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Identifying regions of minimal backscattering by a relativistically moving sphere
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The far-field backscattering amplitude of an electric field from a relativistically moving sphere is analyzed.
Contrary to prior research, we do so by expressing the fields in the helicity basis and we highlight here its
advantages when compared to the commonly considered parity basis. With the purpose of exploring specific
scattering phenomena considering relativistic effects, we identify conditions that minimize the backscattered
field, leading to a relativistic formulation of the first Kerker condition. The requirements to be satisfied by the
sphere are expressed in terms of Mie angles, which constitute an effective parametrization of any possible optical
response a sphere might have. By considering different speeds of the sphere and angles of incidence, we are able
to identify multiple combinations of Mie angles up to octupolar order via gradient-based optimization that satisfy
our relativistic Kerker condition, that is, where the backscattered energy is at most 0.1% of the average scattered
energy. Our results can be extended to involve multiple particles forming a metasurface, potentially having direct
implications on the design of light sails as considered by the Breakthrough Starshot Initiative.
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I. INTRODUCTION

The scattering of light by a sphere is a canonical problem
in optics and electrodynamics and has been investigated for
many years, particularly for stationary spheres [1–11]. The
scattering of light by spheres is best described using Mie
theory, which involves expressing the incident and scattered
electromagnetic fields in terms of vector spherical harmonics
(VSHs). The amplitude coefficients that weight these VSHs
are collected in a vector and are mutually linked by a matrix-
vector product. Moreover, all optical properties of the object
are captured by the corresponding matrix, called the transition
or T matrix. For an arbitrary object, the T matrix can be dense,
but it is diagonal for a sphere, and the diagonal entries are the
Mie coefficients [12,13].

Controlling an object’s geometrical and material proper-
ties provides a unique way of tailoring the scattered field on
demand, and many intriguing aspects have been explored,
an example being the so-called Kerker condition [14–18].
The first Kerker condition contains the necessary composition
of multipolar excitations such that the object exhibits zero
backscattering. A second Kerker condition implies a vanish-
ing scattering in the forward direction, but this is considered
less often, since optical gain is necessary for its observation
[19].

While initially formulated for objects that can be safely
described in dipolar approximation, it was soon realized
that similar effects are encountered while capitalizing on
higher-order multipole moments. This coined the notion of
generalized Kerker conditions [20], and Kerker effects have
been explored in a large variety of settings. These studies
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are motivated by high-impact applications related to nanoan-
tennas, chiral molecules, and metamaterials, to name a few
[20–25].

This paper provides a further perspective on the Kerker
effect. It considers the Kerker effect in the relativistic regime.
The basic setting of our exploration is that of a relativistically
moving sphere illuminated with a monochromatic Gaussian
beam characterized by an angle of incidence �i relative to the
direction of motion of the sphere. Of course, unlike the case
of a stationary sphere, one cannot assume that there exists a
combination of multipole excitations that yield zero backscat-
tering with the inclusion of motion. However, one can aim to
minimize the backscattering, which depends on the multipolar
contribution to the scattering response, for a given speed and
field angle of incidence. This leads to an approximate Kerker
condition in the case of a relativistically moving sphere.

Our work has clear implications for future technological
developments. For example, within the Breakthrough Starshot
Initiative [26,27], microgram satellites equipped with light
sails, potentially made from metasurfaces consisting of a tai-
lored arrangement of scatterers, are to be accelerated with an
earth-based laser system up to a significant fraction of the
speed of light. Using these satellites, neighboring galaxies
would be explored. The design of such systems has many
facets, and among them is the accurate description of the
optical response from scattering objects in the form of meta-
surfaces. The formulation of the light scattering by an isolated
object under relativistic conditions, as a pursuit in this con-
tribution, is an important prerequisite to study such more
advanced devices.

The structure of the paper is as follows. In Sec. II the phys-
ical setup is outlined and all necessary coordinate systems are
defined. Moreover, the field of the considered incident beam
is transformed from the laboratory frame to the reference
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FIG. 1. Pictorial representation of the sphere in (a) the beam’s frame S‖ and the rotated frame S containing an external observer (represented
by the eye) and (b) the sphere’s inertial reference frame S′. In S the sphere is seen to be moving with velocity vẑ. The wave vector k̂i is incident
on the sphere with angle �i. In (a) the direction of backscattering k̂BS (denoted by the red arrow) is in the opposite direction to k̂i and it
is this direction that is considered when formulating a relativistic Kerker condition. In (b) the sphere is stationary (v = 0) in S′, while the
Lorentz-boosted wave vector of the incident field is given by k̂′

i and is incident with angle �′
i �= �i when �i /∈ {0, π} and �′

i = �i when
�i ∈ {0, π}. Moreover, the direction of backscattering k̂′

BS in this frame is in general not opposite to k̂i or k̂′
i . (a) Frames S‖ and S and (b)

Frame S′.

frame of the sphere based on the transformation of each con-
stitutive plane wave of its angular spectrum representation.
Afterward, the scattered field is obtained by solving an or-
dinary Mie problem in the rest frame of the sphere. We rely
on a parametrization of its response using Mie angles [28].
These Mie angles constitute a minimalist model to express
all possible responses from a sphere, which allows a generic
analysis of the backscattering response. To conclude Sec. II,
the scattered field will be transformed back to the laboratory
frame, in which the backscattering is observed.

In Sec. III the backscattering amplitude is visualized with
respect to some given Mie angles for a sphere with a fixed
velocity and a field with a fixed angle of incidence. An explicit
example of the backscattering as a function of the radius of a
spherical particle made of silicon carbide is also considered.
We implement all calculations using the JULIA programming
language [29] and implement a gradient-based optimization
scheme by leveraging automatic differentiation within the
JUMP modeling framework [30], much in the spirit of recent
works on differentiable physics solvers [31,32]. Using this
scheme, we design spheres that provide minimum values for
the backscattering and identify the corresponding combina-
tions of Mie angles. We find multiple suitable combinations
by considering different speeds of the sphere and angles of
incidence, where the suitability is defined by a backscatter-
ing which contributes at most 0.1% to the average scattered
energy. In Sec. IV we summarize our findings.

II. DESCRIPTION OF THE SCATTERING SCENARIO

Before delving into the mathematical description of the
scattered field, it is first necessary to specify the geometry
and constraints of the system. We consider a spherical particle
moving at a relativistic velocity v = vẑ within a pervading
incident electric field Ei(r, t ) with angle of incidence �i

as observed by an external laboratory frame S. Although
an accompanying magnetic field will always exist, to avoid
repetition, we omit explicit reference to this. Two additional
frames are considered, namely, the beam’s frame S‖, which is
the frame where the direction of motion of the beam moves
parallel to its corresponding z‖ axis, and the boosted frame S′,
which represents the inertial reference frame of the sphere (see
Fig. 1). Accordingly, the corresponding quantities are denoted
without a prime in S and with a prime in S′, while all quantities
in S‖ are denoted with a ‖ superscript.

