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Multiplexing spectral line shape of waveguide transmission by photonic spin-orbit interaction
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Manipulating the spectral line shape exhibits great potential in realizing active optical circuits with switching,
sensing, and modulation capabilities. Exploring unusual line shapes, such as Fano resonance and electromag-
netically induced transparency (EIT), has attracted substantial interest. Conventional methods of engineering
the spectral line shape have limited tunability and face challenges in multiplexing different spectral line shapes.
Here, we propose and numerically demonstrate a mechanism to tailor the transmission line shape almost at will
by exploiting the interference of frequency-dependent chiral dipolar states in two helix particles sitting above a
dielectric waveguide. We show that, by tuning the polarization of the chiral dipoles and exploiting transverse
spin-orbit interaction, one can control the asymmetric Pancharatnam-Berry geometric phase for the excited
guided waves propagating in opposite directions. The interference of the guided waves, respectively, excited by
the two particles can give rise to transmissions with various line shapes, including Lorentzian-like, antiresonance-
like, Fano-like, and EIT-like line shapes, which carry an intriguing property of line-shape-momentum locking,
i.e., the transmissions in opposite directions have different line shapes. Our findings open possibilities for
multiplexed and multifunctional nanophotonic designs with unprecedented capability of spectral line shaping.
The proposed structures can be conveniently integrated with optical circuits for on-chip applications.
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I. INTRODUCTION

Lorentzian resonance, antiresonance, Fano resonance, and
electromagnetically induced transparency (EIT) can give rise
to different spectral line shapes with intriguing physics and
have been extensively studied in microwave and optical
systems [1–4]. Tailoring the spectral line shapes promises
important applications in designing multifunctional photonic
devices for optical sensing, switching, filtering, and modula-
tions [5–9]. Lorentzian resonance exhibits enlarged amplitude
at the resonance frequency and serves as the building block
for various fascinating optical functionalities and applications
[10–12]. Antiresonance exhibits vanished amplitude accom-
panied by an abrupt negative phase shift. It originates from
the destructive interference between coherent drive and inter-
actions in the strong-coupling regime and can be employed to
characterize complex integrated quantum circuits [13]. Fano
resonance occurs when a discrete state interferes with a con-
tinuum state, giving rise to an asymmetric line shape with
sharp transition between a dip and a peak [14–16]. It can
be applied to realize optical switches, optical sensors, ultra-
thin circular polarizers, and nonlinear and slow-light devices
[17–21]. The EIT arises from the weak coupling between a
bright state and a dark state, where the destructive interference
between different excitation channels cancels the losses out
and results in a narrow transparency window [22]. The highly
dispersive nature of EIT paves the way for achieving quality-
factor enhancement, photonic information storage, and light
stopping [23–27].
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Classical analogs of the Fano and EIT spectral line shapes
are usually realized by tuning the near-field coupling of
neighboring resonators, directly mimicking the quantum in-
terference phenomena in coupled photonic systems [28–30].
The Fano line shape can emerge when high-order modes in-
teract with continuum or dipolar mode in symmetry-breaking
systems and hybrid nanostructures [31–33]. It can also appear
in photonic crystals with coupling between narrow Bragg
resonances and broad Mie or Fabry-Perot resonances, as well
as in plasmonic and dielectric metamaterials with collective
Fano interference [34,35]. In these coupled resonator systems,
EIT can be achieved as a special case of Fano resonance when
the bright and dark modes resonate at the same frequency
[36–39]. The transition between Fano and EIT line shapes
can be realized by tuning the geometry-dependent resonant
states, phase delays, and coupling strength of the resonators
(i.e., overcoupling or undercoupling) [40,41]. In addition, EIT
can be modulated by optical chiral states at an exceptional
point in an indirectly coupled resonator system [42]. Recently,
engineering the spectral line shapes has attracted increasing
attention. This can be achieved by introducing additional
degrees of freedom, such as the mode symmetry in double-
Fano metasurfaces, the backscattering and backcoupling in
silicon ring resonators [43,44], etc. However, these methods
have limited tunability and cannot achieve the multiplexing
of different spectral line shapes in the same optical structure,
which hinders their applications in designing compact and
multifunctional optical devices.

