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Radiation of a variable charge flying into a medium
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We study an electromagnetic radiation of a small bunch having a variable charge value and crossing a flat
interface between two media. Both media are linear, homogeneous, stationary, and isotropic. They may have
frequency dispersion but no spatial dispersion. Cherenkov radiation can be generated in the second medium
only. It is assumed that the bunch charge value decreases exponentially starting from a certain time moment
after the charge enters the second medium. This means that we take into account the scatter of the particle
path lengths connected with the statistical nature of energy losses of particles. It is taken into account that
a filamentous “trace” consisting of immobile charges is formed in the second medium. We obtain a general
solution of the problem, which is the sum of the forced field, i.e., the charge field in the unbounded medium,
and the free field connected with the influence of the boundary. An asymptotic study for the far-field zone is
carried out. We obtain expressions for the spherical wave as well as for the cylindrical wave generated in the
second medium if the charge velocity is sufficiently high. The spherical wave is radically different from the usual
transition radiation, since it consists of two parts: the transition radiation wave and the wave generated due to
the bunch decay and the formation of its trace. We describe the main properties of radiation. If the process of the
bunch decay starts exactly at the boundary between media, then the angular distribution of the radiation energy
has a single maximum in each of two regions. In the second medium, the radiation, as a rule, is greater than
in the vacuum area, and this difference increases with increasing the charge velocity. If the charge velocity is
larger than the speed of light in the second medium, then, along with the appearance of Cherenkov radiation, the
properties of the spherical wave change radically. In particular, the main maximum of the angular distribution
of the radiation energy increases essentially. If the distance from the charge entry point to the region of the
bunch decay is sufficiently large, then a complicated interference pattern with many extremes arises due to the
summation of different spherical waves.
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I. INTRODUCTION

Problems of electromagnetic radiation of charged particle
bunches moving in media are studied in a series of mono-
graphs and in a huge number of journal papers (see, for
instance, [1–9]). Usually, in such problems, it is assumed that
the particle bunch has some constant velocity, and the value
of its charge does not change during the motion. An exception
is problems of radiation in the dielectric waveguide structures
where the bunch moves in a vacuum channel: bunch dynamics
associated with interaction of particles of the bunch is often
taken into account in such a situation [10,11].

However, if the bunch moves in the medium then its
particles interact with the medium particles, which leads to
certain changes of the bunch. In more or less dense media,
this interaction is usually the main factor determining the
bunch evolution. Various variants of this evolution have been
described in many monographs and papers (see [12–20] and
references therein).

Depending on the particle mass and velocity, the medium
density, and other factors, it is possible to have both a rapid
deviation of particles from a rectilinear trajectory, leading
to beam scattering, and an almost rectilinear motion of the
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bunch. The latter variant is typical for bunches of heavy par-
ticles (protons and ions). It should also be noted that these
particles usually lose the majority of their energy in a rela-
tively small section of the trajectory (this effect is referred
to as the “Bragg peak”) [12–16]. Because of this property,
bunches of heavy particles are widely used in medicine (pro-
ton and ion therapy).

The features characterizing the passage of the charged
particles bunches through the matter are quite complex and
depend on many factors (energy, mass, and charge of particles;
matter density; etc.) [12–18]. In this paper, we restrict our-
selves to the following model. We assume that each particle of
the bunch moves at some constant velocity until some moment
when it stops instantly. The velocities of all particles until
the stopping moment are the same. However, the moments of
stopping are different for different particles. This means that
we take into account the scatter of the particle path lengths,
connected with the statistical nature of energy losses of parti-
cles [12–16].

Thus, the number of bunch particles decreases: the mov-
ing particles turn into nonmoving ones. We will assume that
a certain fraction of particles stops per the unit length of
the bunch path. This means that the bunch population and
therefore the bunch charge decrease exponentially with time.
This model of the bunch evolution is one of the simplest
ones. It allows performing a complete analytical calculation
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of the generated radiation and describing the main physical
effects.

Such a model is close to the actually observed dynamics
of bunches of heavy particles (protons and ions). A decrease
of the particle number according to the law close to the ex-
ponential is presented, in particular, in [13–16]. It should be
noted that the described model allows one to advance quite far
in the analytical description of the radiation process. At the
same time, the more complicated models of bunch dynamics
will hardly demonstrate qualitatively new effects.

It should also be noted that the described model automat-
ically includes the special case of an instantaneous charge
change. This case is of particular interest in connection with
the problem of ion recharge due to the exchange of electrons
with the medium. One such problem is considered in [20]
where the ion charge instantly changes when it passes through
the interface. The model considered here is much more gen-
eral. It allows taking into account an arbitrary distance from
the boundary to the charge change region, as well as the
finiteness of the time interval of the charge change.

Previously, we analyzed the radiation of the described
bunch with variable charge in a homogeneous infinite medium
[21]. For applications, it is more important to consider the case
when the bunch flies from the first medium (whose properties
are usually close to the vacuum) into the second medium
having some relatively high refractive index. We will focus
on this problem in the present paper.