Another quantity of interest is the polar angle �i between
k̂i and v, i.e., the angle between the beam’s propagation di-
rection and the axis of movement of the scatterer (see Fig. 1).
Given the symmetry of the system, we set the azimuthal angle
of the incident field �i to be zero. Moreover, the direction of
backscattering is given by k̂BS, the opposite direction to k̂i.

To determine the scattered field in S, we implement the
frame-hopping method (FHM) as described by Garner et al.
[33]. For reference, this process is outlined below.

(1) Lorentz boost the incident electric field from S to S′.
(2) Solve the scattering problem in S′.
(3) Inverse Lorentz boost the scattered field from S′ back

to S.
The reason for computing the scattered field in S′ and not

S is a matter of mathematical simplicity. In S′, the scattering
calculation is analogous to a stationary system, thus avoiding
any superfluous variable transformations.

A. Lorentz boosting the incident field into
the scatterer’s reference frame

First, we need to consider the incident field in the beam’s
reference frame S‖. As an incident field, we consider a single
monochromatic Gaussian beam of well-defined helicity (i.e.,
handedness) expanded in terms of circularly polarized plane
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FIG. 2. (a) Amplitude in the form of a transverse cross section of the incident beam given by |E‖
i (r)| with arbitrary wavelength L and waist

w0 = 10L. The overlaying red arrows depict the left-handed circular polarization of the beam (λi = +1) scaled with |E‖
i (r)|. (b) Schematic for

the finite interaction between the sphere and the incident beam.

waves, which are eigenstates of the electromagnetic wave
equation. We use the ket in abstract Dirac notation to denote
such plane waves as eigenstates of free space characterized
by helicity λ‖ = ±1, temporal frequency ω‖, and direction of
propagation k̂‖,

|λ‖k̂‖ω‖〉 .= êλ‖ (k̂‖) exp{iω‖[(k̂‖ · r/c) − t]}, (1)

where the symbol
.= refers to the spatiotemporal representa-

tion of the plane-wave eigenstate. The quantity c is the speed
of light in a vacuum, and the polarization unit vector êλ‖ (k̂‖)
is given by

êλ‖ (k̂‖) = −λ‖θ̂ (k̂‖) − iφ̂(k̂‖)√
2

, (2)

where λ‖ = ±1 corresponds to left or right circularly po-
larized waves. The quantities θ̂ and φ̂ are the polar and
azimuthal spherical unit vectors perpendicular to the direc-
tion of propagation k̂‖ that is characterized by the polar and
azimuthal angles of propagation θ‖ and φ‖ of each constituent
plane wave, respectively. Such fields of well-defined helicity
are known as Beltrami fields and obey Eq. (A6) [34–37].
Throughout all the following calculations, we consider an
incident field of pure helicity λi = +1.

Likewise denoting all remaining quantities that belong to
the incident field by the subscript i, we represent a general
electric field in terms of its angular spectrum, i.e., as a plane-
wave expansion

|E‖
i 〉 =

∑
λ

∫ 2π

0
dφ‖

∫ π

0
dθ‖

∫ ∞

0+
dω‖G‖

λ‖,i(ω
‖, θ‖, φ‖) |λ‖k̂‖ω‖〉

+ c.c., (3)

where the amplitudes for a monochromatic Gaussian beam
focused at the origin of S of waist w0, frequency ωi, and

helicity λi propagating along the +z axis are given by

G‖
λ‖,i(ω

‖, θ‖, φ‖) = E0 sin(2θ‖)

× exp

(
iλiφ

‖ − ω2
i w

2
0 sin2(θ‖)

4c2

)

× δλ‖λi
δ(ω‖ − ωi )H (π/2 − θ‖), (4)

where E0 is a constant and H (π/2 − θ‖) is the Heaviside step
function which eliminates all counterpropagating waves. The
phase term exp(iλiφ

‖) is introduced to assign the beam an
angular momentum of mz = λi, as is the case of a circularly
polarized plane wave in the limit of a very large beam waist
w0, which is what we consider here. The large w0 means
that |E‖

i 〉 approximates to a plane wave but is nonetheless
still finite in space. Specifically, we consider a waist given
by w0 = 10L, where L is the wavelength of the beam. In
Fig. 2(a) the transverse magnitude profile of the beam |E‖

i (r)|
can be seen for arbitrary L at time t = 0, along with red
arrows depicting the left-handed circular polarization due to
the helicity λi = +1. One sees here very clearly the finite
spatial nature of the beam.

The reason for considering such an incident field instead of
a regular plane wave infinitely extended in space is that the in-
teraction of the incident wave with the moving sphere would,
in the latter case, be incessant. Consequently, the scattered
power flux would have a cylindrical symmetry with respect
to the axis of movement of the scatterer, that is, the scattered
power flux would be translationally invariant with respect to
this axis and would only vary azimuthally. On the other hand,
an excitation of finite spatial extent ensures that the interaction
of light with the scatterer is localized in space (around the
origin of S), therefore yielding a spherical-like scattering of
waves emanating from the region where the interaction takes
place. Moreover, the monochromaticity of the beam implies it
is infinitely extended in time t . This temporal omnipresence
coupled with the finite spatial nature of the beam means the
sphere simply goes in through one part of the beam and out
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of another, thus making the interaction finite. This process is
visualized in Fig. 2(b).

To consider an electric field of arbitrary angle of incidence
�i, we apply a rotation operator R̂y(�i ) about the y axis
to Eq. (3) to transit from a representation of the beam with
respect to S‖ to one with respect to S such that

|Ei〉 = R̂y(�i )|E‖
i 〉, (5)

where

R̂y(�i )|λ‖k̂‖ω‖〉 =
∑

λ

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞

0+
dωRλ‖,λ

(ω‖, θ‖, φ‖, ω, θ, φ; �i )|λk̂ω〉. (6)

The transformation coefficients are given by

Rλ‖,λ(ω‖, θ‖, φ‖, ω, θ, φ; �i )

= P (θ‖, φ‖,�i )δλλ‖δ(ω − ω‖)

× δ(θ − arccos(k̂z ))δ(φ − arctan2(k̂y, k̂x )), (7)

where⎛
⎜⎝

k̂x

k̂y

k̂z

⎞
⎟⎠ =

⎛
⎜⎝ cos �i 0 sin �i

0 1 0
− sin �i 0 cos �i

⎞
⎟⎠

⎛
⎜⎜⎝

k̂‖
x

k̂‖
y

k̂‖
z

⎞
⎟⎟⎠

=

⎛
⎜⎝ sin θ‖ cos φ‖ cos �i + cos θ‖ sin �i

sin θ‖ sin φ‖

− sin θ‖ cos φ‖ sin �i + cos θ‖ cos �i

⎞
⎟⎠ (8)

and P (θ‖, φ‖,�i ) is a prefactor corresponding to the acquired
phase due to the rotation

P (θ‖, φ‖,�i ) = exp[ip(θ‖, φ‖,�i )], (9)

with

p(θ‖, φ‖,�i ) = arctan2[−λ sin(�i ) sin(φ‖), cos(θ‖)

× sin(�i ) cos(φ‖) + sin(θ‖) cos(�i )]. (10)

