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At present, the nearest-neighbor tight-binding model is often used to study the high-order harmonic generation
(HHG) in solids, but its defects are little known. We theoretically investigate the defects of the nearest-neighbor
tight-binding model in the study of solid HHG by developing the semiconductor Bloch equations with the
accelerated Bloch-like basis consisting of the maximally localized Wannier functions. To achieve this goal,
we calculate the harmonic spectra, orientation and ellipticity dependence of harmonic yield in monolayer black
phosphorus using the nearest-neighbor tight-binding model, and the ab initio model, respectively. It is found that
there are obvious differences between the calculation results of the two models. This indicates the limitations of
the nearest-neighbor tight-binding approximation in the study of solid HHG. Furthermore, we study the role of
the matrix elements of the position operator under the Wannier basis in solid HHG, which are often discarded in
many previous works. It is found that these matrix elements have an important influence on the orientation and
ellipticity dependence of higher-order harmonic yield. This work remedies some defects of previous theories and
will greatly promote the accurate calculation of strong-field nonlinear responses in solids.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an important
nonlinear optical phenomenon in the interaction between in-
tense laser and matters. In the past decades, HHG in gases
has attracted wide attention for its applications in generating
attosecond light pulses and coherent soft x rays [1–5], ex-
tracting the ionization times [6–8], probing ultrafast dynamics
of atoms and molecules [9–11], imaging molecular orbitals
[12], and so on. Due to the low conversion efficiency of
HHG in gases, attention has been turned to HHG in solids.
Many interesting phenomena are found in solid HHG, such
as the linear relationship between the cutoff energy and laser
electric field amplitude [13], anomalous ellipticity depen-
dence [14–19], multiplateau structures [20–24], and complex
orientation dependence [14,25–30]. In addition, solid HHG
has promising applications in developing compact coherent
extreme ultraviolet light sources [31,32], reconstructing band
structure [33–37], probing Berry curvature [38], researching
topological phase transitions [39–43], imaging valence elec-
trons with picometre resolution [44], and so on.

Despite much progress in the study of solid HHG, the-
oretical calculations still face challenges in reproducing
experimental results. For example, even-order harmonics are
observed at certain orientation angles in the experiments
of ZnO [13,26], which could not be reproduced in earlier
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theoretical investigations [45,46]. Recently, Jiang et al. suc-
cessfully reproduced the orientation dependence of harmonic
yield in ZnO by considering the phases of the transition dipole
matrix elements [47,48]. In addition, the Berry connections
are generally nonzero in systems without spatial inversion
symmetry, and were also neglected in earlier works. In our
recent work, we revealed the importance of Berry connections
in solid HHG, and proved that the semiconductor Bloch equa-
tions (SBEs) are gauge invariant only when Berry connections
are contained [49]. However, in numerical calculations, the
Bloch functions are often obtained by the diagonalization per-
formed separately for each crystal momentum, so they usually
carry random phases and are discontinuous and noperiodic.
This makes it difficult to calculate the derivative term and in-
terpolation of the transition dipole matrix elements and Berry
connections. One way to cure this problem is to construct
smooth Bloch-like functions directly using the maximally lo-
calized Wannier functions (MLWF) [50,51]. Recently, Sliva
et al. developed the SBEs in the length gauge with the Wannier
basis [52]. However, the number of sampling points in the first
Brillouin zone (BZ) must be dense enough for convergence
due to the gradient term in the equations, which greatly limits
the calculation efficiency and makes it difficult to apply this
method to systems with higher dimensions and more energy
bands. In previous work, we found that, by adopting the adia-
batic Houston basis, the gradient term can be replaced by the
time-dependent crystal momentum k(t ) = k0 + A(t ) so that
the calculation efficiency can be significantly improved [53].
Therefore, it is one of our aims to develop the SBEs with the
accelerated Bloch-like basis consisting of the MLWF.
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Nowadays, the semiempirical nearest-neighbor tight-
binding (NNTB) model is widely used in solid HHG
calculations [54–57]. However, the electronic structure in-
formation obtained by the NNTB model may be inaccurate
because of the two primary approximations. One is the NNTB
approximation, and the other one is that the matrix elements of
the position operator r̂ in the Wannier basis are often neglected
[58,59]. It was found that these matrix elements cannot be
discarded when calculating the dielectric function and shift
photoconductivity [60]. However, how these approximations
affect the calculation of solid harmonics is still an open ques-
tion so far.