We assume that the bunch charge does not change in the
first medium due to its low density. In the second medium, the
charge value remains practically constant until a certain time
moment, starting from which the bunch decay occurs. The
particular case of coincidence of the charge entry moment and
the moment of the bunch decay start can be also considered
within the framework of this model. In the situation described,
the generated wave field is a combination of three types of
radiation: transition radiation, radiation due to the charge de-
creasing process, and Cherenkov radiation (CR) (if the bunch
velocity is sufficiently high).

II. FORMULATION OF THE PROBLEM

We will analyze a radiation with wavelengths significantly
exceeding the particle bunch size. In this case, we can consider
a point charge. The charge speed �v = c�β is assumed to be
constant, and the charge value q is variable. In order to satisfy
the charge conservation law (continuity equation), a certain
“additional” nonmoving source with the charge density ρ1

(the “trace” of the initial bunch in the medium) has to be
introduced. Combining the axis z with the line of the charge
motion, we can write the total charge density (ρ�) and the
current density (�j�) in the following form:

ρ� = ρ + ρ1, ρ = q(t )δ(x, y, z − vt ),

ρ1 = −dq(z/v)

dz
δ(x, y)�(vt − z),

�j� = �j = vρ�ez, (1)

where �(ζ ) = 0 for ζ < 0 and �(ζ ) = 1 for ζ > 0. It can
be easily verified that these expressions satisfy the continuity
equation div�j� + ∂ρ�/∂t = 0.

FIG. 1. The problem geometry.

The formation of the trace means that the bunch particles
stop due to the interaction with the medium particles, i.e.,
they turn from moving particles to particles at rest (therefore
�j1 = 0). From the point of view of macroscopic electro-
dynamics, the detailed description of this process is of no
importance. For example, this can be the recombination of the
bunch electrons with ions (if the medium is a plasma), the
stopping of particles due to collisions with neutral molecules,
etc. For us, only the fact of the formation of the filamentous
additional charge is important.

It is assumed that the particle bunch moves perpendicularly
to the interface between two media, flying from the medium
1 (z < 0) into the medium 2 (z > 0) (Fig. 1). Both media
are considered to be homogeneous, linear, stationary, and
isotropic, and do not have any spatial dispersion (frequency
dispersion can take place). The media are characterized by
permittivities ε1,2 and permeabilities μ1,2. Accordingly, the
wave numbers are equal to k1,2 = k0n1,2, where k0 = ω/c is
the wave number in vacuum, and n1,2 = √

ε1,2μ1,2 are the
complex refractive indices of the media. Initially, we will as-
sume that the media have some conductivity, i.e., Im ε1,2 > 0
at ω > 0. Ultimately, we will be interested in the case when
the conductivity is negligible, and absorption of radiation in
the medium is insignificant.

We will consider here only ordinary (“right-handed”) me-
dia, i.e., we assume that the real values of the refractive
indices take place only for real positive values of permittivity
and permeability (Re ε1,2 > 0 and Re μ1,2 > 0). The case of
a “left-handed” medium (where both constants are negative
in the same frequency range) can be considered similarly.
Here we exclude this case from consideration for the sake
of the relative compactness of formulas. Note that radiation
generated by flying of a constant charge into a left-handed
medium was studied in [22,23].

We assume that the bunch charge is constant (q = q0) up
to the moment t = t0 > 0, i.e., in the medium 1 and, possibly,
on some part of the trajectory in the medium 2. At t > t0, the
charge value decreases. Let us assume that for any small time
interval dt the bunch loses the same fraction of the charge
dq, that is, dq/dt = q/τ , where τ = const > 0. Solving this
equation we find

q(t ) =
{

q0 for t < t0,

q0 exp [−(t − t0)/τ ] for t > t0.
(2)
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In this case, the motionless trace of charges has the density

ρ1 = q0

vτ
exp

(
− z − vt0

vτ

)
δ(x, y)�(vt − z)�(z − vt0), (3)

where �(ξ ) = 1 for ξ > 0 and �(ξ ) = 0 for ξ < 0.

III. FORCED FIELD

The total charge field in both media can be represented in
the form

�E (1,2) = �Eq(1,2) + �Eb(1,2),

�H (1,2) = �Hq(1,2) + �Hb(1,2), (4)

where indices 1 and 2 refer to the first and second media,
respectively. The field with the superscript q is a “forced”
one, i.e., the charge field in the corresponding homogeneous
infinite medium. The field with the superscript b is a “free”
one, i.e., the field arising due to the presence of the interface
between two media (we use here the terminology introduced
in [4]).

Note that the forced field was analyzed by us in [21]. Here
we will focus only on obtaining the expression for it in the
form that is convenient for solving the boundary problem
under consideration.