After doing this, one can follow the first step of the
frame-hopping method and compute the Lorentz boost of
the incident electric field from S to S′. In Appendix A we
calculate the Lorentz boost of plane waves. We denote by
B̂z(β ) the operator that boosts fields along the z axis with
speed v = βc from S to S′, where 0 � β < 1. This operator
acts on the eigenstates of monochromatic plane waves with
well-defined helicity in the following way:

B̂z(β )|λk̂ω〉 =
∑
λ′

∫ 2π

0
dφ′

∫ π

0
dθ ′

∫ ∞

0+
dω′Lλλ′

(ω, θ, φ, ω′, θ ′, φ′; β )|λ′k̂′ω′〉. (11)

The transformation coefficients are given by

Lλλ′ (ω, θ, φ, ω′, θ ′, φ′; β )

= C(β, θ )δλ′λδ(ω′ − C(β, θ )ω)

× δ

(
θ ′ − arccos

(
cos θ − β

1 − β cos θ

))
δ(φ′ − φ), (12)

FIG. 3. (a) Doppler shift �′
i of �i as a function of �i and β

determined using Eq. (14). This demonstrates that the direction of
the incident wave as perceived in S′ is different from that in S.
(b) Normalized Doppler-shifted incident frequency ω′

i/γωi as a func-
tion of �i and β, where ω′

i is the Doppler-shifted incident frequency
determined using Eq. (15). When �i = 0 and β → 1, the object
is moving away from the field source, thus causing the incident
frequency in S′ to decrease (redshift). When �i = π and β → 1, the
object is moving towards the field source, thus causing the incident
frequency in S′ to increase (blueshift). When �i = π/2, ω′

i/γωi = 1
for all β. This is due to k̂i and v being perpendicular to each other.
The factor 1/γ is necessary to eliminate the exaggeration of ω′

i when
β → 1 and �i → π . Without this factor, the other frequency values
would appear too suppressed.

where γ = 1/
√

1 − β2, cos θ = k̂ · ẑ, and

C(β, θ ) = γ (1 − β cos θ ), (13)

which is derived in Appendix A. We see from Eq. (12) that

θ ′ = arccos

(
cos θ − β

1 − β cos θ

)
(14)

and

ω′ = C(β, θ )ω (15)

correspond to the Lorentz boost of θ and ω, respectively. Since
the motion occurs solely along the z axis, the azimuthal angle
φ remains unchanged under the Lorentz boost, that is,

φ′ = φ. (16)

The Lorentz boost θ ′ of θ given by Eq. (14) explains the
perceived change in direction of the beam in S′ compared to S
as shown by k̂i and k̂′

i in Fig. 1. In Fig. 3(a) this is visualized
for the Lorentz boost �′

i of the polar angle of the incident
field with respect to the angle of incidence �i as seen in S
and speed ratio β. Moreover, the Doppler shift ω′ of ω is
displayed in Fig. 3(b) with the same functional dependence.
Note that, for an angle of incidence of �i = 0 and a speed
ratio β → 1, the Doppler-shifted frequency becomes zero.
This corresponds to the sphere moving away from the external
observer in S at a speed tending to that of light, thus exhibiting
a complete redshift. In other words, the incident wave is per-
ceived by the sphere to be so stretched out that the frequency
disappears in its reference frame. Conversely, when �i = π
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and β → 1, the wave is seen to be infinitely blueshifted in S′,
corresponding to a completely compressed wave with infinite
frequency. This corresponds to the sphere moving towards the
source of the incident field.

Note that the same expression for the scaling factor C(β, θ )
is given by Eq. (27) in [38]. Importantly, we observe that for
Eq. (12) to be nonzero, the helicity of the field must remain
invariant upon the Lorentz boost transformation due to the δλ′λ
term. This invariance demonstrates the power of expressing
the fields in the helicity basis using Beltrami fields instead of
the parity basis, that is, specifically making use of circularly
polarized plane waves instead of TE/TM plane waves.

Generally speaking, the change in direction of the beam
upon boosting is given by the following transformation of the
wave vectors:

k̂′ = k̂ + [(γ − 1) cos θ − γ β]ẑ
C(β, θ )

. (17)

Finally, putting all the above together, and after some
straightforward algebra, we can get the relation between the
amplitudes of the initially considered and nonrotated incident
beam in S‖ and the rotated one in S′,

|E′
i〉 = B̂z(β )R̂y(�i )|E‖

i 〉

=
∑
λ′

∫ 2π

0
dφ′

∫ π

0
dθ ′

∫ ∞

0+
dω′G ′

λ′,i(ω
′, θ ′, φ′)|λ′

ik̂
′
iω

′
i〉

+ c.c., (18)

where ω′
i and k̂′

i are determined by Eqs. (15) and (17), respec-
tively, and

G ′
λ′,i(ω

′, θ ′, φ′)

= J (θ ′, φ′,�i )G‖
λ′,i

(
ω′

C[β, θ‖(θ ′, φ′)]
, θ‖(θ ′, φ′),

φ‖(θ ′, φ′)
)

, (19)

where θ‖(θ ′, φ′) and φ‖(θ ′, φ′) express θ‖ and φ‖ as viewed
from S′,

θ‖(θ ′, φ′)

= arccos

(
1

γ (1 + β cos θ ′)
[sin θ ′ cos φ′ sin �

+ γ (cos θ ′ + β ) cos �]

)
, (20)

φ‖(θ ′, φ′) = arctan2[sin θ ′ sin φ′, sin θ ′ cos φ′ cos �

− γ (cos θ ′ + β ) sin �], (21)

with the Jacobian

J (θ ′, φ′,�i ) =

∣∣∣∣∣∣∣∣
∂θ‖
∂θ ′

∂θ‖
∂φ′

∂θ‖
∂ω′

∂φ‖
∂θ ′

∂φ‖
∂φ′

∂φ‖
∂ω′

∂ω‖
∂θ ′

∂ω‖
∂φ′

∂ω‖
∂ω′

∣∣∣∣∣∣∣∣

= 1

C[β, θ (θ ′)]

∣∣∣∣∣∣
∂θ‖
∂θ ′

∂θ‖
∂φ′

∂φ‖
∂θ ′

∂φ‖
∂φ′

∣∣∣∣∣∣ (22)

that converts dφ‖dθ‖ to dφ′dθ ′, where ω‖ = ω.
Recall that we do this since, for simplicity, we wish to

carry out the scattering calculation in S′, that is, where it is
equivalent to that in the stationary case. For a given incident
field described by Eq. (3), we can use Eq. (19) to calculate
the amplitudes that are needed to describe the incident field
in S′ in terms of the plane-wave representation given by
Eq. (18).