Two-dimensional (2D) materials with ultrathin atomic
layer thicknesses have excellent electronic, optical, sensing,
and electrochemical properties, and provide new research
directions in the fields of nanoelectronic devices, materi-
als science, condensed matter physics, biomedicine, and so
on [61–64]. HHG in 2D materials has also attracted great
attention in recent years [16,25,65,66]. As a typical 2D ma-
terial, monolayer black phosphorus (BP) has many distinctive
properties, such as direct and tunable band gap, high carrier
mobility, and in-plane anisotropy [67–69]. HHG in mono-
layer BP also shows higher intensity and cutoff energy than
graphene, MoS2, and hexagonal boron nitride [70]. However,
there is still a lack of the orientation and ellipticity depen-
dence of harmonic yield in monolayer BP. Therefore, this
work has three purposes. First, we develop the SBEs with
the accelerated Bloch-like basis consisting of the MLWF.
Second, we investigate the orientation and ellipticity depen-
dence of harmonic yield in monolayer BP. Finally, we explore
the limitations of the NNTB model by means of HHG in
monolayer BP.

This paper is organized as follows. In Sec. II, we derive
the SBEs with the accelerated Bloch-like basis consisting of
the MLWF and construct the NNTB model of monolayer
BP. In Sec. III, the orientation and ellipticity dependence of
harmonic yield in monolayer BP are investigated in detail.
In Sec. III A, we demonstrate the validity of our developed
SBEs, and study the limitations of the NNTB approximation.
In Sec. III B, we focus on the role of the matrix elements of the
position operator in solid HHG. In Sec. III C, we discuss the
effect of defferent dephasing times on the harmonic spectra.
Finally, a summary is given in Sec. IV. Atomic units are used
throughout unless otherwise stated.

II. THEORETICAL METHOD

A. Advantage of the Wannier gauge

For crystals that contain Nc unitary cells, the Bravais lat-
tice vectors are R = ∑

i niai(i = 1, 2, 3), where ai are the
primitive vectors. A set of localized Wannier functions can
be expressed as wm(r − R) = 〈r|Rm〉, where m runs over all
the Wannier orbitals. The set of Wannier functions forms
an orthonormal basis, namely, 〈0m|Rn〉 = δ0Rδmn. Then the
Bloch-like functions can be given by

∣∣φ(W )
mk

〉 = 1√
Nc

∑
R

eik·R|Rm〉, (1)

where m is the band index and k is the wave vector in re-
ciprocal space. The Bloch-like functions are also orthogonal,
namely, 〈φ(W )

mk |φ(W )
nk′ 〉 = δmnδkk′ . Accordingly, in the Wannier

gauge, the matrix elements of Hamiltonian and transition
dipole moment can be defined as [52,71]

H (W )
mn,k = 〈

φ
(W )
mk

∣∣Ĥ0

∣∣φ(W )
nk

〉 ≡
∑

R

eik·R〈0m|Ĥ0|Rn〉, (2)

A(W )
mn,k = 〈

u(W )
mk

∣∣i∇k

∣∣u(W )
nk

〉 ≡
∑

R

eik·R〈0m|r̂|Rn〉, (3)

where the sum of R runs over all lattice vectors, |u(W )
nk 〉

is the periodic part of the Bloch-like functions, Ĥ0 and r̂
are the unperturbed Hamiltonian and position operator, re-
spectively. The superscript (W ) refers to the Wannier gauge.
These two matrices are smooth with k and can be transformed
to the Hamiltonian gauge (H) by diagonalizing H (W )(k),
which allows them to effectively operate within the Bloch
basis. We can diagonalize the Hamiltonian matrix H (W )(k)
with a unitary matrix: [52,71]

H (H )(k) = U †(k)H (W )(k)U (k), (4)

and the corresponding matrix A(H )(k) can be given by

A(H )(k) = U †(k)A(W )(k)U (k) + iU †(k)
∂

∂k
U (k), (5)

where H (H ) and A(H ) are the Hamiltonian matrix and tran-
sition dipole matrix under the Bloch basis, respectively, and
U (k) is the unitary matrix that diagonalizes H (W ).