Let us use the vector ( �A) and scalar () potentials connect-
ing with the field components by the formulas �E = − 1

c
∂ �A
∂t −

∇, �B = rot �A (a Gaussian system of units is used). We ap-
ply the Lorentz gauge (modified to the media), and then the
time Fourier transforms of the potentials obey the Helmholtz
equation:

(
� + k2

1,2

){ �A(1,2)
ω

(1,2)
ω

}
= −4π

{
μ1,2 �jω/c

ρ�ω/ε1,2

}
. (5)

The forced field potentials �Aq(1,2)
ω and 

q(1,2)
ω also obey

Eqs. (5), and the free field potentials �Ab(1,2)
ω and b(1,2)

ω obey
the same equations with zero right-hand side.

We will solve Eqs. (5) by the Fourier method. First of all,
it is necessary to find the four-dimensional Fourier transforms
of the charge and current densities. For the charge and current
densities of the bunch itself, we have

{
ρ

ω,�k
�j
ω,�k

}
= 1

(2π )4

∫
R4

{
ρ

�j

}
eiωt−i�k �RdV dt = q�

(2π )3

{
1

�v

}
, (6)

where q� = 1
2π

∫ ∞
−∞ q(t )ei�t dt , � = ω − vkz. Calculating the

Fourier transform of the charge density of the trace, we obtain

ρ1 ω,�k = − � q�

8π3(ω + i0)
. (7)

The validity of this expression can be checked by calculating
the inverse Fourier integral, which leads to (3). Summing up
(6) and (7), for the total source we obtain

ρ
� ω,�k = vkzq�

8π3(ω + i0)
, �j

� ω,�k = vq��ez

8π3
. (8)

In the case of bunch with the exponentially decreasing charge
(2), for the Fourier transform of the bunch charge we have

q� = q0δ(�) + q0

2π

[
1

i(� + i0)
+ τ

1 − i�τ

]
ei�t0 . (9)

Note that the term “+i0” in the denominator in (7) and (9)
provides the required bypass of the pole.

Writing �Aq(1,2)
ω and 

q(1,2)
ω as the inverse Fourier inte-

grals over the wave-vector components, substituting them into
Eqs. (5), and equating the integrands, we obtain the fourfold
Fourier transforms of the potentials. After that, we write the
inverse Fourier transform over the wave-vector components
and switch to the cylindrical coordinate system both in the
physical space (r, ϕ, z) and in the space of the wave vectors
(kr, ϕk, kz). For the time Fourier transforms of the potentials,
we obtain

{ �Aq(1,2)
ω

q(1,2)
ω

}
= 1

2π2

∫ ∞

−∞
dkz

∫ ∞

0
dkr

∫ 2π

0
dϕk

⎧⎪⎨
⎪⎩

μ1,2 �β
cβkz

(ω + i0)ε1,2

⎫⎪⎬
⎪⎭

krq� exp [ikzz + ikrr cos(ϕk − ϕ)]

k2
r + k2

z − k2
1,2

. (10)

Since the integral over ϕk reduces to the tabular one [24], Eq. (10) can be written as{ �Aq(1,2)
ω

q(1,2)
ω

}
= 1

π

∫ ∞

−∞
dkz

∫ ∞

0
dkr

⎧⎪⎨
⎪⎩

μ1,2 �β
cβkz

(ω + i0)ε1,2

⎫⎪⎬
⎪⎭

krq�J0(krr) exp (ikzz)

k2
r + k2

z − k2
1,2

, (11)

where J0(krr) is the Bessel function.
In contrast to [21], here it is convenient to represent the result as an integral over the tangential component kr , therefore we

take the integrals over kz. Let us calculate the integral for the potential �A. Substituting (9) into (11) and calculating the integral
with the delta function, we obtain

�Aq(1,2)
ω = q0μ1,2 �β

π

∫ ∞

0
krJ0(krr)

{
eiωz/v

v
(
k2

r − s2
1,2

) + eiωt0

2π

∫ ∞

−∞

eikz (z−vt0 )

k2
z − κ2

1,2

[
1

i(� + i0)
+ τ

1 − i�τ

]
dkz

}
dkr, (12)

where s1,2 =
√

ω2v−2(n2
1,2β

2 − 1), κ1,2 =
√

k2
1,2 − k2

r . We set that these roots are defined by the rules Im s1,2 > 0, Im κ1,2 > 0.

For the real parts, this leads to the rule sgn Re s1,2 = sgn Re κ1,2 = sgnω.
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The contour of integration over kz in (12) can be supplemented with the closed infinite semicircle located in the upper half
plane (Im kz > 0) at z − vt0 > 0 and in the lower half plane (Im kz < 0) at z − vt0 < 0. After that, the integral over kz is found
by calculating the residues at the poles kz = κ1,2, � = −i0, i�τ = 1, if z − vt0 > 0, and at the pole kz = −κ1,2, if z − vt0 < 0.
As a result, we obtain

�Aq(1,2)
ω = q0μ1,2 �β

π

∫ ∞

0
krJ0(krr)

{
U1,2

2ωκ1,2
eiωt0 eiκ1,2|z−vt0| + eiωz/v

v

[
�(vt0 − z)

k2
r − s2

1,2

+ V1,2�(z − vt0)

]}
dkr, (13)

where

U1,2 = ω

[ω − vκ1,2sgn(z − vt0)]{1 − iτ [ω − vκ1,2sgn(z − vt0)]} ,

V1,2 = exp [−(z − vt0)/(vτ )]

k2
r − s2

1,2 − v−2τ−2 + 2iv−2ωτ−1
. (14)

Note that it is advisable to transform the integral along the semiaxis into an integral along the entire real axis using the formula
[25]

J0(x) = H (1)
0 (x) − H (1)

0 (eiπ x)

2
, (15)

where H (1)
0 (x) is Hankel function. Similarly, one can obtain the corresponding expression for 

q(1,2)
ω .