Here, we propose a mechanism to realize the channel-
dependent multiplexing of spectral line shapes based on
photonic spin-orbit interaction (SOI). Photonic SOI refers to
the interplay between spin and orbital angular momentum
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of light [45,46], which can give rise to numerous intriguing
phenomena and properties such as optical spin-Hall effect
[47,48], spin-dependent vortex generation [49,50], and lateral
optical force [51]. Our proposed mechanism relies on the
spin-momentum locking property of transverse SOI associ-
ated with evanescent waves [52–57]. It is usually employed
in the spin-dependent directional excitation of surface/guided
waves (i.e., power modulation) [58,59]. Here, we show that
it can be applied to achieve polarization-dependent asym-
metric Pancharatnam-Berry (PB) phase for guided waves,
which serves as the key mechanism for the versatile channel-
dependent spectral line shaping. Our system consists of
two chiral particles sitting above a dielectric waveguide. By
selectively exciting the dipole modes in the particles and
controlling their polarizations, one can achieve a transition
of the excited guided wave from negative phase shift to
positive phase shift at the resonance frequency. The inter-
ference between the two guided waves excited, respectively,
by the two particles can give rise to waveguide transmis-
sions with Lorentzian-like, antiresonance-like, Fano-like, and
EIT-like line shapes. In addition, the transmissions in opposite
guided wave channels have entirely different line shapes, e.g.,
Lorentzian-like in one direction and Fano-like in the opposite
direction. This enables the switching of different line shapes
in different transmission channels of the waveguide with-
out changing the resonator geometry or working frequencies,
which paves the way to realizing channel-dependent multi-
functionalities for optical communications.

The paper is organized as follows. In Sec. II, we propose
and explain the mechanism for the phase modulation by the
synergy of transverse SOI and PB geometric phase. In Sec. III,
we implement the mechanism in the helix-waveguide cou-
pling system and demonstrate the polarization- and channel-
dependent phase shift of the excited guided wave. In Sec. IV,
we realize the versatile channel-multiplexed manipulation of
transmission line shapes by engineering the interference of
guided waves. We draw the conclusion in Sec. V.

II. MECHANISM

The spectral line shape is attributed to the interferences
of all excited wave channels. Fano resonance corresponds
to the interference of a resonant channel and continuum,
where the former undergoes a phase change of π at the
resonance frequency while the phase of the later remains
unchanged, resulting in a sharp transition between the con-
structive interference (peak) and the destructive interference
(dip). Similarly, EIT corresponds to the interference of two
resonant channels with opposite phase shifts and is featured
by a narrow transparent window due to the destructive in-
terference [28]. Thus, the independent modulation of the
phase shifts in the wave channels is critical to realizing dif-
ferent spectral line shapes. We will show that this can be
achieved by the synergy of the PB geometric phase and
transverse SOI.

To illustrate the mechanism, we consider a two-
dimensional (2D) electric dipole with two Cartesian
components p2D = (px, pz ) sitting above a dielectric slab
waveguide, as shown in Fig. 1(a). Here, we assume that px

and pz both have a Lorentzian frequency dependence with
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FIG. 1. Phase shift modulation enabled by transverse SOI.
(a) The electric dipole p2D can couple to three different wave chan-
nels: far-field radiation channel (I), and guided wave channels (II
and III). (b) The amplitudes and phases of two dipole components
px and pz with different resonance frequencies. (c) Evolution of
dipole polarization on the Poincaré sphere when the ratio of dipole
components changes. The inset shows the corresponding dipole
polarization ellipse. The blue and red colors of the polarization
ellipses denote opposite spin directions. (d) The phase shift �φ as
a function of the dipole polarization and the wave vector kx/k0 of
the wave channel. The black solid line corresponds to kx/k0 = 1.4,
and purple dashed line corresponds to Sd = ( − 0.22, 0, 0.97). The
polarization of the wave channel is shown by the polarization ellipses
below the horizontal axis. (e) The phase shift �φ as a function of
dipole polarization when kx/k0 = 1.4, corresponding to the black
solid line in (d). (f) The phase shift �φ as a function of kx/k0 when
Sd(ω1) = ( − 0.22, 0, 0.97), corresponding to the purple dashed
line in (d).