The diagonalized Hamiltonian describes the eigenenergy
of the system, i.e., H (H )

mn (k) = εn(k)δmn. The corresponding
Bloch states are ∣∣φ(H )

mk

〉 =
∑

n

Unm(k)
∣∣φ(W )

nk

〉
. (6)

These transformations of Eqs. (4) and (5) are transformations
between operator matrices at different basis, and Eq. (6) is
a unitary transformation of a different basis. In general, the
matrix U (k) is not unique and contains random phases. This
makes it difficult to ensure that A(H )(k) is smooth with respect
to k. Therefore, we choose to solve the SBEs in the Wannier
gauge.

B. SBEs in the Wannier gauge

To describe the interaction between intense laser and
solids, we start with the single-particle time-dependent
Schrödinger equation (TDSE) with the dipole approximation
and the velocity gauge, the time evolution of an electron under
laser field can be described as

i
∂

∂t
ψ (r, t ) = Ĥ (t )ψ (r, t ), (7)

Ĥ (t ) = 1

2
[ p̂ + A(t )]2 + V (r), (8)

where A(t) is the vector potential of laser field, V (r) is
the periodic potential of crystals. By using the acceleration
theorem of Bloch electrons [72–74], we construct an adia-
batic instantaneous eigenstate of Eq. (7), the Houston state
φ̃nk(r, t ) = e−iA(t )·rφnk(r), which satisfies

Ĥ (t )φ̃nk(r, t ) = εk
n φ̃nk(r, t ). (9)
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Then the electronic wave function can be expanded as

ψ (r, t ) =
∫

BZ

∑
n

Ck
n (t )φ̃nk(r, t )dk

=
∫

BZ

∑
n

Ck
n (t )e−iA(t )·rφnk(r)dk,

(10)

where φnk(r) = 〈r|φnk〉. The corresponding density matrix el-
ements can be given by

ρk
nm(t ) = C∗k

m (t )Ck
n (t ). (11)

By substituting Eqs. (9), (10), and (11) into Eq. (7), we can
get the SBEs in the Wannier gauge

∂ρ (W )k0
nm (t )

∂t

= i
∑

l

[
H (W )k(t )

lm ρ
(W )k0
nl (t ) − H (W )k(t )

nl ρ
(W )k0
lm (t )

]

+ iE(t ) ·
∑

l

[
A(W )k(t )

lm ρ
(W )k0
nl (t ) − A(W )k(t )

nl ρ
(W )k0
lm (t )

]
.

(12)

Here, E(t ) is the laser electric field. The crystal momentum
k(t ) = k0 + A(t ) is time-dependent, where k0 is the initial
crystal momentum of electron before the laser pulse arrives.

In the SBEs, the dephasing term is often used to describe
the decoherence caused by the electron-electron and electron-
phonon scattering, which makes the calculation results to be
more consistent with experiments [54]. In the calculations,
the dephasing term can be handled in the Hamiltonian gauge.
In other words, we can propagate the coherent equations in
the Wannier gauge and consider the decoherent part in the
Hamiltonian gauge [52]. The equations in the Hamiltonian

gauge read

∂ρ (H )k0
nm (t )

∂t

= i
∑

l

[
H (H )k(t )

lm ρ
(H )k0
nl (t ) − H (H )k(t )

nl ρ
(H )k0
lm (t )

]

+ iE(t ) ·
∑

l

[
A(H )k(t )

lm ρ
(H )k0
nl (t ) − A(H )k(t )

nl ρ
(H )k0
lm (t )

]

− (1 − δnm)