As a result, using the formulas �Eω = iω
c

�Aω − ∇ω, �Bω = rot �Aω, we obtain the following expressions for the nonzero
components of the forced electromagnetic field in each of the two media:

Eq(1,2)
rω = q0ω

2πc2ε1,2

∫ ∞

eiπ∞
k2

r H (1)
1 (krr)

{
sgn(z − vt0)

βU1,2

2k3
0

eiωt0 eiκ1,2|z−vt0|

+eiωz/v

k0β

[
�(vt0 − z)

k2
r − s2

1,2

+
(

1 + i

ωτ

)
V1,2�(z − vt0)

]}
dkr, (16)

Eq(1,2)
zω = iq0ω

2πc2

∫ ∞

eiπ ∞
krH (1)

0 (krr)

{
βk2

r U1,2

2k3
0ε1,2κ1,2

eiωt0 eiκ1,2|z−vt0|

+eiωz/v

[
n2

1,2β
2 − 1

ε1,2β2

�(vt0 − z)

k2
r − s2

1,2

+
(

μ1,2 −
(
1 + iω−1τ−1

)2

ε1,2β2

)
V1,2�(z − vt0)

]}
dkr,(17)

Hq(1,2)
ϕω = q0ωβ

2πc2

∫ ∞

eiπ∞
k2

r H (1)
1 (krr)

{
U1,2

2k2
0κ1,2

eiωt0 eiκ1,2|z−vt0| + eiωz/v

k0β

[
�(vt0 − z)

k2
r − s2

1,2

+ V1,2�(z − vt0)

]}
dkr . (18)

IV. FREE FIELD

The Fourier transform of the free field component Eb(1,2)

zω,�kr
≡ Eb(1,2)

zω,kx,ky
satisfies the equation

∂2

∂z2
Eb(1,2)

zω,�kr
+ (

k2
1,2 − k2

r

)
Eb(1,2)

zω,�kr
= 0, (19)

where k2
r = k2

x + k2
y . Its solutions are the functions

Eb(1,2)

zω,�kr
= q0ω

c2
C∓e∓iκ1,2z, (20)

where the dimensional factor q0ω/c2 is introduced for convenience. The signs “−” or “+” in (20) correspond to the waves
propagating either in the negative (in medium 1) or in the positive (in medium 2) direction of the z axis. The Fourier transforms
of other field components can be easily found using Maxwell equations.

Next, we write the corresponding inverse Fourier integrals:

Fω =
∫ ∞

−∞

∫ ∞

−∞
F

ω,�kr
ei�kr �rdkxdky

=
∫ ∞

0
dkr · kr

∫ 2π

0
dϕk · F

ω,�kr
eikr r cos(ϕk−ϕ). (21)
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After calculating the table integrals over ϕk [24], the following representations for the nonzero field components are obtained:⎧⎪⎪⎨
⎪⎪⎩

Eb(1,2)
rω

Eb(1,2)
zω

Hb(1,2)
ϕω

⎫⎪⎪⎬
⎪⎪⎭ = 2π

q0ω

c2

∫ ∞

0

⎧⎪⎪⎨
⎪⎪⎩

± iκ1,2J1(krr)

krJ0(krr)

− ik0ε1,2J1(krr)

⎫⎪⎪⎬
⎪⎪⎭C∓e∓iκ1,2zdkr . (22)

Using (15) and a similar relation for J1(x) [24], we write the field components as integrals over the entire real axis:⎧⎪⎪⎨
⎪⎪⎩

Eb(1,2)
rω

Eb(1,2)
zω

Hb(1,2)
ϕω

⎫⎪⎪⎬
⎪⎪⎭ = π

q0ω

c2

∫ ∞

eiπ∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

± iκ1,2H (1)
1 (krr)

krH (1)
0 (krr)

− ik0ε1,2H (1)
1 (krr)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

C∓e∓iκ1,2zdkr . (23)

To find the coefficients C∓, we use the usual boundary conditions:

ε1E (1)
zω

∣∣
z=0 = ε2E (2)

zω , E (1)
rω

∣∣
z=0 = E (2)

rω . (24)

They result in the system of algebraic equations which has the following solution:

C+ = C0
+ − iβk2

r (ε2κ1 − ε1κ2)Ũ2

4π2k3
0ε2κ2(ε2κ1 + ε1κ2)

ei(ω+vκ2 )t0 , (25)

