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System response analysis is a powerful method for analyzing linear time-invariant (LTI) systems. In this
work, we have demonstrated that a system response approach can also be applied to analyze the so-called linear
space-invariant (LSI) but time-varying problems, which represent a dual of the conventional LTI problems. In
this proposed approach, we perform a Fourier transform of the electric field distribution on the space coordinate,
rather than in time, and express it in the wave-number domain. Specifically, we express any input signal and
its corresponding output in the wave-number domain. Then, the transfer function for the LSI time-varying
system can be extracted as a one-time computation by evaluating the ratio of the output signal to the input
signal in the wave-number domain. Once the transfer function is extracted, the output response to any input with
an arbitrary temporal profile can be computed instantaneously. Furthermore, for a system with a complicated
temporal profile, the proposed method allows us to decompose it into several simpler subsystems that appear
sequentially in time. The transfer function of that complicated system can be expressed as the product of those
of the individual subsystems, such that it can be evaluated more efficiently.
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I. INTRODUCTION

As an emerging field, time-varying metamaterials have at-
tracted the attention of researchers over the past several years.
This is primarily because they provide an additional degree
of freedom to control electromagnetic (EM) wave propaga-
tion [1–6]. For example, there exists a class of problems
where EM waves propagate in an infinite and homogeneous
medium whose permittivity or permeability can change with
time. This topic was explored by Morganthaler in the 1950s
[7]. More recently, some researchers have introduced the
concept of a “temporal boundary” [8], which has been ex-
plored both theoretically and numerically. Applications of
temporal boundaries include temporal effective media [9],
temporal coatings [10,11], temporal aiming [12], polarization
conversion [13], energy pumping [14], photonic time crystals
[15,16], and so on [17–20]. We refer to this class of problems
as linear space-invariant (LSI) systems, which serve as a dual
of the conventional linear time-invariant (LTI) systems where
the material properties vary spatially.

In order to analyze LSI systems, researchers have pro-
posed several analytical formalisms, such as temporal transfer
matrix methods (TTMMs) [19,21] and d’Alembert’s formula
[22]. These methods rely on solving temporal boundary con-
ditions at the time instances when the material properties
change abruptly. If the medium’s permittivity is gradually
varying in time, these methods could be cumbersome. Other
researchers have proposed solutions to waves propagating
in a continuously changing media using the well-known
Wentzel-Kramers-Brillouin (WKB) method [23]. However,
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this technique is intrinsically approximate and may not be
accurate in many cases. Other researchers have developed
closed-form solutions to the wave equations for some special
cases of the materials system’s temporal profile [24]. How-
ever, to this day, a systematic solution strategy for general LSI
problems remains unavailable.

In light of the shortcomings of the above-mentioned the-
oretical works, in this paper, we propose a general analysis
method to determine the system response. By retrieving the
transfer function of the LSI system from only one set of test
inputs and the corresponding output signals (via simulation
or measurement), the response to any arbitrary input can
be efficiently determined. This transfer function computation
represents a one-time exercise that is performed using nu-
merical simulation tools or measurements. Once extracted,
the output response can be obtained in real time for any
arbitrary changes to the input profile, without requiring any
further simulations or measurements. The proposed method
can be especially useful whenever the detailed properties of
the structure are not known, or when we simply want to treat
the analyzed system as a black box. Section II introduces
the proposed system analysis method and presents the corre-
sponding design procedure. In Sec. III, we apply this approach
to several scenarios with different temporal material profiles.

II. FORMALISM

To demonstrate the design procedure, first, let us consider
a one-dimensional (1D) harmonic wave with an electric field
given by E (x, t ) = E0ei(kx−ωt+φ), where k is the wave number,
ω is the angular frequency, and φ is the phase constant. The
EM wave varies in both space and time, as illustrated in Fig. 1.
The electric field can be projected as a curve varying in time
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FIG. 1. Representation of an EM wave in the space-time domain.
To investigate conventional LTI systems, researchers usually capture
the field at specific locations xi, xo, which varies in time (red curves),
then transform it into the frequency domain. For LSI systems, we
propose to capture the field at specific times ti, to, which varies in
space, and then study its properties in the wave-number domain (the
subscripts i and o denote input and output respectively).

at a specific location (red), or it can be projected as a curve
varying in space at a specific time (black).