B. Solving the scattering problem
in the sphere’s reference frame

The approach taken to calculate the amplitude of the scat-
tered field begins by expressing the incident field |E′

i〉 as
a series of spherical waves with respect to the coordinates
describing S′ [12],

|E′
i〉 =

∑
λ′′m′

∫ ∞

0+
dω′A′

λ′′m′ (ω′)|ω′λ′ ′m′〉(1) + c.c., (23)

where |ω′λ′ ′m′〉(1) signifies a regular VSH attached to S′ with
frequency ω′, helicity λ′, multipolar index ′ (′ = 1 corre-
sponds to dipoles, ′ = 2 corresponds to quadrupoles, etc.),
and angular momentum along the z axis m′ = −′,−(′ −
1), . . . , ′. The superscript (1) denotes that the VSH corre-
sponds to a first-order spherical Bessel function j′ (k′r′), and
the coefficients of the expansion are given by

A′
λ′′m′ (ω′) =

∫ 2π

0
dφ′

∫ π

0
dθ ′G ′

λ′,i(ω
′, θ ′, φ′)Sλ′′m′ (ω′, k̂′),

(24)

where the transformation coefficients between the plane
waves and the spherical waves (under which transformation
the helicity and frequency of the waves remain unchanged)
are given by

Sλ′′m′ (θ ′, φ′) = 4π i
′+2m′−1�′m′τ

(λ′ )
′m′ (θ ′)e−im′φ′

, (25)

where �′m′ is a normalization constant and τ
(λ′ )
′m′ (θ ′) is a func-

tion which we define in Appendix B. The expression given in
Eq. (25) is derived by applying Eq. (2) to Eq. (12) in [39].

Note that we choose to use Beltrami fields in this case.
While the standard Lorenz-Mie language, where TE and TM
waves are implemented, is a perfectly valid notation, we
opted for the former. The reason for this is, since the helicity
is invariant under Lorentz boosts [40], one has one fewer
transformation to consider when inverse boosting from S′ to
S in Sec. II C. Furthermore, the boosting operator given by
Eq. (11) is diagonal with respect to helicity, which is not the
case with TE and TM waves. Therefore, we believe the usage
of Beltrami fields allows for a cleaner solution.

For the case of a monochromatic excitation (in S), like the
one we consider here, we have from Eq. (4) that

G‖
λ‖,i(ω

‖, θ‖, φ‖) = G‖,0
λ‖,i (θ

‖, φ‖)δ(ω‖ − ωi ). (26)
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Using this expression, we get the simplified expression for the incident spherical amplitudes in S′,

A′
λ′′m′ (ω′) = 4π i

′+2m′−1�′m′τ
(λ′ )
′m′ (θ ′

0)δ

(
ω′ ∈

[
ωi

γ (1 + β )
,

ωi

γ (1 − β )

])
1

βγω′C(−β, θ ′
0) sin θ ′

0

C[β, θ (θ ′
0)]

×
∫ 2π

0
dφ′e−im′φ′P[θ‖(θ ′

0, φ
′), φ‖(θ ′

0, φ
′),�i]J (θ ′

0, φ
′,�i )G‖,0

λ′,i[θ
‖(θ ′

0, φ
′), φ‖(θ ′

0, φ
′)], (27)

where

θ ′
0(ω′) = arccos

(
ωi − γω′

βγω′

)
. (28)

Next, in conjunction with step 2 of the FHM, we need to
express the scattered field |E′

s〉 as a series of radiating VSHs
in S′, denoted by |ω′λ′′m′〉(3). Analogous to Eq. (23), this can
be written as

|E′
s〉 =

∑
λ′′m′

∫ ∞

0+
dω′B′

λ′′m′ (ω′)|ω′λ′′m′〉(3) + c.c., (29)

where the (3) superscript denotes that the VSHs correspond to
a third-order spherical Bessel (Hankel) function h′ (k′r′). Spe-
cific expressions of the radiating and regular VSHs are given
in Appendix B. Moreover, the subscript s denotes quantities
which correspond to the scattered field.

Finally, the scattering coefficients B′
λ′′m′ (ω′) can be re-

lated to the incident coefficients A′
λ′′m′ (ω′) by way of the

T -matrix formalism [12]

B′ = THA′, (30)

where A′ and B′ are vectors containing the incident and scat-
tering coefficients, respectively, and TH is the corresponding
T matrix expressed in the helicity basis (see [41,42] and
Appendix C). The T matrix fully describes the scattering
response of the individual scatterer in the stationary case,
which we can safely use in the rest frame of the sphere. Let us
note that the time invariance of the stationary system implies a
matrix that is diagonal with respect to frequency ω′, whereas
duality symmetry implies a diagonal matrix with respect to
helicity λ′ and the spherical symmetry of the scatterer im-
plies a diagonal matrix with respect to the multipolar indices
′ and m′.

Specifically, for a spherical scatterer, we can write

Bλ′′m′ (ω′) =
∑
λ0

Tλ′λ0,′ (ω′)Aλ0′m′ (ω′), (31)

where λ0 = ±1 is a dummy index representing helicity and
the term Tλ′λ0,′ is defined at the end of Appendix C. Moreover,
in this work, we will make the assumption that the T matrix
of the scatterer is nondispersive, i.e., invariant with respect
to frequency. This assumption is logical as long as we are
exciting with a monochromatic beam with a narrow angular
spectrum, i.e., a large waist. One must consider this, since
the plane-wave components of the beam all Doppler shift
differently depending on their polar angles of propagation.
However, a small angular width in S minimizes this differ-
ence, thus allowing us to assume a nondispersive T matrix in
S′. As we will see, this assumption significantly simplifies the
final equations used for numerical computation.

Finally, we require an expression for the electric field in the
far-field region of S′. For this, we need to use the asymptotic
expression for the radiating spherical waves

lim
ω′r′/c→∞

|ω′λ′m′′〉(3) ≡ (−i)
′
fλ′,′m′ (r̂′)

eiω′(r′/c−t ′ )

ω′r′/c
, (32)

which, from Eq. (29), readily gives the expression for the
electric field in the far-field region of S′,

E′ff
s (r′, t ′) =

∑
λ′′m′

∫ +∞

0+
dω′B′

λ′′m′ (ω′)(−i)
′

× fλ′,′m′ (r̂′)
eiω′(r′/c−t ′ )

ω′r′/c
+ c.c., (33)

where fλ′,′m′ (r̂′) is a vector function defined in Appendix B.
As shown by Garner et al. [43], the angular density of the

total radiation energy flux in a given direction in S′ specified
by θ ′ and φ′, which we denote by U ′(θ ′, φ′), is calculated by
integrating the amplitude of the electric field E′ff

s (r′, t ′) in the
far-field limit. As a result, we have

U ′(θ ′, φ′) =
∫ ∞

−∞
(r′)2 |E′ff

s (r′, t ′)|2
η0

dt ′, (34)

where η0 is the impedance of free space. An expanded and
numerically efficient form of Eq. (34) is given in Appendix D.

At this point, the second step of the FHM is complete.

C. Solution to the scattering problem in the laboratory frame

To investigate the backscattering, we analyze the directiv-
ity D(θ, φ) of the sphere. This is defined as [44]

D(θ, φ) = U (θ, φ)

Wtot/4π
, (35)

where U (θ, φ) = ∑
λs

Uλs (θ, φ) is the angular density of the
total radiation energy in a given direction in S specified by
θ and φ, Uλs is the component of U (θ, φ) corresponding to
the scattered helicity λs = ±1, and Wtot is the total scattered
energy.