C− = C0
− − iβk2

r Ũ1

4π2k3
0ε1κ1

ei(ω+vκ1 )t0 + iβk2
r Ũ2

2π2k3
0 (ε1κ2 + ε2κ1)

ei(ω+vκ2 )t0 , (26)

where

C0
+ = i

2π2(ε2κ1 + ε1κ2)

[(
n2

1β
2 − 1

β2
κ1 + k2

r

k0β

)
1

k2
r − s2

1

−
(

n2
2β

2 − 1

β2
κ1 + ε1k2

r

k0βε2

)
1

k2
r − s2

2

]
, (27)

C0
− = − i

2π2(ε1κ2 + ε2κ1)

[(
n2

1β
2 − 1

β2
κ2 − ε2k2

r

k0βε1

)
1

k2
r − s2

1

−
(

n2
2β

2 − 1

β2
κ2 − k2

r

k0β

)
1

k2
r − s2

2

]
, (28)

where

Ũ1,2 = ω

(ω + vκ1,2)[1 − iτ (ω + vκ1,2)]
. (29)

V. RADIATION IN MEDIUM 1

Further we investigate the field in the wave (far-field) area
|k1|R � 1. In this area, the main part of the electromagnetic
field is the radiation field which is of most interest to us.

We assume that, in medium 1, the charge velocity does
not exceed the phase velocity of the waves: v < c/ Re n1. For
the practically important case, when the medium 1 is close to
vacuum, this condition is satisfied automatically.

Let us introduce the spherical coordinates R, θ (r =
R sin θ, z = R cos θ ) and the new integration variable χ such
that kr = k1 sin χ . The total field, consisting of the forced and
free fields, can be written as⎧⎪⎪⎨
⎪⎪⎩

E (1)
rω

E (1)
zω

H (1)
ϕω

⎫⎪⎪⎬
⎪⎪⎭ = π

q0k3
0n2

1

c

∫
�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i cos χH (1)
1 (k1R sin θ sin χ )

sin χH (1)
0 (k1R sin θ sin χ )

− i
√

ε1/μ1H (1)
1 (k1R sin θ sin χ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× C̃− cos χ exp(−ik1R cos θ cos χ )dχ, (30)

where

C̃− = C0
− + iβk2

r Ũ2

2π2k3
0 (ε1κ2 + ε2κ1)

ei(ω+vκ2 )t0 . (31)

The integration contour � is shown in Fig. 2.

Further we will apply the steepest descent method [26,27].
In addition to the condition |k1|R � 1 we will assume that
the distance to the observation point is large compared to
the distance to the charge decay region: R � vt0. Then the
function C̃(χ ) is a slow function compared to the fast function
exp(−ik1R cos θ cos χ ).

FIG. 2. The initial contour of integration � and the steepest de-
scent path �∗ on the complex plane χ ; the dashed line shows the cut.
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First, we need to transform the original integration contour
� to the steepest descent contour �∗ (Fig. 2). It can be shown
that the singularities of the integrand cannot be intersected
while transforming the contour. Using the asymptotic of the
Hankel functions [25], we obtain from (30) the following
approximate integrals over the steepest descent contour:⎧⎪⎪⎨
⎪⎪⎩

E (1)
rω

E (1)
zω

H (1)
ϕω

⎫⎪⎪⎬
⎪⎪⎭≈

√
2πe−iπ/4 q0k3

0n2
1

c

∫
�∗

C̃− cos χ√
k1R sin θ sin χ

⎧⎪⎪⎨
⎪⎪⎩

cos χ

sin χ

−
√

ε1/μ1

⎫⎪⎪⎬
⎪⎪⎭

× exp {ik1R cos [χ − (π − θ )]}dχ. (32)

The saddle point of the integrand is located at χ = χs = π −
θ . The integrals (32) are calculated with the help of the well-
known formula of the steepest descent method [26,27]. Using
the spherical coordinates R, θ , and ϕ, one can show that the
radiation field has only components E (1)

θ and H (1)
ϕ :

E (1)
θω ≈

√
μ1

ε1
H (1)

ϕω ≈ −2π i
q0k2

0n1

c tan θ

eik1R

R
C̃−

∣∣
χ=χs

. (33)

Radiation emerging from a limited region of space is
usually characterized by the spectral-angular density of the
radiated energy. The expression for it can be easily obtained
using the formula for the energy flux density of the spherical
wave:

�S = c

4π
E (1)

θ H (1)
ϕ �eR. (34)

The total energy passing through the unit area orthogonal to
this vector for the entire time is equal to∫ ∞

−∞
SRdt =

∫ ∞

0
c

∣∣√ε1/μ1

∣∣∣∣E (1)
θω

∣∣2
dω. (35)

The integrand in (35), multiplied by R2, is the spectral-angular
radiation energy density:

d2W

d�dω
= cR2

∣∣√ε1/μ1

∣∣∣∣E (1)
θω

∣∣2 = q2
0

4π2c
|F |2, (36)

where

F = 2
(
ε3

1μ1
)1/4

(ε1N21 − ε2n1 cos θ ) tan θ

[
−

(
n2

1β
2 − 1

)
N21 − ε2μ1β sin2 θ

1 − n2
1β

2 cos2 θ

+
(
n2

2β
2 − 1

)
N21 − n2

1β sin2 θ

1 − β2N2
21

+ n2
1β sin2 θ

(1 + βN21)[1 − iωτ (1 + βN21)]
eiωt0(1+βN21 )