T2
ρ (H )k0

nm (t ), (13)

where T2 is the dephasing time.
In the Hamiltonian gauge, the initial condition of the sys-

tem is assumed to be that the electrons are full occupied in
the valence bands and has no coherences between eigenstates,
i.e., ρ (H )

nn (k) = 1 (n runs over all valence bands) and ρ (H )
nm (k) =

0 (n 	= m). In the Wannier gauge, the initial density matrix
elements can be obtained by the following transformation:

ρ (W )(k, t ) = U (k)ρ (H )(k, t )U †(k). (14)

After obtaining the time-dependent density matrix, the
electric current can be given by

J(t )=−
∑
m,n

∫
BZ

[
ρ (W )k0

nm (t )p(W )k(t )
mn

+
∑

l

iρ (W )k0
nm (t )

(
H (W )k(t )

ln A(W )k(t )
ml −H (W )k(t )

ml A(W )k(t )
ln

)]
dk,

(15)

with the momentum matrix elements pk
mn = 〈φ̃k

m| p̂|φ̃k
n〉. Then

the high-order harmonic spectra is obtained by the modulus
square of current Fourier transform.

The current can be divided into the intraband and interband
component in the Hamiltonian gauge [52]

Jintra(t ) = −
∑

n

∫
BZ

p(H )k(t )
nn ρ (H )k0

nn (t )dk

= −
∑

n

∫
BZ

(∇kε
k(t )
n )ρ (H )k0

nn (t )dk, (16a)

Jinter(t ) =
∑

m 	=n,l

∫
BZ

iρ (H )k0
mn (t )(H (H )k(t )

ln A(H )k(t )
ml − H (H )k(t )

ml A(H )k(t )
ln )dk

= −
∑
m 	=n

∫
BZ

iρ (H )k0
mn (t )(εk(t )

m − εk(t )
n )[(U †A(W )U )k(t )

mn + d (H )k(t )
mn ]dk, (16b)

where d (H )k
mn is the transition dipole moment in the accelerated

Bloch basis.
In the tight-binding model, the matrix elements of

Hamiltonian are established by the on-site energies εm and
hopping matrix elements

〈0m|Ĥ |Rn〉 = εmδ0Rδmn + tmn(R), (17)

and the matrix elements of the position operator can be simi-
larly given by

〈0m|r̂|Rn〉 = τmδ0Rδmn + dnm(R), (18)

where τm is the center of the mth Wannier orbital. However,
we find that the matrix elements of position operator are often
neglected in previous works [58,59]. In this case, A(W )

mn,k in
Eq. (3) is zero and Eq. (12) becomes

∂ρ (W )k0
nm (t )

∂t
= i

∑
l

[
H (W )k(t )

lm ρ
(W )k0
nl (t ) − H (W )k(t )

nl ρ
(W )k0
lm (t )

]
,

(19)
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FIG. 1. (a) Side view of the crystal structure of monolayer BP.
(b) Top view of the crystal structure of monolayer BP and corre-
sponding Brillouin zone. The shadowed rectangle region shows the
unit cell with the primitive translational vectors a and b. (c) The
upper panel shows the calculated band structure using the NNTB
model, and the lower panel shows the calculated band structure using
the VASP (red dashed curves) and WANNIER90 (black solid curves).

and the time-dependent current becomes

J(t ) = −
∑
m,n

∫
BZ

ρ (W )k0
nm (t )p(W )k(t )

mn dk. (20)

It is worth noting that Eqs. (19) and (20) are essentially the
same as the TDSE [22,75].

In our simulation, the electric field E(t ) of the laser is
given by

Ex(t ) = 1√
1 + ε2

E0 f (t ) cos(ω0t )ex,

Ey(t ) = ε√
1 + ε2

E0 f (t ) sin(ω0t )ey,

(21)

where E0 is the amplitude of the electric field, ε is the ellip-
ticity, ω0 is the angular frequency, and f (t ) is an eight-cycle
trapezoidal envelope whose form is

f (t ) =
⎧⎨
⎩

sin2( πt
4T0

) −4T0 � t < −2T0,

1 −2T0 � t < 2T0,

sin2( πt
4T0

) 2T0 � t � 4T0,

(22)

where T0 = 2π
ω0

is an optical cycle. The corresponding vector
potential can be obtained by

A(t ) = −
∫ t

−∞
E(t ′)dt ′. (23)

C. Tight-binding model of monolayer BP

In this subsection, we construct two tight-binding models
of monolayer BP. One is obtained from the MLWF method,
which uses the WANNIER90 package to process the results
from ab initio calculations [76,77]. This is referred to as the
ab initio model in this work. The other one is the NNTB
model. Figures 1(a) and 1(b) show the side view and top
view of the crystal structure of monolayer BP, respectively.