For conventional LTI problems, a Fourier transform is per-
formed on the time coordinate and the resultant relationship
is provided in Eq. (1). The input (at x = xi) and output (at
x = xo) curves can be transformed into the frequency domain
as Ei(ω) and Eo(ω), respectively. These parameters are related
to the system transfer function S(ω) in the frequency domain
by

Eo(ω) = S(ω)Ei(ω). (1)

On the other hand, in LSI systems, the spectral content of
the wave may be altered as it propagates in a time-varying
medium. Therefore, Eq. (1) becomes ill-defined because the
input at a certain frequency would not necessarily trigger a
response at the same frequency. However, the wave number in
such systems remains invariant. Therefore, it is instructive to
perform a Fourier transform of the electric fields on the spatial
coordinates:

E (k, t ) =
∫ ∞

−∞
E (x, t )e−2π ikxdx. (2)

Given a test input at t = ti (Eti ), the LSI system under in-
vestigation generates an output at t = to(Eto), and the transfer
function can be derived in a way similar to that of conventional
LTI systems [25]:

S(k) = Eto(k)

Eti(k)
. (3)

It is worthwhile to note that, in order to retrieve the system
transfer function in Eq. (3), only the input and output electric
field are needed. Therefore, by measuring these quantities, the
transfer function can be obtained even if the detailed proper-
ties of the structure are unknown. With the transfer function
S(k) computed, the output Eo(k) for any arbitrary input Ei(k)

can be efficiently calculated at t = to as

Eo(k) = S(k)Ei(k). (4)

It should be noted that the bandwidth of the input would
decide the effective wave-number range of the transfer func-
tion S(k). We refer to this range as the bandwidth of the
transfer function in the following discussion. Here we define
the bandwidth of the test input using the −3-dB points where
the wave energy is half of its maximal value. Importantly, the
transfer function calculated by Eq. (3) is valid only over this
wave-number range.

III. EXAMPLES

In order to prove the effectiveness of the proposed method,
we apply it to several LSI systems, and compare the results
with simulations for validation. The various steps of the entire
process are outlined in Fig. 2. First, we conduct a test process
(the first row with the blue background) to obtain the transfer
function (the second row with the orange background) using
Eq. (3). Next, we apply the transfer function to a different
input, which we refer to as the “application input.” Then the
output can be computed by using Eq. (4) (the third row with
the white background).

For better comparison, both the test input [Eti(x)] and ap-
plication input [Ei(x)] are set to be of the same form for all
examples considered here. In particular, the field is defined in
the spatial domain at ti = 0 using a modulated Gaussian pulse:

E (x) = −exp

[
−4π (x − x0)2

x2
n

]
cos[k0x], (5)

where x0 denotes the reference point, xn is a parameter that
determines the bandwidth, and k0 is the center wave number of
the modulated signal. In this paper, k0 is set to 1.05 × 107 1/m
(wavelength λ0 = 600 nm), which corresponds to a period
T0 = 4 fs in free space. To obtain a system response that is
valid over a broadband regime, we choose a relatively small
value of xn(3.33λ0). The test input and its Fourier transform
are shown in Figs. 2(a) and 2(b), respectively, where the green
block indicates the corresponding effective bandwidth.

As for the application input, it can be arbitrarily cho-
sen in the ideal case. However, to ensure that the input lies
inside the effective bandwidth of the transfer function, we
used the modulated Gaussian pulse defined in Eq. (5), but
with a narrower bandwidth (xn = 16.67λ0). The application
input and its Fourier transform are shown in Figs. 2(h) and
2(i) respectively. In practice, the Fourier transform in Eq. (2)
is calculated using a discrete Fourier transform (DFT). So,
Eq. (2) may be rewritten in terms of a DFT expression as

E (k, t ) =
N−1∑
n=0

E (x, t )e−2π ikn�x/N , (6)

where x = n�x, and �x is the mesh element size.

A. A single temporal boundary

First, we investigate a simple system where there is only
a single temporal boundary, denoted as S1. The temporal
boundary is set at t1 = 60T0 when the relative permittivity
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FIG. 2. The system response analysis considered in Sec. III A 1. A temporal system with a single temporal boundary (the FW and BW
terms are decoupled). The magnitude of the electric field is normalized to that of the input. This figure shows the test process (blue background)
to obtain the transfer function (orange background) and the application to a different input (white background). (a) The test input in the spatial
and (b) wave-number domains, where the bandwidth of the input is indicated by a green block. (c) The output corresponding to a test input in
the spatial and (d) wave-number domains. (e) The temporal profile of the permittivity. (f) The magnitude and (g) phase of the retrieved transfer
function. The application input in the (h) spatial and (i) wave-number domains. (j) The phase and (k) the normalized magnitude of the output
calculated using the proposed method and FDTD simulations.