]
. (37)

Here N21 =
√

n2
2 − n2

1 sin2 θ .
In the case of the homogeneous medium (ε2 = ε1,

μ2 = μ1) the formula (37) goes to the following expression:

F = Fh = −
(
ε1μ

3
1

)1/4
β sin θ

(1 − n1β cos θ )[1 − iωτ (1 − n1β cos θ )]

× eiωt0(1−n1β cos θ ). (38)

This result coincides with that obtained in [21] if we
put t0 = 0.

In the nonrelativistic case (β � 1), keeping only quantities
of order β, we obtain

F =
(
ε7

1μ
5
1

)1/4
β sin(2θ )

ε1N21 − ε2n1 cos θ

×
[
ε2 − ε1

ε1
+ 1

1 − iωτ
eiωt0(1+βN21 )

]
. (39)

We also note the special case when the second medium has
a very large real permittivity or it is a good conductor (anyway
|ε2| � |ε1|). Then it can be shown that

F ≈ −2
(
ε1μ

3
1

)1/4
β sin θ

1 − n2
1β

2 cos2 θ
. (40)

This result coincides with that for the case of the unchanging
charge flying into an ideal conductor (which is expected since
processes inside an ideal conductor do not affect the electro-
magnetic field outside it).

VI. RADIATION IN MEDIUM 2

The asymptotic of the field in the medium 2 under condi-
tions |k2|R � 1 and R � vt0 is calculated in a similar way.
For this area, it is useful to introduce the new integration vari-
able χ as follows: kr = k2 sin χ . Without going into details of
the calculation, we note only the most important points.

Unlike the medium 1, for the medium 2, it is possible that
|n2|β > 1. In such a situation, the pole determined by the
equation s2 = k2 sin χp, where χp = arccos[(n2β )−1], can be
intersected during the transformation of the initial integration
contour to the steepest descent path, and it can make some
significant contribution. Physically, this means the presence
of CR, i.e., the cylindrical wave diverging from the charge
trajectory. This pole contributes to the forced field under
condition 0 < z < vt0 + r cot χp, and to the free field under
condition 0 < z < r cot χp (we assume here that the imagi-
nary parts of ε2 and μ2 are negligible and, respectively, n2

and χp are real). However, it turns out that these contributions
mutually compensate each other so that, in the total field, the
pole contribution is present only in the region r cot χp < z <

vt0 + r cot χp (Fig. 3). This region is the area where CR exists.
However, it should be noted that, on the boundaries of this

region (z = r cot χp and z = vt0 + r cot χp), the saddle point
coincides with the pole and the asymptotic presented below
is incorrect. Note that a more precise (“uniform”) asymptotic
for the case of an infinite homogeneous medium is given in
our paper [21] (this asymptotic is valid in the vicinity of the
boundary z = vt0 + r cot χp).

Spherical waves emerging from the point where the charge
enters the medium 2 and from the region where the bunch
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FIG. 3. The area of Cherenkov radiation.

loses the charge are determined by the contribution of the
saddle point χ = χs = θ .

Omitting calculations, we present the final result for the
field asymptotic in medium 2. It can be written as

�E (2) = �E (I ) + �E (II ), �H (2) = �H (I ) + �H (II ). (41)

Here, the term with the index (I ) is the contribution of the sad-
dle point. In the spherical coordinates, it has only components
E (1)

θ and H (1)
ϕ :

E (I )
θω ≈

√
μ2

ε2
H (I )

ϕω ≈ q0

c

[
2π ik2

0n2

tan θ
C̃+

∣∣∣∣
χ=θ

−βμ2

2π
sin θ U2

∣∣∣∣
χ=θ

eiω(1−n2β cos θ )t0

]
eik2R

R
. (42)

The term with the index (II ) is the contribution of the pole. If
n2β < 1 then it is insignificant (exponentially decreases with
increasing in r). If n2β > 1 then it is a cylindrical wave of CR

with components⎧⎪⎪⎨
⎪⎪⎩

E (II )
rω

E (II )
zω

H (II )
ϕω

⎫⎪⎪⎬
⎪⎪⎭ = q0

c
√

2πs2r

⎧⎪⎪⎨
⎪⎪⎩

s2/(βε2)

−cs2
2/(ε2ω)

s2

⎫⎪⎪⎬
⎪⎪⎭

× exp (iωz/v + is2r − iπ/4). (43)

This radiation exists only in the region r cot χp < z < vt0 +
r cot χp (Fig. 3). Note that, in this region, the cylindrical wave
(43), which decreases proportionally to r−1/2, dominates the
spherical wave, which decreases proportionally to R−1.