Obviously, the phosphorus sites are grouped into two zigzag
layers [70,78,79].

In the ab initio model, the electronic structure information
of monolayer BP is obtained by the Vienna ab initio simula-
tion package (VASP) [80]. We adopt the exchange-correlation
functional of the local density approximation (LDA) and a
20 × 20 Monkhorst-Pack grid in the calculation. The space
group is chosen as Pmna. The cutoff energy of the plane-
wave basis and the convergence criterion are set as 520 eV
and 10−8 eV, respectively. Then we perform a projection on
the p orbitals and get 〈0m|Ĥ0|Rn〉 and 〈0m|r̂|Rn〉 using the
WANNIER90 package [76,77,81]. The disentanglement energy
window is set from −10 eV to 4 eV. Thus the ab initio model
contains six valence bands and six conduction bands (CBs).
In addition, the Hamiltonian obtained by the WANNIER90
may exhibit symmetries that are inconsistent with the crystals
due to bad disentanglements. This problem can be resolved
by using the numerical tool WANNSYMM to symmetrize the
Hamiltonian [82].

In the NNTB model, only the nearest-neighbor interaction
is considered, and the Hamiltonian in reciprocal space can be
written as [78,79]

Hk =

⎛
⎜⎜⎝

0 Ak Bk Ck

A∗
k 0 Dk Bk

B∗
k D∗

k 0 Ak

C∗
k B∗

k A∗
k 0

⎞
⎟⎟⎠. (24)

Here,

Ak = t2 + t5e−ika ,

Bk = 4t4e−i(ka−kb)/2 cos(ka/2) cos(kb/2),

Ck = 2eikb/2 cos(kb/2)(t1e−ika + t3),

Dk = 2eikb/2 cos(kb/2)(t1 + t3e−ika ),

(25)

where ka = k · a and kb = k · b. a = a�x and b = b�y are the
primitive translational vectors. The corresponding lattice pa-
rameters are set as a = 4.601 Å and b = 3.300 Å. To compare
with our ab initio results, the hopping parameters are adjusted
as follows: t1 = −1.220 eV, t2 = 3.35 eV, t3 = −0.205 eV,
t4 = −0.105 eV, and t5 = −0.055 eV.

The band structure of monolayer BP is displayed in
Fig. 1(c). The upper panel shows the result calculated by the
NNTB model. This band structure is accurate only within a
certain energy range because of the adopted approximations
[78]. The lower panel shows the result calculated by the
ab initio model. For comparison, the band structure calculated
by VASP is also given with red dashed curves. It is found that
the calculation results of the two methods are very consistent,
indicating that our ab initio model is valid. In our models, the
band gap is 0.89 eV, which is smaller than that in Ref. [69].
This is because we adopt the LDA exchange-correlation func-
tional to compare with the results in Ref. [70]. Previous
study has shown that the use of a more advanced exchange-
correlation functional can improve the band structure but has
no significant effects on the harmonic spectra [70].

043508-4



DEFECTS OF THE NEAREST-NEIGHBOR TIGHT-BINDING … PHYSICAL REVIEW A 108, 043508 (2023)

FIG. 2. Harmonic spectra calculated by (a) the TDDFT and
(b) the SBEs. The black solid curves and red dashed curves corre-
spond to the laser field polarized along the armchair (AC) and zigzag
(ZZ) directions, respectively. The results of TDDFT are reproduced
from Ref. [70].