different resonance frequencies ω1 and ω2 as well as damping
γ1 and γ2 [60]:

px = px0

ω2
1 − ω2 − 2iγ1ω

, (1)

and

pz = pz0

ω2
2 − ω2 − 2iγ2ω

, (2)

where px0 and pz0 are the amplitudes determined by the exter-
nal excitation. Figure 1(b) shows the spectra of the two dipole
components for ω1 < ω2. Near the resonance frequency of px
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(in the yellow region), the amplitude of px (denoted by the
red solid line) has a Lorentzian line shape and the phase of px

(denoted by the red dashed line) experiences 180-degree shift,
while the amplitude and phase of pz (denoted by the blue solid
and dashed lines, respectively) are approximately unchanged.
Thus, the phase difference between px and pz changes from
0 degree to 180 degrees, i.e., the polarization of the dipole
p2D varies with the frequency. Especially at ω = ω1, px and
pz have a phase difference of 90 degrees because px is on
resonance while pz is off resonance, i.e., the dipole p2D is
elliptically polarized and corresponds to a chiral dipolar state
with the chirality deriving from the handedness of its elliptical
polarization. The polarization of p2D can be characterized by
the Stokes vector Sd = (Sd

1 , Sd
2 , Sd

3 ) with Sd
1 = |pz |2−|px |2

|pz |2+|px |2 , Sd
2 =

2Re(pz p∗
x )

|pz |2+|px |2 , and Sd
3 = −2Im(pz p∗

x )
|pz |2+|px |2 , as denoted by the red arrow

in the Poincaré sphere in Fig. 1(c), where the inset shows the
corresponding polarization ellipse. The polarization ellipticity
of p2D is decided by the ratio pz0/px0. When pz0/px0 changes,
the tail of the Stokes vector Sd traces out a trajectory on the
Poincaré sphere, denoted by the red circle in the S1−S3 plane,
where the polarization ellipses of some representative points
are shown. Particularly, the points A, B, C, and D denote
the z-polarized linear dipole, right-handed circular dipole,
x-polarized linear dipole, and left-handed circular dipole,
respectively.

The fields of the dipole p2D can couple to the far-field
radiation channels in the region I, the left-propagating guided
wave channel in the region II, and the right-propagating
guided wave channel in the region III, as shown in Fig. 1(a).
The coupling strongly depends on the polarization match be-
tween the dipole and the wave channels. The corresponding
coupling coefficient given by the coupled mode theory (CMT)
is κ (ω) ∝ p2D · Ē∗ ∝ ( − pxk∗

z + pzk∗
x ) [53], where Ē denotes

the eigen electric field of the wave channels with the form
Ē=(−kzêx + kx êz )e(ikxx+ikzz), kx and kz are wave-vector com-
ponents in x and z directions satisfying k2

x + k2
z = k2

0 = ω2/c2

and we have neglected the time-harmonic factor e−iωt . For
the guided wave channels, this Ē field only describes the
evanescent tail responsible for the coupling. The polarization
of the electric field can be described by the Stokes vec-

tor Sc = ( |kx |2−|kz |2
|k0|2 ,

−2kxkz

|k0|2 , 0) for the radiation channels and

Sc = ( |k0|2
|kx |2+|kz |2 , 0, −2kxIm(kz )

|kx |2+|kz |2 ) for the guided wave channels
propagating in ±x direction. We note that the guided wave
channels are elliptically polarized with the sign of Sc

3 (i.e., spin
direction) locked to propagating wave-vector kx, correspond-
ing to the spin-momentum locking of transverse SOI [58].
Near the resonance frequency ω1, the coupling coefficient can
be approximated as