It should be noted that the conditions |k2R| � 1 and R �
vt0 are necessary but not sufficient for the applicability of
the asymptotic (41)–(43). In addition, it is necessary that the
saddle point is sufficiently far from the branch point χb =
arcsin(n1/n2) and from the pole χp = arccos[(n2β )−1].

The first of these conditions reduces to the inequality
|k2R(θ − χb)| � 1. This means that the observation angle θ

is not close to the limiting angle of the total internal reflection
χb.

The second condition is essential only in the case of
|n2|β > 1 (i.e., in the presence of Cherenkov radiation), when
the pole χp is real or almost real. This condition is reduced to
the requirement that the observation point is not close to the
boundaries of the region of existence of the cylindrical wave:
|k2(z tan χp − r)| � 1 and |k2[(z − vt0) tan χp − r]| � 1.

The spectral-angular density of energy of the spherical
wave (42) is determined by the expression

d2W

d�dω
= cR2

∣∣∣√ε2/μ2

∣∣∣∣∣∣E (2)
θω

∣∣∣2
= q2

0

4π2c
|F |2 (44)

where

F = 2ε
3/4
2 μ

1/4
2

(ε2N12 + ε1n2 cos θ ) tan θ

[
− (n2

1β
2 − 1)N12 + n2

2β sin2 θ

1 − β2N2
12

+ (n2
2β

2 − 1)N12 + ε1μ2β sin2 θ

1 − β2n2
2 cos2 θ

]

− βε
1/4
2 μ

3/4
2 sin θ

(
W−e−iωt0n2β cos θ − W+

ε2N12 − ε1n2 cos θ

ε2N12 + ε1n2 cos θ
eiωt0n2β cos θ

)
eiωt0 . (45)

Here

N12 =
√

n2
1 − n2

2 sin2 θ, W± = (1 ± n2β cos θ )−1[1 − iωτ (1 ± n2β cos θ )]−1.

For nonrelativistic motion of charge, simplifying (44), one can obtain the following approximate expression:

F = βε
7/4
2 μ

5/4
2 sin(2θ )

ε2N12 + ε1n2 cos θ

ε1 − ε2

ε2
− βε

1/4
2 μ

3/4
2 sin θ

1 − iωτ

(
e−iωt0n2β cos θ − ε2N12 − ε1n2 cos θ

ε2N12 + ε1n2 cos θ
eiωt0n2β cos θ

)
eiωt0 . (46)

VII. NUMERICAL RESULTS AND DISCUSSION

The results of calculation of the spectral-angular density of
the spherical wave energy depending on the angle θ̃ = π − θ

(see Fig. 1) for various values of β, ωt0, and ωτ are shown
in Figs. 4–6. The first medium (the region 0 < θ̃ < 90◦) is
assumed to be vacuum, and the second medium (the re-
gion 90◦ < θ̃ < 180◦) is characterized by the real constants
ε2 = 1.5 and μ2 = 1.

Recall that, in accordance with (38), in the unbounded
homogeneous medium, radiation is emitted mainly “forward”
[21]. The maximum of the angular density is achieved at
some acute angle with respect to the motion direction. As
the velocity β increases, the maximum increases and tends
to θ = 0 if β → 1.

In the presence of the interface, the angular dependence
changes dramatically. First, we note that the radiation in the
second medium is more intense than in the first one (in
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Figs. 4–6, the different scales on the vertical axis are used for
regions 1 and 2). This difference increases with increasing the
velocity. For ultrarelativistic bunches, the difference between
the main maxima in regions 1 and 2 can be several orders of
magnitude (Fig. 6).

Note that the radiation does not propagate along the z axis
and along the interface (θ = 90◦). The last fact is explained
by the fact that the wave falls on the boundary at the “sliding”
angle; in this case, the reflection coefficient is equal to −1,
and the total field is equal to zero.

Let us consider in detail Fig. 4, illustrating the case of the
relatively low velocity (β = 0.1). If the process of the bunch
decay starts exactly at the interface (t0 = 0), then both in the
first (vacuumlike) region and in the second region there is only
one maximum (Fig. 4, top). Both maxima have a relatively
large width and decrease with increasing the bunch decay time
τ . The latter fact is explained by the fact that the number of
particles stopping per unit time decreases, which leads to the
decrease of the corresponding part of the spherical wave.

Note that, in the region 90◦ < θ̃ < 180◦, the maximum has
the character of a “fracture.” It is observed when the angle θ

is equal to the limiting angle of the total internal reflection:
θ = χb = arcsin(n1/n2) ≈ 55◦. This fracture is related to the
fact that, at such an angle, the saddle point of the integrand
coincides with its branch point χb (see Sec. VI). The obtained
asymptotic is not valid at |θ − χb| � (k2R)−1, but, due to the
condition k2R � 1, this angular region is insignificant.

FIG. 4. Dependence of F on the angle θ̃ = θ − π in the case
β = 0.1. Other parameters: ε1 = μ1 = μ2 = 1, ε2 = 1.5; ωτ = 0
(blue solid curve), ωτ = 1 (red dashed curve), ωτ = 50 (black dotted
curve); for the top plot ωt0 = 0; for the bottom plot ωt0 = 100.