Considering the directivity of the sphere allows us to obtain
a physically meaningful and intuitive formulation from which
the behavior of the backscattering can be interpreted. Qualita-
tively speaking, the directivity is the ratio of the total angular
energy U (θ, φ) to the average scattered energy Wtot/4π by
an analogous isotropic scatterer. Consequently, a directivity
greater than 1 means that the contribution of backscattered
energy outweighs that of the average scattered energy. Con-
versely, a directivity less than 1 implies that the backscattered
energy is lower than the average energy scattered by the
sphere.
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We are now in a position to carry out the final step of
the FHM, that is, transforming the directivity from S′ back
to S. The power of the FHM really becomes apparent here,
since the angular energy U (θ, φ) in S can easily be related to
quantities in S′. More specifically, we have

Wtot =
∫ 2π

0

∫ π

0
U (θ, φ) sin θ dθ dφ, (36)

where, as we see from Eq. (21) in [43],

U (θ, φ) = [γ (1 + βcos θ ′)]3U ′(θ ′, φ′), (37)

where θ ′ and φ′ can be transformed using Eqs. (14) and (16)
to obtain an expression for U (θ, φ) in S. For backscattering,
we have θ = �BS and φ = �BS, where

�BS = π − �i, �BS = π, (38)

respectively.
The third step of the FHM is now complete and the

backscattered directivity DBS of the sphere in S can be cal-
culated by substituting Eqs. (36) and (37) into Eq. (35) such
that

DBS = D(�BS,�BS). (39)

III. RELATIVISTIC KERKER CONDITION

A. Visualizing the directivity

The final theoretical result of our work has been formulated
in Eq. (39), which expresses the contribution of the backscat-
tered energy compared to the average scattered energy for a
given scenario. While Eq. (35) is more general, for the sake of
this discussion, we choose to investigate a possible suppres-
sion of the backscattering (that is, the first Kerker condition)
[45–47].

As an example, we consider a lossless dielectric sphere and
parametrize the multipolar response using what are known as
Mie angles [48] (cf. Appendix E). Each Mie angle is bounded
between −π

2 and π
2 and we consider them to be nondispersive.

A value of zero corresponds to a resonance of the respective
Mie coefficient.

Although Mie angles may seem abstract, they do carry
physical meaning, and by implementing inverse design meth-
ods like that used in [49], one can design a physical spherical
object that is characterized by the desired corresponding Mie
coefficients, and hence desired Mie angles, which can be
determined from the equations in Appendix E.

Since the objective function describing DBS does not have
a clear analytical solution, we implement numerical routines
to identify properties for the sphere which minimize the
backscattering. More specifically, we wish to seek the opti-
mized combination of Mie angles such that the backscattering
is minimized. Moreover, we first carry out the optimization
when β and �i are fixed values; as an example we consider
β = 0.2 and �i = π

4 .
Before doing this, it makes sense to visualize how DBS

varies with respect to some chosen Mie angles. For this pur-
pose, we sweep across the possible electric quadrupole (θEQ)

and magnetic quadrupole (θMQ) angles while fixing the dipole
angles θED and θMD.

We visualize the λs = +1 and −1 components of
log10(DBS) with θED = θMD = π/3 in Figs. 4(a) and 4(b),
respectively, followed by the corresponding total directivity
in Fig. 4(c). In all cases, the helicity of the incident field
is λi = 1. One observes in Fig. 4(b) for λs = −1 that the
diagonal representing θEQ = θMQ, that is, when the sphere is a
dual scatterer, displays values of below −30, implying that the
backscattering is zero at these points. This is expected, since
the incoming helicity is given by λi = +1 and the scattered
helicity in the dual case must remain the same, so we are
only left with nonzero values when λs = +1. For comparison,
Fig. 4(d) shows the total directivity for the nontrivial case
where θED = π/9 and θMD = −π/4.

The fact that Fig. 4(b) provides a physically known result is
a justification of the numerical implementation and allows us
to proceed in minimizing the directivity. A further verification
is the fact that the directivity is independent of the incident
helicity λi. This is expected since the system is both rotation-
ally and mirror symmetric about the x axis. From the mirror
symmetry, λi would flip sign [50]. On the other hand, when
rotated to the same position, λi would preserve its sign. These
situations, however, describe the same physical scenario, that
is, a system where the sphere moves in the opposite direction
with v → −vẑ and �i → π − �i. Therefore, the scattered
energy remains unchanged.

Another way to visualize the directivity is with respect
to β and �i for a given set of Mie angles. This is done in
Fig. 5 for θED = π

4 , θEQ = −π
9 , θMD = π

3 , and θMQ = π
7 . First,

one notices the invariance of the directivity for β → 0. This
is necessary due to the spherical symmetry of the scatterer
and provides a necessary sanity check, thus increasing the
credibility of the implemented code. Also noteworthy is the
behavior as β → 1. In this case, as �i → 0 one sees that
the directivity becomes negligibly small. This makes sense,
since this scenario corresponds to the scatterer moving di-
rectly away from the source field, thus maximizing the redshift
thereof (cf. Fig. 3). In accordance with Eq. (37), this corre-
sponds to a low backscattering intensity. When �i → π , one
observes the opposite effect of strong blueshift, thus increas-
ing the backscattering intensity.

For completion, we provide in Fig. 6 an explicit example
of how DBS up to octupolar order depends on the radius R of a
spherical silicon carbide (SiC) particle. Here we consider the
wavelength of the incident beam to be L = 1 µm such that the
relative permittivity of the particle satisfies the high-frequency
limit of ε∞ = 6.7 [13], with a corresponding refractive index
nSiC = 2.59. Moreover, we consider an angle of incidence
�i = π

4 and three fixed speeds, namely, β = 1 × 10−6, 0.2,
and 0.5. One notices here that, as β increases, DBS decreases.
This is, once again, due to Eq. (37). Since the sphere mostly
moves away from the observer in this case, the backscattering
intensity viewed in S decreases. The equations for the corre-
sponding Mie coefficients can be found in [13]. Note that, as
explained in Appendix E, we consider for our purposes the
negative of these expressions to conform with the passivity
due to our considered time convention.
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FIG. 4. The (a) λs = +1 and (b) λs = −1 components of log10(DBS) when θED = θMD = π

3 . Note in (b) the dark diagonal line, which
means that the backscattering vanishes when θEQ = θMQ. This corresponds to the case where the sphere is a dual scatterer. Since the incident
helicity is given by λi = +1, these vanishing components are to be expected. (c) Total directivity log10(DBS) when combining (a) and (b).
(d) For comparison log10(DBS) when θED = π

9 and θMD = − π

4 . In all cases, we have that β = 0.2 and �i = π

4 .

B. Numerically minimizing the backscattering
for a fixed speed and angle of incidence

To minimize the backscattering with respect to the Mie
angles, we implement the directivity calculation using the

FIG. 5. Directivity DBS (in log10 scale) as a function of β and �i

with θED = π

4 , θEQ = − π

9 , θMD = π

3 , and θMQ = π

7 .