κ (ω) ∝
(

− px0k∗
z

ω2
1 − ω2 − 2iγ1ω

+ pz0k∗
x

ω2
2 − ω2

)
, (3)

where we have neglected the loss of pz under the condition
|ω2

2 − ω2| � 2γ2ω. The coupling coefficient κ (ω) directly de-
cides the amplitude and phase of the excited waves. Equation
(3) indicates that κ (ω) undergoes a dramatic phase shift when
the excitation frequency increases from ω < ω1 to ω > ω1,
and the maximum phase shift depends on the polarization of

the dipole p2D and the wave-vector component kx. Figure 1(d)
shows the maximum phase shift �φ for ω ∈ [ω1/2, 3ω1/2]
as a function of the dipole polarization and kx/k0. For the
radiation channels in the region I (|kx| � k0) without trans-
verse spin, the phase shift �φ is symmetric with respect to
the dipole spin Sd

3 (ω1) and kx, with a maximum of ∼180
degrees. Increasing Sd

1 (ω1), corresponding to the ellipse path
C → B → A (or C → D → A) on the Poincaré sphere, and
increasing |kx| will both reduce the relative contribution of
px over pz and the phase shift of the excited propagating
waves. In contrast, for the guided wave channels in the re-
gion II (kx < −k0) and region III (kx > k0) with transverse
spin, �φ is asymmetric with respect to Sd

3 (ω1) and kx. Im-
portantly, controlling the dipole polarization or channel wave
vector can give rise to an almost arbitrary phase shift of
the excited guided wave. Specifically, when the dipole and
the guided wave channel have opposite spin directions (i.e.,
opposite polarization handedness denoted by different col-
ors of the polarization ellipses), the maximum phase shift
can take the values �φ ∈ [180, 360] and [ − 180, 0]. In
this case, a jump of �φ from 360 degrees to −180 degrees
appears at Sd(ω1) = −Sc (i.e., orthogonal polarizations), as
marked by the red dotted line, corresponding to the van-
ished excitation of the guided wave. Differently, when the
dipole and guided wave channel have the same spin direc-
tion (i.e., the same polarization handedness denoted by the
same color of the polarization ellipses), the phase shift can
take the values �φ ∈ [0, 180]. To further understand the
dependence of the phase shift on the dipole polarization
and wavevector component kx, we show the phase shift �φ

for the cases kx/k0 = 1.4 and Sd(ω1) = ( − 0.22, 0, 0.97)
in Figs. 1(e) and 1(f), respectively, which correspond to the
black solid and purple dashed lines in Fig. 1(d). As shown
in Fig. 1(e), for the guided wave channels (|kx| > k0), the
arbitrary phase shift in the range [−180, 360] can be achieved
by varying the dipole polarization along the path A → D →
C → B → A. As shown in Fig. 1(f), the phase shift �φ is
asymmetric with respect to opposite kx for the guided wave
channels, i.e., the excited guided waves propagating in ±x
directions have different phase shifts. In Figs. 4 and 5, we
will show that this polarization- and channel-dependent phase
shift can be used to flexibly manipulate the transmission
line shape.