If the process of the bunch decay begins at some significant
distance from the interface, then the complex dependency
consisting from several maxima and minima can take place
in both regions (Fig. 4, bottom). This effect is explained by
the fact that the waves emitted from the different zones are
added from the point of entry of the charge into medium 2 and
from the zone of the bunch decay (in the second medium there
is also the wave reflected from the boundary). This effect is
observed if the wave amplitudes are comparable in magnitude.
If the bunch decay is sufficiently slow, then the role of the
corresponding spherical wave is insignificant, and the effect
noted above disappears (the dotted curves).

It should be underlined that the radiation under study dif-
fers radically from the usual transition radiation of a charge
flying into the medium and not changing in any way. The
angular dependencies for such radiation are close to the dotted
black curves in Fig. 4 since, for them, the charge decay time τ

is very long, and the usual transition radiation plays the main
role. As we see, at t0 = 0 (the top plot in Fig. 4), with an
increase in τ , the radiation increases significantly, although
the form of the curves remains approximately the same. If
ωt0 = 100 (the bottom plot), then, with an increase in τ , the
angular dependence becomes much more complicated due to
the interference of waves radiated from different regions of
the bunch trajectory.

It should be also emphasized that the radiation in the
situation under consideration is radically different from the
radiation of the decreasing charge in the unbounded ho-
mogeneous medium: the angular dependencies for such

FIG. 5. The same as in Fig. 4 for β = 0.5.
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FIG. 6. The same as in Fig. 4 for β = 0.99.

radiation always have a simple form with a single maximum
([21], Fig. 3).

In the case of β = 0.5 (Fig. 5), the features noted above do
not change qualitatively. We note only that with an increase
in the velocity the general increase in the radiation energy
occurs, and the number of extremes at ωt0 � 1 increases also.

Figure 6 illustrates the case when the charge velocity is
larger than the wave velocity in the second medium (n2β > 1),
and therefore Cherenkov radiation is generated. It should be
emphasized that CR itself is not shown in these graphs. Its
field decreases proportionally to r−1/2, therefore it is much
larger than the field of spherical waves. However, it exists
only in the area r cot χp < z < vt0 + r cot χp, which is small
if R � vt0 (note that χp ≈ 34◦ for Fig. 6). The plots are
incorrect in this narrow angular region, since the saddle point
coincides with the pole at θ = χp (see Sec. VI).

In the case n2β > 1, the following features of the spherical
wave can be noted. First, it is much more intensive compared
to the case n2β < 1 which can be seen from comparison of
Fig. 6 with Figs. 4 and 5. In the vacuum region, the main
maximum shifts towards the smaller angles θ̃ with increasing
the velocity, and it is close to 0◦ at β ≈ 1. In the region
90◦ < θ̃ < 180◦, if the values ωt0 and/or ωτ are sufficiently
large, then there is a sharp maximum at the angle θ̃ = π − χp.

Thus, the transition from the “subluminal” (n2β < 1) regime
of the charge motion to the “superluminal” one (n2β > 1)
leads not only to the appearance of Cherenkov radiation, but
also to radical changes of the spherical wave properties.

VIII. CONCLUSION

We have studied the electromagnetic radiation of a charged
bunch of small size crossing the flat interface between
two media. It was assumed that the charge magnitude de-
creases exponentially starting from a certain time moment
after the charge enters the second medium. It was taken
into account that a filamentous trace consisting of immobile
charges is formed in the second medium. It was assumed that
Cherenkov radiation could be generated in the second medium
only.

We have obtained a general solution, which is the sum of
the forced field (the charge field in the unbounded medium)
and the free field occurring due to the influence of the in-
terface. An asymptotic study for the far-field zone has been
carried out. We have found the expressions for both the spher-
ical wave and the cylindrical wave generated in the second
medium at a sufficiently high charge velocity.

It should be emphasized that the angular dependencies for
spherical waves differ radically both from those occurring
in the case of an unbounded medium [21] and from corre-
sponding dependencies for ordinary transition radiation. The
spherical wave consists of two parts: the wave of transition
radiation and the wave resulting from the bunch decay and
formation of its trace. Depending on the distance from the
boundary to the region of the bunch decay, the time of the
decay, the bunch velocity, and other parameters, radiation
patterns of very different types are formed.

A series of computations has been performed for the case
when the charge flies from vacuum into the optically denser
medium. If the process of the bunch decay starts at the inter-
face, then the angular distribution of the radiation energy has
one maximum in each of two regions. In the second medium,
the radiation as a rule is more intensive than that in the vacuum
area, and this difference increases with increasing the charge
velocity. If the charge velocity exceeds the Cherenkov thresh-
old in the second medium, then, along with the appearance
of Cherenkov radiation, the properties of the spherical wave
change dramatically. In particular, the main maximum of the
angular distribution of the radiation energy strongly increases.
If the distance from the charge entry point to the region of the
bunch decay is sufficiently large, then a complicated interfer-
ence pattern with many extremes arises.
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