III. RESULTS AND DISCUSSION

A. Limitations of the NNTB approximation

First, we demonstrate the validity of the SBEs represented
by the accelerated Bloch-like basis consisting of the MLWF.
In this work, we solve the SBEs by the classical fourth-order
Runge-Kutta method with the time step of 0.22 a.u. and
200 × 200 sampling points in the first BZ. The choice of
these parameters guarantees the convergence of the results.
To compare with the results of the time-dependent density
functional theory (TDDFT), we adopt the same laser field in
Ref. [70] and set the dephasing time T2 = ∞. Figures 2(a)
and 2(b) show the results of the TDDFT in Ref. [70] and
our SBEs, respectively. Owing to the inversion symmetry of
the system, the harmonic spectra up to the 15th order are
composed of only odd harmonics. Notably, our results are in
good agreement with those in Ref. [70], demonstrating the
validity of our SBEs method.

On this basis, we discuss the limitations of the NNTB
approximation. Figure 3(a) presents the harmonic spectra
calculated by the NNTB model and the ab initio model,
respectively. To investigate the limitations of the NNTB ap-
proximation, we also neglect the matrix elements of the
position operator in the ab initio model. We use the linearly
polarized laser field in Eq. (21) with E0 = 0.002 a.u. and
λ = 3000 nm, which is polarized along the zigzag direction.
The dephasing time is set T2 = ∞ to be consistent with the
subsequent results of the TDSE. For comparison, the har-
monic spectra calculated by the NNTB model is normalized
to the first order of the harmonic spectra calculated by the
ab initio model. It can be obviously seen that there are sig-
nificant differences between the two harmonic spectra. For
the NNTB model, the intensity of the first few harmon-
ics decreases rapidly, the 11th to 15th harmonics disappear,
and the cutoff is around the 19th harmonic. Whereas for
the ab initio model, a clear plateau can be observed, and
the cutoff is around the 23rd harmonic. This indicates the

FIG. 3. (a) Harmonic spectra calculated by the SBEs. The ver-
tical dashed line represents the smallest band gap at � point.
(b) Orientation dependence of harmonic yield. The black solid curves
and red dashed curves correspond to the NNTB model and the
ab initio model, respectively.

limitations of the NNTB approximation in solid HHG calcu-
lation, so higher-order interactions need to be considered in
tight-binding model. To futher illustrate the limitations of the
NNTB approximation, we also investigate the orientation and
ellipticity dependence of harmonic yield in monolayer BP.

1. Orientation dependence of harmonic yield

Figure 3(b) shows the orientation dependence of harmonic
yield, where the crystal orientation is defined by the relative
angle θ between A(t ) and armchair direction as shown in
Fig. 1(b). The yield of the nth harmonic is calculated by

In =
∫ (n+0.5)ω0

(n−0.5)ω0

I (ω)dω. (26)

The complex orientation dependence can be observed for
monolayer BP. For the fifth harmonic, there are a set
of primary maxima around 120◦ and 240◦ and a set of
secondary maxima around 150◦ and 210◦. By contrast, the
seventh harmonic yield has two maxima around 140◦ and
220◦, and the ninth harmonic yield has six maximum values.
This complex orientation dependence is closely related to the
electronic structure of monolayer BP as shown in Fig. 1(c)
when higher-order interactions are considered. In addition, we
also find that the orientation dependence calculated by the two
models shows significant differences except for the seventh
harmonic. For example, for the fifth harmonic, the orientation
dependence calculated by the NNTB model only has two
maximum values around 150◦ and 210◦. This implies that the
NNTB approximation leads to inaccuracies in calculating the
orientation dependence of harmonic yield.

The ab initio model includes higher-order interactions and
therefore contains more energy bands than the NNTB model.
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FIG. 4. Orientation dependence of the (a) fifth, (b) seventh,
(c) ninth, and (d) 11th harmonic yield. The black solid curves, red
dashed curves, and blue dotted curves are the results with six CBs
(total), four CBs, and two CBs, respectively.