The underlying mechanism of the phase shift modulation
is attributed to the PB geometric phases originating from
asymmetric polarization evolutions under transverse SOI. The
phase of the coupling coefficient κ (ω) can be attributed to
the change of polarization when the dipole couples to the
guided wave channels. We illustrate this point for two exam-
ple cases with dipole polarizations Sd(ω1) = ( − 0.6, 0, 0.8)
and Sd(ω1) = ( − 0.22, 0, 0.97), which give rise to the pos-
itive and negative phase shifts of the guided wave with
kx > 0, respectively. When the frequency ω increases from
ω1/2 to 3ω1/2, the polarization of the dipole with Sd(ω1) =
( − 0.6, 0, 0.8) traces out a trajectory on the Poincaré sphere,
which is denoted by the red curve marked by “i → ix” in
Fig. 2(a), with the point “v” denoting the dipole polarization
at ω = ω1. The yellow point marked by "c±" denotes the
polarization of the evanescent tail of the guided wave chan-
nel with Sc = (0.34, 0, ∓ 0.94), where the upper (lower)
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FIG. 2. A geometric phase interpretation of the phase shift. (a) Polarization evolution on the Poincaré sphere for the electric dipole with
Stokes vector Sd(ω1) = ( − 0.6, 0, 0.8) coupled to the waveguide. The red curves marked by “i → ix” denote the polarization variation of
the electric dipole with increasing frequency. The point "c±" denotes the polarization of the evanescent tail of the guided wave channels
with wave-vector component kx/k0 = ±1.4. The blue areas enclosed by the black arrow contour give the PB geometric phase for the guided
wave excited by different dipole polarizations at different frequencies. (b) Comparison between the PB phase and the CMT phase for the
electric dipole with Sd(ω1) = ( − 0.6, 0, 0.8). (c) Polarization evolution on the Poincaré sphere for the electric dipole with Stokes vector
Sd(ω1) = ( − 0.22, 0, 0.97) coupled to the waveguide. (d) Comparison between the PB phase and the CMT phase for the electric dipole with
Sd(ω1) = ( − 0.22, 0, 0.97).

sign corresponds to kx/k0= 1.4 (kx/k0 = −1.4). Choosing a
reference point m (0, 0, 1) on the Poincaré sphere, we can
determine the geometric phase associated with the polariza-
tion evolution from the dipole polarization “i” to the wave
channel polarization “c±”, which is given by the solid angle
subtended by the area enclosed by the contour “i → c± →
m → i” [61,62]. The geometric phase for other dipole polar-
izations (i.e., “ii” to “ix”) can be determined similarly. We
note that the variation of the geometric phase (indicated by the
evolution of the blue area) is different for kx > 0 [left panel
in Fig. 2(a)] and kx < 0 [right panel in Fig. 2(a)] due to the
different spin Sc

3 of opposite propagating guided waves, which
is protected by the spin-momentum locking of transverse SOI.
This explains the asymmetric phase shift with respect to kx in
Fig. 1(d). To verify the above explanation, we compare the
obtained PB geometric phase with the phase of κ (ω) given by
CMT in Eq. (3), as shown in Fig. 2(b). We notice the good
agreements for both kx > 0 and kx < 0, demonstrating the
validity of our interpretation based on PB geometric phase.
Similarly, we verify the geometric phase interpretation for
the dipole with polarization Sd(ω1) = ( − 0.22, 0, 0.97) in
Figs. 2(c) and 2(d), which again exhibits good consistency

with the CMT results. Compared with Fig. 2(a), it is clear that
different dipole polarization will give rise to different evolu-
tion of the geometric phase (i.e., blue area). The PB phase
provides a clear geometric interpretation for the dependence
of the phase shift on the dipole polarization and the guided
wave channel.

III. REALIZATION OF PHASE MODULATION

To realize the above mechanism of phase modulation,
we consider a metal helix sitting over a silicon (εsi =
12) waveguide under the excitation of an electromag-
netic plane wave, as shown in Fig. 3(a). The helix is
right-handed with two turns and has pitch P = 75 nm,
outer radius R = 46 nm, and inner radius r = 11 nm. It
is made of silver with relative permittivity characterized
by the Drude model εAg = 3.92 − ω2

p/(ω2 + iωωt ), where
ωp = 1.33 × 1016 rad/s and ωt = 2.73 × 1013 rad/s [63]. The
waveguide has a rectangular cross section of w × t =
630 nm × 315 nm. The distance between the center of the
helix and the waveguide’s upper surface is 125 nm. The
incident plane wave is linearly polarized with the electric
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FIG. 3. Phase manipulation of the guided wave excited by a
helix. (a) Helix-waveguide coupling configuration. CL and CR,

respectively, represent the left and right guided wave channels.
(b) The amplitudes (solid and dashed blue lines) and phases (dotted
and dash-dotted red lines) of the induced dipoles px and pz as a
function of frequency. (c) Stokes parameters of the induced dipole
as a function of the incident angle θ at the frequency 104.9 THz.
The evolution of phase (left column) and power (right column) of
the guided wave for (d), (e) θ = 4 degrees, (f), (g) θ = 8 degrees,
(h), (i) θ = 9.4 degrees, (j), (k) θ = 9.6 degrees, (l), (m) θ = 30
degrees, and (n), (o) θ = 70 degrees.