JULIA programming language [29] and leverage the automatic
differentiation capabilities included in the modeling toolkit

FIG. 6. Backscattered directivity DBS up to octupolar order as a
function of the radius R of a spherical SiC particle with refractive
index nSiC = 2.59 for a fixed angle of incidence �i = π

4 and three
fixed speeds β = 1 × 10−6, 0.2, and 0.5. Here R is given as multiples
of the wavelength L = 1 µm of the incident beam in S.
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TABLE I. Globally optimized Mie angles up to octupolar order,
accompanied by the corresponding minimized directivity DBS for a
fixed speed β = 0.2 and angle of incidence �i = π

4 .

θED θMD θEQ θMQ θEO θMO DBS (×10−8)

0.33 0.32 1.07 1.06 1.44 1.43 1.09

JUMP [30] for gradient-based optimization. This enables us to
efficiently take derivatives of DBS with respect to Mie angles
up to arbitrary order.

We formulate our optimization problem as the global min-
imization of DBS using a sequence of local optimizations [51]
as implemented in the nonlinear-optimization package NLOPT

[52]. We find, for a fixed speed β = 0.2 and angle of incidence
�i = π

4 , a higher-order combination of Mie angles which
yield minima below our defined cutoff point of DC = 10−3,
that is, the value below which we consider the backscattering
to be negligible. We consider this value appropriate since
it corresponds to a backscattered energy which contributes
a mere 0.1% to the average scattered energy. For a single
optimization run, we randomly initialize a set of Mie angles
between (−π

2 , π
2 ) and minimize DBS with respect to these

angles. Owing to quasianalytical gradients, the optimization
quickly converges to a high-quality minimum much lower

than DC. Finding a single set of Mie angles up to octupolar
order takes less than a second on average (measured over
100 optimization runs on Intel Xeon Platinum 8368 CPU @
2.4 GHz). The optimized Mie angles located by the global
optimizer up to octupolar order and the corresponding min-
imized directivity DBS are given in Table I.

The minimized value of DBS = 1.09 × 10−8 is smaller than
DC = 10−3, thus satisfying our cutoff criterion and providing
evidence of the existence of the first Kerker condition in
the relativistic regime. The located minimum value of DBS

describes a case where the backscattered energy contributes
a negligible 1.09 × 10−6% to the average scattered energy,
thereby emphasizing its high quality. Note that there exist
many combinations of Mie angles, including ones that de-
scribe a nondual system, that produce DBS values below our
cutoff point of DC = 10−3 (albeit of varying quality), making
that in Table I just one of many.

C. Numerically minimizing the backscattering
for varying speed and angle of incidence

An interesting extension to the results in Sec. III B is to
investigate how the optimized Mie angles in Table I vary with
speed β for a fixed angle of incidence �i, and vice versa
(cf. Fig. 7), and to find out if the globally optimized Mie
angles in Table I always yield a directivity below our cutoff

FIG. 7. Variation of the optimized (a) Mie angles and (b) directivity DBS with respect to the speed β for a fixed angle of incidence �i = π

4 .
(c) and (d) analogous study but with varying �i and fixed β = 0.2.
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point DC. To do this, we carry out an iterative set of local
optimizations using IPOPT [53], with the Mie angles in Table I
as starting points. First, β is varied slightly in each iteration
for a given angle of incidence �i = π

4 , allowing us to trace
out virtually continuous curves depicting each corresponding
set of optimized Mie angles, along with a curve showing the
variation of the optimized directivity. For completeness, the
same is done for a fixed speed β = 0.2 and varying �i. Note
that we do not consider lower speeds or angles of incidence,
since the optimal minimized backscattering in these limits
trivially occurs when the Mie angles of each order are respec-
tively equal to each other (θED = θMD, θEQ = θMQ, etc.). This
corresponds to a dual object [54].

As seen in Figs. 7(a) and 7(c), the optimizer was able to
locate Mie angles which describe a dual system for every β.
In Fig. 7(b) we see that the optimized directivity has its best
solution at β = 0.2, the speed at which the initial optimization
was carried out. Here we have that log10(DBS) ≈ −8. The
optimized directivity then increases to log10(DBS) ≈ −2 for
β ≈ 0.8, thus demonstrating that the globally optimized Mie
angles in Table I do not always produce negligible backscat-
tering. This means that, to locate Mie angles which produce
DBS < DC, one would need to once again probe the parameter
space of the global optimization to find a suitable combina-
tion.

As the speed increases more, the directivity decreases
again, with a sharp decline occurring as β → 1. The likely
explanation for this is, as can be seen in Fig. 5, that the
perceived Doppler-shifted incident frequency in S′ tends to 0
as β → 1. In line with Eq. (37), this would imply a negligible
backscattered energy.

Regarding the variance with respect to the angle of inci-
dence �i, one sees in Figs. 7(c) and 7(d) that the value of
log10(DBS) always remains below the cutoff point DC. More-
over, the optimized Mie angles essentially stay the same as the
globally optimized angles in Table I, thus showing that the de-
termined combination of optimized Mie angles vary much less
with respect to �i compared to β. Moreover, the minimized
DBS becomes more optimal for very large angles, until the
limit of �i → π is approached, where the optimized directiv-
ity drastically increases. Analogous to before, this can again
be explained by Eq. (37). An angle of incidence of �i = π

means the sphere is moving directly towards the source field.
As a result, the perceived Doppler-shifted incident frequency
in S′ is very high, thus leading to a large backscattered energy.

Another important aspect to note is that the solutions in
Fig. 7 are not unique. There exist other optimized solutions
(albeit of varying quality).

IV. CONCLUSION

The main goal of this paper was to minimize the backscat-
tered energy from a relativistically moving sphere with respect
to the optical parameters thereof represented by Mie angles.
In doing this, we were able to demonstrate the utility of ex-
pressing incident and scattered fields in the helicity basis using
Beltrami fields. This enabled us to transform fewer variables
(namely, the helicity) as opposed to the same problem in
the parity basis, thus simplifying calculations. Moreover, we
obtained an expression for the backscattering amplitude of the

scattered field observed from an external laboratory frame in
the form of the directivity of the sphere. Finally, the backscat-
tered energy was minimized with respect to Mie angles, the
speed of the sphere, and the field angle of incidence, providing
evidence for the existence of the first Kerker condition in the
relativistic regime.

Opportunities for future work are plentiful. For example,
the present work could be extended to analyze a composition
of particles describing a metasurface as opposed to just a
single particle. In this case, a cluster T matrix as described
in [12] would need to be implemented. The motivation for
considering a surface of particles links to the future appli-
cations of light sails proposed by the Breakthrough Starshot
Initiative. Of course, this would require a refinement of the
present model to consider the opposite case of maximum
backscattering, resulting in the ideal case of maximum mo-
mentum transfer to the sail [55].