To understand the impact of the multiband effects, we solve
the TDSE in the Houston basis. For the specific solution
process, please refer to Ref. [83]. According to Eq. (20),
we consider the cases of the two lowest, four lowest, and
all six CBs, respectively. In the calculation, different bands
are distinguished according to the energy. Figure 4 shows
the orientation dependence of harmonic yield calculated by
the TDSE. By comparing Figs. 3(b) and 4, we find that the
results calculated by the TDSE are consistent with those of the
ab initio model. In addition, for lower-order harmonics such
as the fifth and seventh order, the results considering the two
and four lowest CBs are consistent with those considering
all energy bands. However, as the harmonic order increases,
these results gradually show discrepancies. This indicates that
the number of CBs needs to be carefully examined when
calculating the orientation dependence of harmonic yield.

2. Ellipticity dependence of harmonic yield

Figure 5 shows the ellipticity dependence of harmonic
yield, where the elliptical principal axis of the laser field
is set along the zigzag direction. As shown, the anomalous
ellipticity dependence can be observed for monolayer BP. For
the fifth and seventh harmonics, as the ellipticity increases,
the yields are almost invariant when ε < 0.5, then increase
monotonically when ε > 0.5. Whereas for the ninth harmonic,
the yields show a valley around ε = 0.3 and a peak around
ε = 0.7. Meanwhile, the 11th harmonic yields are more tor-
tuous and complex. By contrast, for the NNTB model, as the
ellipticity increases, all the harmonic yields are invariant when

FIG. 5. Ellipticity dependence of the (a) fifth, (b) seventh,
(c) ninth, and (d) 11th harminic yield. The solid curves and dashed
curves correspond to the NNTB model and the ab initio model,
respectively. The red triangle dashed curves and blue square dashed
curves are the results without and with the r̂ matrix, respectively.

ε < 0.5, then increase monotonically when ε > 0.5, except
for the fifth harmonic yield which has a peak at ε = 0.2. These
differences provide further evidence for the limitations of the
NNTB approximation. Notably, the orientation and ellipticity
dependence of the seventh harmonic yield calculated by the
two models are well matched. Thus, despite there are some
limitations in the NNTB model, it may still be effective in cal-
culating the orientation and ellipticity dependence of certain
harmonic yields.

The differences between the two models can be attributed
to the differences in the electronic structure information. As
shown in Fig. 1(c), the energy band calculated by the NNTB
model is accurate only near the � point, but is inaccurate in
other regions of the first BZ. This will lead to differences in the
intraband group velocities and interband transition moments.
As a result, there are discrepancies in the dynamics of the
electrons and holes in the two models, leading to different
harmonic emissions. Finally, these differences are reflected in
the orientation and ellipticity dependence of harmonic yield.
Therefore, the accuracy of the NNTB approximation should
be carefully verified for certain materials.

B. Role of the matrix elements of the position operator

In this subsection, we investigate the role of the matrix
elements of the position operator using the ab initio model.
Figure 6(a) shows the harmonic spectra driven by the laser
field polarized along the zigzag direction. It can be seen
that the harmonic spectra have no significant variation when
the matrix elements of the position operator are neglected.
Figure 6(b) further shows the orientation dependence of har-
monic yield. We find that the orientation dependence of the
fifth and seventh harmonic yields also has no significant vari-
ation when neglecting the matrix elements of the position
operator. However, for the ninth and 11th harmonic, some
discrepancies can be observed. In addition, we also study
the impact of the matrix elements of the position operator
on the ellipticity dependence of harmonic yield. The results

043508-6



DEFECTS OF THE NEAREST-NEIGHBOR TIGHT-BINDING … PHYSICAL REVIEW A 108, 043508 (2023)

FIG. 6. (a) Harmonic spectra calculated by the SBEs. The ver-
tical dashed line represents the smallest band gap at the � point.
(b) Orientation dependence of harmonic yield. The black solid curves
and red dashed curves correspond to the results without and with the
r̂ matrix, respectively.

are shown in Fig. 5. When the matrix elements of the posi-
tion operator are not considered, the ellipticity dependence
hardly changes for the fifth and seventh harmonics. However,
for higher-order harmonics, such as the ninth and 11th har-
monics, although the trend of ellipticity dependence remains
unchanged, there are some differences in the harmonic yields.
This suggests that the matrix elements of the position operator
have an important influence on the orientation and ellipticity
dependence of higher-order harmonic yield.