field Einc = (−sinθ ŷ + cosθ ẑ)E0e−ik0(cosθy+sinθz), where θ is
the incident angle between the wave vector k and the −y
direction on the zoy plane, and the time-harmonic factor
e−iωt is neglected. For simplicity, we assume the plane wave
only incidents on the helix and the background scattering by
the waveguide is neglected. All the numerical simulations in
the following are conducted by using finite-element package
COMSOL.

Under the excitation of the plane wave, the charges in
the helix give rise to the electric dipoles px and pz that
dominate the coupling with the waveguide [64]. Figure 3(b)
shows the induced dipoles for θ = 10 degrees obtained via
numerical simulations. We notice that px and pz originate
from two different resonant modes with different resonance
frequencies. The dipole component px resonates at 104.6 THz
accompanied by a phase shift of π , while the nonresonant
pz is approximately a constant, corresponding to the sce-
nario in Fig. 1(b). At the resonance frequency of px, we
have Arg(pz ) − Arg(px ) = π/2, and |pz|/|px|can be tuned by
varying the incident angle θ [64]. Thus, the chiral dipolar
state excited in the helix can be controlled by tuning the
external illumination. Figure 3(c) shows the polarization of
the induced electric dipole p = (px, pz ) at the frequency
ω1/2π = 104.9 THz for different incident angles. When θ

increases, the dipole spin Sd
3 (ω1) (denoted by the blue dashed

line) first decreases and then increases, and Sd
1 (ω1) mono-

tonically decreases, which approximately corresponds to the
dipole polarization evolution “A → D → C” in Fig. 1(c). In
the considered frequency range, the dipole will excite the

fundamental guided waves propagating in both −x and +x
directions, corresponding to the left and right guided wave
channels (CL and CR). At about θ = 9.5 degrees, the dipole
polarization is orthogonal to the polarization of the evanes-
cent tail of CL, leading to perfect unidirectional coupling to
CR. We denote the electric field of the left- (right-) prop-
agating guided wave as EL (ER), and compute the phase
[i.e., Arg(EL) and Arg(ER)] and power (i.e., PL and PR)
of the fields. Fig. 3(d)–3(o) shows the phase (blue lines)
and power (red lines) under different incident angle θ . We
find that a higher power directionality results in a larger
difference between the phase shifts of the guided waves in
opposite guided wave channels. For θ = 0 degree or θ =
90 degrees, the electric dipole p is linearly polarized and sym-
metrically excites the guided waves. For 0 < θ < 90 degrees,
the electric dipole p is elliptically polarized and results in
asymmetric excitation of the guided waves. As shown by the
blue dashed lines, with the increase of θ , the phase shift of
the right-propagating guided wave increases and approaches
180 degrees. The power PR denoted by red dashed lines fol-
lows the Lorentzian-like line shape with its peak rising with
θ . This is attributed to the increase of px, the contribution
of which dominates in the excited guided wave at large val-
ues of θ . Differently, when the incident angle θ increases,
the phase shift of the left-propagating guided wave (denoted
by the blue solid lines) changes from negative to positive.
The transition point appears between θ = 9.4 degrees and
θ = 9.6 degrees, corresponding to Figs. 3(h) and 3(j), respec-
tively, where near-perfect unidirectional coupling happens. At
θ = 9.4 degrees, the phase of the guided wave Arg(EL) under-
goes a negative phase shift of 180 degrees near the resonance
frequency, while Arg(EL) at θ = 9.6 degrees experiences a
positive phase shift of 360 degrees. Also, the line shape of the
power PL experiences a transition from antiresonance-like to
Lorentzian-like, as shown by the red solid lines. These results
agree well with the analytical results in Fig. 1. Thus, the phase
shift in the guided wave channels can be flexibly controlled
by tuning the polarization state of the helix, which serves
as the key mechanism for manipulating the transmission
line shapes.