The code used to produce the results in this paper can be
accessed via [56].
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APPENDIX A: LORENTZ BOOST
OF HELICAL PLANE WAVES

As stated in [33], the Lorentz boost of the electric field
E(r, t ) is given by

E′(r′, t ′) = γ [E(r, t ) + vv̂ × B(r, t )]+(1−γ )[v̂ · E(r, t )]v̂,

(A1)

where B(r, t ) is the corresponding magnetic field and γ =
1/

√
1 − β2, with β = v/c the ratio of the boosting speed to

the speed of light, and boosting takes place in the v̂ direc-
tion. For boosting along +ẑ, the coordinates of the primed
(boosted) and unprimed coordinate systems are related to the
following formulas:

x′ = x, (A2)

y′ = y, (A3)

z′ = γ (z − βct ), (A4)

t ′ = γ (t − βz/c). (A5)

Here we want to consider the boost of a monochromatic plane
wave of well-defined helicity λ. Specifically, its electric field
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is given by E(r, t ) = êλ(k̂) exp{iω[(k̂ · r/c) − t]} (discussed
in the main text). By making use of the above coordinate trans-
formations, we can get the following transformation of the
exponent: {iω[(k̂ · r/c) − t]} = {iω′[(k̂′ · r′/c) − t ′]}, with ω′
and k̂′ given by Eqs. (15) and (17), respectively. Thus, we
have transformed the scalar part of the fields, which gave us
the transformed frequency and direction of propagation of the
boosted plane wave, ω′ and k̂′, respectively.

Next we need to transform the polarization vector. For
this, we need to take into account that our considered plane
wave, being an eigenstate of the helicity operator ∇×

k with
well-defined helicity λ [41,57], has the property

∇ × E(r, t ) = λkE(r, t ), (A6)

and therefore we get the following for its corresponding mag-
netic field from Maxwell’s equations:

B(r, t ) = λ

ic
E(r, t ). (A7)

Therefore, by substituting the right-hand side of Eq. (A7) into
Eq. (A1), we find that

E′(r′, t ′) = γ

(
E(r, t ) + λv

ic
ẑ × E(r, t )

)

+ (1 − γ )[ẑ · E(r, t )]ẑ. (A8)

What remains then is to project the boosted helical polariza-
tion vector êλ(k̂) onto the boosted polarization basis êλ′ (k̂′).
Specifically, we need to find the coefficients Eλλ′ (β, k̂) in the
expansion below:

γ

(
êλ(k̂) + λv

ic
ẑ × êλ(k̂)

)
+ (1 − γ )[ẑ · êλ(k̂)]ẑ

=
∑
λ′

Eλλ′ (β, k̂)êλ′ (k̂′). (A9)

By making use of the orthogonality relation [50]

êλ′ (k′) · ê−λ′
0
(k′) = −δλ′λ′

0
, (A10)

we readily get after some algebra that Eλλ′ (β, k̂) =
δλλ′Cλ(β, θ ), with θ the polar angle of the propagation direc-
tion k̂ and Cλ(β, θ ) given by

Cλ(β, θ ) = γ (1 − β cos θ ). (A11)

The same expression calculated using the parity basis is given
by Eq. (27) in [38]. Note that the helicity λ of massless
particles (and hence electromagnetic fields) is invariant under
Lorentz boosts [40]. Finally, summing up all the above, we get
the Lorentz boost transformation given by Eq. (11).

APPENDIX B: VECTOR SPHERICAL HARMONICS
OF WELL-DEFINED HELICITY

We begin by using the definition of the spherical harmonics

Ym
 (θ, φ) � �mPm

 (cosθ )eimφ, (B1)

where Pm
 (cosθ ) is the associated Legendre function of the

first kind, with �m � im
√

(2+1)(−m)!
4π(+1)(+m)! the corresponding

normalization factor. Then the VSHs of well-defined parity,
M( j)

mk and N( j)
mk , are defined as [58]

M( j)
mk (r) � ∇ × [

rz( j)
M,(kr)Ym

 (θ, φ)
]

= iz( j)
M,(kr)mm(r̂), (B2)

N( j)
mk (r) � 1

k
∇ × M( j)

mk (r)

= r̂
( + 1)

k0r
z( j)

M,(kr)Ym
 (θ, φ) + z( j)

N,(kr)nm(r̂),

(B3)

where

mm(r̂) = �m[θ̂ τm(θ ) + iφ̂τ ′
m(θ )]eimφ, (B4)

nm(r̂) = �m[θ̂ τ ′
m(θ ) + iφ̂τm(θ )]eimφ. (B5)

The index  stands for the angular momentum quantum
number that takes the values 1, 2, . . . and corresponds to
dipoles, quadrupoles, etc., and the index m stands for the
angular momentum along the z axis which takes the values
−, . . . ,−2,−1, 0, 1, 2, . . . , . The superscript j refers to
the corresponding Bessel ( j = 1) and Hankel ( j = 3) func-
tions, z( j)

M,(kr), of the first kind. The functions z( j)
N,(kr) �

1
kr

d
d (kr) [krz( j)

M,(kr)] are the corresponding Riccati functions

and τm(θ ) � m Pm
 (cosθ )

sinθ
and τ ′

m(θ ) � dPm
 (cosθ )

dθ
are the gener-

alized Legendre functions.
The VSHs �

( j)
λ,mk (r) of well-defined helicity λ = ±1 are

defined with respect to the VSHs of well-defined parity ac-
cording to the formula [41]

�
( j)
λ,mk (r) = M( j)

mk (r) + λN( j)
mk (r)√

2
(B6)

= λ√
2

( + 1)

kr
z( j)

M,(kr)Ym
 (θ, φ)r̂

+
∑

λ′=±1

(
iz( j)

M,(kr) + λλ′z( j)
N,(kr)

2
· fλ′,m(r̂)

)
,

(B7)

where we have defined

fλ,m(r̂) = mm(r̂) + λnm(r̂)√
2

= �mτ
(λ)
m (θ )eimφ êλ(r̂) (B8)

and

τ
(λ)
m (θ ) = −τ ′

m(θ ) − λτm(θ ), (B9)

which has the property �−mτ
(λ)
−m(θ ) = �mτ

(−λ)
m (θ ) =

(−1)+m+1�mτ
(λ)
m (π − θ ). One can show that the functions

�
( j)
λ,mk have the property [41]

∇×
k

�
( j)
λ,mk = λ�

( j)
λ,mk, (B10)

that is, �
( j)
λ,mk is an eigenstate of the helicity operator ∇×

k
with eigenvalue λ. For the functions fλ,m, there exists the
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orthogonality property∫ 2π

0
dφ

∫ π

0
sinθ dθ fλ,m(k̂) · [fλ′,′m′ (k̂)]∗ = δλλ′δ′m′δ′m′ .