In fact, the diagonal elements of 〈0m|r̂|Rn〉 represent the
central position of the corresponding atomic orbitals, and the
nondiagonal elements represent the hopping of electrons be-
tween different atoms and between different atomic orbitals.
In the Bloch basis, the matrix of the position operator contains
the interband transition elements and the Berry connections
[84], which is closely related to the interband recombination
process, anomalous Hall current, and topological properties
[54,85,86]. It is worth noting that the transition dipole moment
in the Wannier basis is different from the transition dipole
moment in the Bloch basis. By comparing the interband and
intraband currents in Eqs. (16) and Ref. [87], it is obvious
that the equations of the intraband current are identical while
the equations of the interband current include an additional
term that encompasses A(W )(k). We can also transform the
SBEs in the Wannier gauge into the Hamilton gauge using
the unitary transformations, and the equations will similarly
include an additional term of A(W )(k) because of Eq. (5).
Our calculations prove that the interband harmonics domi-
nate above the ninth harmonics in monolayer BP (not shown
here). Therefore, A(W )(k) only affects the interband current
in the calculation, i.e., higher-order harmonics. The correct
description of the transition dipole moment is essential for

FIG. 7. Harmonic spectra calculated with different dephasing
times. The black solid curves, red dashed curves, and blue dotted
curves correspond to T2 = ∞, 8 fs, and 3 fs, respectively.

describing the motion of the electrons. Our results indicate
that the matrix elements of the position operator can not be
neglected arbitrarily.

C. Effect of dephasing times

A proper dephasing time leads to cleaner peaks in the
harmonic spectra and thus better match the experimental
results as multiple recollisions or long trajectories are sup-
pressed [54,88]. Many elements in the experiment may affect
the dephasing time, such as temperature and doping [89],
making it difficult to choose a genuine dephasing time in
the calculation. In addition, it was found that the dephasing
time can be k dependent [90], this property may be more
pronounced in anisotropic materials. In our calculation, since
the crystal momentum is time-dependent, we need to diago-
nalize the Hamiltonian matrix H (W )[k0 + A(t )] to obtain the
unitary matrices U [k0 + A(t )] when transforming Eq. (12)
to Eq. (13). This may consume significant computation time
and leads to a computational bottleneck in the SBEs with
the accelerated Bloch-like basis consisting of the MLWF. For
instance, when diagonalization is performed at each time step
in the dephasing calculation, the computation time is approxi-
mately 2.4 times that without considering the dephasing term.
Furthermore, as the size of the Hamiltonian matrix grows,
the computation time will further increase. To alleviate the
computation burden of diagonalization, the dephasing term
can be considered every Nt (Nt � 2) time steps during the
propagation process, provided that the convergence of the
results is guaranteed [87]. Figure 7 shows the harmonic spec-
tra calculated with different dephasing times, revealing that
shorter dephasing time leads to a lower intensity and cleaner
peaks in the harmonic spectra.

IV. CONCLUSION

In summary, the defects of the NNTB model in the study
of solid HHG are theoretically investigated. We first develop
the SBEs with the accelerated Bloch-like basis consisting
of the MLWF and demonstrate the validity by comparing
with the calculation results of the TDDFT. Then, we calculate
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the harmonic spectra, orientation, and ellipticity dependence
of harmonic yield in monolayer BP using the NNTB model
and the ab initio model, respectively. The complex orienta-
tion and anomalous ellipticity dependence of harmonic yield
are predicted for monolayer BP. Moreover, we find that the
NNTB approximation has limitations in the study of solid
HHG. Finally, we explore the role of the matrix elements
of the position operator in solid HHG. It is found that these
matrix elements have an important effect on the orientation
and ellipticity dependence of higher-order harmonic yield and
can not be arbitrarily neglected in theoretical calculations.
Notably, our conclusions do not mean that the NNTB model is
not applicable to all materials, but suggested that the accuracy

of the NNTB model needs to be carefully checked when it is
used to study solid HHG.
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