IV. MANIPULATION OF SPECTRAL LINE SHAPE

We apply two helix particles (s1 and s2) coupled to the
waveguide to realize different spectral line shapes, as shown
in Fig. 4(a). The inset shows the four wave channels: light
couples from the helix s1 to the left and right guided wave
channels (EL

1 and ER
1 ), and light couples from the helix s2

to the left and right guided wave channels (EL
2 and ER

2 ).
The phase shifts of the EL, R

1 and EL, R
2 are, respectively,

determined by the dipole polarization of the helix particles
s1 and s2. The power in the four wave channels (PL, R

1, 2 ) can
be controlled by the particle-waveguide separation distance
�h1 and �h2. Through tuning the dipole polarizations of
the helix particles and the particles’ position, we can control
the interference between EL

1 and EL
2 (ER

1 and ER
2 ) in the left

(right) guided wave channel and manipulate the transmission
line shape. It is important to note that this mechanism is
fundamentally different from the conventional methods em-
ploying the near-field coupling of neighboring resonators.
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FIG. 4. Fano-like and Lorentzian-like line shapes realized by the bi-helix-waveguide coupling system. (a) Two helix particles s1 and s2

with opposite handedness are placed over the waveguide. The �h1 (�h2) denotes the separation distance between s1 (s2) and the waveguide’s
upper surface, and �l denotes the separation distance between s1 and s2 along the x direction. The inset shows the four wave channels. (b) The
phase and power of the guided waves EL

1 and EL
2 . (c) Fano-like transmission line shape in the left guided wave channel CL. (d) The phase and

power of the guided waves ER
1 and ER

2 . (e) Lorentzian-like transmission line shape in the right guided wave channel CR.

Here, the line-shape tunability is attributed to the interference
of helix-waveguide coupling channels with engineered phase
and power relations.

Figure 4(a) shows the system with two helix particles
of opposite handedness; s1 is right-handed and s2 is left-
handed, which can simultaneously give rise to Fano-like and
Lorentzian-like line shapes in opposite guided wave chan-
nels. The separation between s1 (s2) and waveguide’s upper
surface is �h1 = 125 nm (�h2 = 302 nm), ensuring that the
excited wave channels EL

1 and EL
2 have comparable powers

for interference. The separation between s1 and s2 along the
x direction is �l = 2400 nm. Under the linearly polarized
incidence with θ = 20 degrees, the two helix particles s1

and s2 can generate opposite dipole spins and induce oppo-
site asymmetric coupling with the waveguide, giving rise to
channel-dependent phase shift and power. Figure 4(b) shows
the phase and power of the excited guided waves EL

1 and EL
2

as a function of frequency. The phase Arg(EL
1 ) (denoted by

the red line) experiences a shift of nearly 180 degrees within
the frequency range [103 THz, 107 THz], while the phase
Arg(EL

2 ) (denoted by the blue line) remains approximately
unchanged in this frequency range. The phase difference
�φL = Arg(EL

1 ) − Arg(EL
2 ) (denoted by the black dashed

line) reaches 180 degrees at 103 THz and 0 degree at 107
THz. Meanwhile, the power of the two channels, i.e., PL

1
and PL

2 , intersect at around 103 and 108 THz. Thus, the
interference of EL

1 and EL
2 switches sharply from destruc-

tive to constructive, giving rise to a Fano-like line shape in

the left guided wave channel, as shown in Fig. 4(c). We
note that the sharpness of the Fano asymmetric line shape
is usually limited by the nonradiative (Ohmic) losses in con-
ventional systems [34]. Our proposed mechanism can break
this limitation and increase the sharpness through engineer-
ing the polarization match between the dipole and guided
wave channel. Figure 4(d) shows the phase and power of
the channels ER

1 and ER
2 . Interestingly, the phase Arg(ER

1 )
(denoted by the red line) remains approximately unchanged
in the frequency range [103 THz, 107 THz], while the phase
Arg(ER

2 ) (denoted by the blue line) undergoes a positive shift
of nearly 180 degrees. Since the power PR

1 is much larger
than PR

2 , the interference between ER
1 and ER

2 is dominated
by the contribution of the helix s1, giving rise to a Lorentzian-
like line shape in the right guided wave channel, as shown
in Fig. 4(e).

