of two-color optical
fiber taper traps and used the technique to trap quantum dot–
gold nanoparticle conglomerate particles near a fiber taper.
We anticipate that taper trapping can provide a simple and
flexible technique for coupling emitters and nanowaveguides
optimally in a reconfigurable and reversible way.

Data sets and computer programs used to create the fig-
ures for this paper are available online [30].
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APPENDIX A: NONIDEAL ASPECTS
OF THE EXPERIMENT

In this Appendix, we analyze and comment on some as-
pects of the experiment which are not ideal and the necessary
corrections required to deal with them.

First, we chose not to use mode polarization control in
this experiment. This means that the exact polarization state
of the mode in the fiber taper region was unknown in our
experiments. This is a deliberate choice; controlling the mode
polarization precisely requires significant extra equipment in
excess of the simple setup illustrated in Fig. 3(b). As we
aim for this manipulation technique to be economical and
simple, if polarization control were required it would sig-
nificantly reduce its attractiveness. In a previous paper, little
difference was found between experiments with a nominal
level of polarization control and those with no control [11].
We therefore expect that even without the polarization states
matched to those used in simulations, a reasonable level of
agreement between numerical predictions and experimental
results should be found.

In Figs. 9(a)–9(c), we show the effect of relative rota-
tion between the (linear) polarization of the two fundamental

modes by angles α = 0◦, 45◦, and 90◦. It may be seen that the
relative rotation leads to an azimuthal broadening of the lobes
at the top and bottom of the fiber, and indeed the two lobes
merge when α = 90◦. Accompanying this change in the max-
imum intensity distribution is a drop in intensity of the evanes-
cent field at the fiber surface. This intensity Iα (x = 0, y =
a + ans) normalized to the α = 0 case gives a correction factor
CP shown in Fig. 9(d), relative to the simulations for which
the polarization was perfectly aligned. The correction factor
is shown for several different taper diameters as indicated in
the legend. The correction factor is seen to reach a minimum
of CP ≈ 0.63 when α = 90◦. As may be seen, changing the
fiber diameter does not produce a significant change in the
behavior of CP. The situation does not change significantly
when elliptical polarizations are considered, although angular
momentum can be transferred to the particle in this case.
Because this is independent of the motion along the fiber axis,
it is not expected to affect the results considered here.

Second, the velocity-dependent damping force to the par-
ticles’ motion is expected to be larger than that given by
Stokes’s law due to the presence of the fiber. Rigorous results
do not exist for the effect of a cylindrical body such as a fiber
on the damping force. It is, therefore, typical to use corrections
developed for a particle close to a plane [12,31,32]. However,
in this case, the distance from the fiber to the particle surface
must be known or introduced as a fitting parameter. Given that
the particle diameter here is only a few times less than the fiber
diameter, the use of these corrections may be dubious in our
case. We have therefore chosen to calculate the coefficient of
damping, γ , by measuring the terminal velocity vt of particles
transported in the presence of only one mode, and using the
relation γ = Fz/vt , where Fz is the optical force on the particle
along the z axis due to the mode. Since the optical force
cannot be directly measured experimentally, we use the FDTD
simulation value of Fz in our calculation.

Finally, we mention nonideal aspects of the experiment
caused by fiber-particle interactions. Because our experiment
uses a simple method for immersing the fiber taper in a
droplet, standard water surface tension is required, and sur-
factants cannot easily be used. For this reason, some particle
sticking to the fiber is inevitable. We assumed that our ex-
perimental results were not affected by sticking so long as
the following conditions were met: (i) particle adhesion to
the fiber did not significantly decrease the transmitted power
and (ii) the position at which particle sticking occurred was
outside the region where particle trapping was observed. The
data used for this paper satisfied these conditions. Nonethe-
less, it was necessary to perform experiments within a brief
time range in order to reduce the chance of a particle sticking
in the region to be measured. We consider trajectories mea-
sured over 10-s intervals for various values of R. Because of
the nondeterministic nature of particles entering the trapping
region and the limited time frame for each measurement, the
number of trajectories observed unavoidably varied for each
value of R.

APPENDIX B: DATA ANALYSIS

In this Appendix, we briefly describe the analysis methods
used on the data.
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FIG. 9. Calculations showing the effects of relative rotation of the fiber mode polarizations. (a) The polarizations of the two modes are
aligned and the power in each mode is the same. [(b) and (c)] The relative rotations of the quasilinear polarized fundamental modes are 45◦ and
90◦, respectively. The polarization axes are shown by dotted and dashed black lines for the 785- and 640-nm wavelength modes, respectively.
The thick black circles indicate the fiber surface in each of (a)–(c). (d) The correction factor CP due to the effect of relative rotation between
the (linear) polarizations of the two modes for several taper diameters 2a as indicated in the legend.

Regarding the detection of transporting trajectories in the
data, we first use a peak detection method on each frame of the
data, and then correlate nearby peaks to establish trajectories
[11]. This method works reasonably well when only trans-
porting trajectories are present, and the density of trajectories
is not too high. It works less reliably in the case where per-
sistent trapping trajectories are present, due to ambiguity over
which of multiple peaks in a frame belong to which unique
trajectory. Once trajectories have been detected, they can be
fitted by Eq. (2), allowing the extraction of the relaxation rate
parameter 
+. From here, we can calculate the experimental
trap stiffness S if the damping coefficient γ is known.

In the case of trapped particle trajectories, a more ro-
bust method of detection is necessary. We used a modified

Hough-like method [33] to detect trapped particle trajectories
as follows. Algorithmically, we scan a horizontal line over
the data in the direction where trajectories are found. Points
within ±2� of the line’s vertical position are considered to be
part of a trapped trajectory, where � is the observed trajectory
width, which depends on the imaging optics. The vertical
position of the line which leads to the most points in the
trajectory is considered to be the center of the trapping tra-
jectory and thus the trapping position for particles. Although
not completely independent of the parameters used to find the
peaks in the data, this method gives a way to objectively assign
a trapping position to data for which trapping trajectories are
observed.
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