(B11)

Moreover, if we employ the large argument property of the
Hankel functions

z(3)
α,(x)

x1−−→
{

eix

x (−i) for α = N
eix

x (−i)+1 for α = M,
(B12)

and also reject the O(1/r2
0 ) radial term as negligible, for the

radiating helical VSHs we can get the following asymptotic
form in the far field:

[
�

(3)
λ,mk (r)

]ff = (−i)fλ,m(r̂)
eikr

kr
. (B13)

APPENDIX C: THE T MATRIX IN THE HELICITY
BASIS FOR A SPHERE

In the parity basis, the T matrix is given by

T =
(

TNN TMN

TNM TMM

)
, (C1)

where each element of Eq. (C1) is a diagonal max(2 +
max) × max(2 + max) matrix and max is the maximum mul-
tipolar excitation order of the sphere. This can be transformed
to the T matrix TH in the helicity basis by using [59]

TH = P−1TP, (C2)

where, as can be seen from Eq. (2), P is given by

P = 1√
2

(
1 1
1 −1

)
. (C3)

In the case of a dielectric sphere, we have that TMN =
TNM = 0, so Eq. (C2) reduces to

TH =
(

T++ T+−
T−+ T−−

)

= 1

2

[
TNN + TMM TNN − TMM

TNN − TMM TNN + TMM

]
, (C4)

where

TNN =

⎛
⎜⎜⎝

a1 · · · 0
...

. . .
...

0 · · · amax

⎞
⎟⎟⎠, (C5)

TMM =

⎛
⎜⎜⎝

b1 · · · 0
...

. . .
...

0 · · · bmax

⎞
⎟⎟⎠, (C6)

and the values a and b are the electric and magnetic Mie
coefficients, respectively, defined in Appendix E. The compo-
nents of the T matrix TH are given by Tλs,λi, and relate to the
entries in TH corresponding to the th multipolar order, along
with an incident helicity λi and scattered helicity λs, that is,

Tλs,λi, = a + λiλsb. (C7)

APPENDIX D: COMPUTATION-FRIENDLY
EXPANSION OF EQ. (34)

By substituting Eq. (33) into Eq. (34) and using the or-
thogonality relation given by Eq. (B11), we can express the
angular energy density U ′(θ ′, φ′) in the form that is suitable
for efficient numerical evaluation,

U ′(θ ′, φ′) =
∑
λ′

4πc2

η0

∫ ∞

0+
dω′

× 1

(ω′)2

∣∣∣∣∣
∑
′m′

Bλ′′m′ (ω′)(−i)
′
�′m′τ

(λ′ )
′m′ (θ ′)ei′φ′

∣∣∣∣∣
2

=
∑
λ′

∑
′m′

∑
̄′m̄′

Q̄′m̄′
λ′′m′ (θ ′, φ′)

∑
λ0λ̄0

J λ̄0 ̄
′m̄′

λ0′m′ Tλ′λ0,′T ∗
λ′λ̄0,̄′ ,

(D1)

where the T -matrix elements Tλ′λ0,′ are defined in Ap-
pendix C. For the second equality, we have assumed a
nondispersive T matrix and have also defined the integral

J λ̄0 ̄
′m̄′

λ0′m′ =
∫ ∞

0+
dω′Aλ0′m′ (ω′)A∗̄

λ0 ̄′m̄′ (ω
′)

(ω′)2
(D2)

and the quantity

Q̄′m̄′
λ′′m′ (θ ′, φ′) = 4πc2

η0
(−i)

′−̄′
�′m′�∗̄

′m̄′τ
(λ′ )
′m′ (θ ′)τ (λ′ )∗

̄′m̄′ (θ ′)

× ei(m′−m̄′ )φ′
, (D3)

where the asterisk denotes the complex conjugate. Further-
more, we can express the total scattered energy Wtot given by
Eq. (36) as

Wtot =
∫ π

0
dθ

∫ 2π

0
dφ sin θU (θ, φ)

=
∑
λ′

∫ ∞

0+
dω′ 1

(ω′)2

×
∑

′m′;min{|m′|,1}��′
Re(Bω′λ′′m′B∗

ω′λ′m′ I
λ′′m′ )

=
∑
λ′

∑
′m′;min{|m′|,1}��′

∑
λ0λ̄0

Re
(
I
λ′′m′J λ̄0m′

λ0m′′Tλ′λ0,′T ∗
λ′λ̄0,

)
,

(D4)

with

I
λ′′m′ = 24−δ′

π2c2

η0
(−i)

′−�′m′�∗
m′

×
∫ π

0
dθ sin θ{γ [1 + β cos[θ ′(β, θ )]]}3

× τ
(λ′ )
′m′[θ ′(β, θ )]τ (λ′ )∗

m′ [θ ′(β, θ )], (D5)

where the expression for θ ′(β, θ ) is given by Eq. (14).
Note the importance of writing Eq. (D1) as nested inte-

grals instead of a standard triple integral. Computationally
speaking, we are able to determine Eq. (D2) with a very
low tolerance, while using a higher tolerance for the other
integrals, thus significantly reducing computation time. The
reason for this is because the expansion coefficients Aλ′m(ω′)
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FIG. 8. Absolute value of the dipole expansion coefficients A10

(′ = 1, m′ = 0) given by Eq. (27) as a function of the normalized
frequency (ωi − ω′)/ωi when β = 0.1 (blue solid line), β = 0.2
(orange dotted line), β = 0.5 (yellow thick solid line), and β = 0.9
(purple dashed line). In all cases, �i = π

4 and λi = +1 which, since
helicity is conserved under Lorentz boosts, means that λ′ = λi =
+1. Note that the width of the peak increases with speed. This is
due to the increasing effect of the Doppler shift ω′ of ωi. Since
the incident beam is monochromatic, |A10| tends to a δ-distribution-
like peak as the speed decreases. As the speed increases, the
plane-wave components of the incident beam all Doppler shift differ-
ently due to their differing angular orientations. This leads to nonzero
values for |A10| when ωi �= ω′.

[and hence the integrand in Eq. (D2)] form Gaussian-like
peaks centered about ω′ which tend to a δ distribution as the
speed of the sphere decreases (see Fig. 8). If the tolerance
is too high, the numerical integration could miss this peak
entirely, thus ignoring vital nonzero values.

Moreover, by separating the integrals (D4) we are able to
obtain 100 × 100 grids for the directivity (like those used to
generate Fig. 4) in as little as approximately 40 s. The reason
for this is that, as the numerically demanding integral J λ̄0 ̄

′m̄′
λ0′m′

is independent of the Mie angles, we only need to compute it
once for a given angle of incidence �i and speed parameter β.
If the integrals were combined, J λ̄0 ̄

′m̄′
λ0′m′ would be computed for

each combination of Mie angles, thus significantly increasing
computation time.

APPENDIX E: MIE ANGLES FOR A LOSSLESS SPHERE

The electric and magnetic Mie coefficients a and b for
each multipolar order  can be represented using Mie angles
θE and θM, respectively. In the lossless case, one can write
[28,48]

a = −i sin α exp(−iα) (E1)

and

b = −i sin β exp(−iβ), (E2)

where

α = π

2
− θE, −π

2
� θE �

π

2
, (E3)

and

β = π

2
− θM, −π

2
� θM �

π

2
. (E4)

Note that the convention used in [28] omits the use of the
minus sign in Eqs. (E1) and (E2). In our case, the minus sign
is required to conform with the passivity due to our considered
time convention.
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