Figure 5 illustrates the configuration for realizing both
EIT-like and antiresonance-like transmission line shapes,
where we choose two right-handed helices with differ-
ent axis orientations. The helix s1 is placed above the
waveguide’s upper surface with �h1 = 125 nm and its cen-
ter axis (denoted by the red arrow) is parallel to the
y axis. The helix s2 is placed above the waveguide’s upper
surface with �h2 = 175 nm and its center axis (denoted by
the blue arrow) is rotated by the angle ϕ = 8 degrees with
respect to y axis on the xy plane. Here, the rotation of the helix
s2 contributes to the adjustment of its dipole polarization.
Their separation distance along x direction is �l = 3065 nm.
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FIG. 5. EIT-like and antiresonance-like line shapes realized by the bi-helix-waveguide coupling system. (a) Two right-handed helix
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is rotated by angle ϕ with respect to the y axis. The inset shows the four wave channels. (b) The phase and power of the excited guided waves
EL

1 and EL
2 . (c) EIT-like transmission line shape in the left guided wave channel CL. (d) The phase and power of the guided waves ER

1 and ER
2 .

(e) Antiresonance-like transmission line shape in the right guided wave channel CR.

Figure 5(b) shows the phase and power of the excited guided
waves EL

1 and EL
2 under linearly polarized incidence with

θ = 9 degrees. The phase Arg(EL
1 ) (denoted by the red line)

experiences a negative shift of nearly 180 degrees when the
frequency increases from 103.6 to 107 THz, while Arg(EL

2 )
(denoted by the blue line) undergoes a positive shift of
nearly 180 degrees. The phase difference �φL = Arg(EL

1 ) −
Arg(EL

2 ) (denoted by the black dashed line) evolves from
180 degrees at 103.6 THz, and 0 degree at 105 THz, to
180 degrees at 107 THz. Meanwhile, the power PL

1 intersects
with PL

2 at 103.6 and 107 THz, generating perfect destructive
interferences at the two frequencies. This gives rise to an
EIT-like line shape in the left guided wave channel featured
by a peak between two dips, as shown in Fig. 5(c). The quality
factor of the transparency resonance is about 70, which is
much higher than that of the dipole resonance of the helix
(∼15) shown in Fig. 3(b). Figure 5(d) shows the phase and
power of the guided waves ER

1 and ER
2 . The phase difference

of ER
1 and ER

2 (i.e., �φR, denoted by the black dashed line)
mainly originates from the dispersion of the waveguide mode,
and it reaches 180 degrees at around 104 THz. Moreover,
the power PR

1 and PR
2 almost coincide with each other. The

interference of ER
1 and ER

2 gives rise to an antiresonance-like
transmission line shape in the right guided wave channel,
as shown in Fig. 5(e), which exhibits nearly zero power
at 104.2 THz.

V. CONCLUSION

In conclusion, we analytically and numerically demon-
strate the channel-dependent manipulation of the transmission
spectral line shape in a bi-helix-waveguide coupling system.
By selectively exciting the orthogonal dipole modes of the
helix and tuning its polarization, we achieve almost arbitrary
phase shift of the excited guided waves based on PB geometric
phase and transverse SOI. We apply the interference of the
excited guided waves with independent phase modulations to
tailor the transmission line shape in the waveguide. This gives
rise to the multiplexing of channel-dependent spectral line
shapes and a remarkable property of line-shape-momentum
locking, i.e., the waveguide transmission in opposite channels
have different spectral line shapes. The proposed mechanism
enables significant flexibility of engineering the spectral line
shapes for a plethora of applications in photonic integrated cir-
cuits, quantum information processing, and nonlinear optics.
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