εr of the medium changes abruptly from 1 to 4, as shown
in Fig. 2(e). The output field is captured at a time to = 90T0

(Eto), which can be computed using an finite-difference time-
domain (FDTD) method as depicted in Fig. 2(c). As can be
seen, the output curve is composed of a forward (FW) and a
backward (BW) term, which propagate in opposite directions.
We studied two different subcases depending on whether the
FW and BW terms are considered separately or together.

1. FW and BW terms decoupled

After decoupling Eto into FW (Eto− f w) and BW (Eto−bw)
terms, we evaluate their Fourier transforms in the wave-
number domain, which are shown in Fig. 2(d). Applying
Eq. (3), the transfer function can be calculated as S f w(k) =
Eto− f w(k)/Eti(k) and Sbw(k) = Eto−bw(k)/Eti(k) for the FW
and BW terms, respectively. The magnitudes and phases of

S f w(k) and Sbw(k) are plotted in Figs. 2(f) and 2(g) respec-
tively. It can be observed that their magnitudes are constant
over the entire bandwidth. This is as expected since the dis-
persion of the medium is not considered. Moreover, their
magnitudes are numerically equal to the reflection and trans-
mission coefficients, which match well with the theoretical
results [7,8].

As for the phase plot shown in Fig. 2(g), we know from
Eq. (3) that the phase of the transfer function corresponds to
the phase difference between the output and input. For the
FW term, the phase is identical to that of the input, therefore,
∠S f w(k) = 0. On the other hand, as shown in Fig. 2(c), at
time to, the BW term maintains a constant spatial distance �x
with respect to the FW term, which leads to a phase difference
between the FW and BW terms that can be represented as

ϕ(k) = k�x. (7)
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FIG. 3. System response analysis for example considered in
Sec. III A 2. A single temporal boundary with the FW and BW terms
considered together. The magnitude of the electric field is normalized
to that of the input. The temporal profile, as well as ti and to, is the
same as used in Sec. III A 1 [Fig. 2(e)]. (a) Magnitude of the test
input and total output in the wave-number domain. (b) Magnitude of
the transfer function S1(k). (c) Magnitude and (d) phase of the total
output corresponding to the application input determined using the
proposed method and FDTD simulations. Notice that the application
input is normalized.

Therefore, the phase difference between the BW term and
the input is also k dependent [Eq. (7)], which leads to the
oscillations in ∠Sbw(k) [black curve in Fig. 2(g)].

Once the transfer function is extracted, we now excite this
LSI system with an arbitrary application input and compute
its output using the retrieved transfer function. The corre-
sponding Fourier transform Ei(k) is shown in Fig. 2(i). By
multiplying Ei(k) with the obtained transfer functions S f w(k)
and Sbw(k), the output in the wave-number domain Eo(k)
can be computed. The associated phases and magnitudes are
plotted in Figs. 2(j) and 2(k) respectively. The results from
the theory agree well with the simulations within the effective
bandwidth of the transfer function.

2. FW and BW terms coupled

In some scenarios, if �x is comparable to or smaller than
the pulse length, then the FW and the BW terms of the
output may overlap in space and cannot be decoupled eas-
ily. Therefore, it is instructive to investigate the “total” test
output by adding the FW and BW terms in Fig. 2(c). The
Fourier transform of the total output and test input is shown
in Fig. 3(a). Similarly, the transfer function can be obtained
by Eq. (3), whose magnitude is plotted in Fig. 3(b). The
plot reveals significant ripples because the phase difference
between the FW and BW terms is k dependent, as explained
above. Therefore, this phase difference leads to the oscillatory
features in the curves of both the test output [Fig. 3(a)] and
the transfer function [Fig. 3(b)].

Next, we utilize this transfer function together with the ap-
plication input. Figures 3(c) and 3(d) compare the magnitude

FIG. 4. System response analysis for example considered in
Sec. III B. Medium with gradually changing permittivity. The mag-
nitude of the electric field is normalized to that of the input. (a) The
temporal profile of the permittivity. (b) The transfer function. (c) The
magnitude and (d) phase of the output determined using the proposed
method and FDTD simulations. Notice that the application input is
normalized.

and phase of the output obtained using the proposed method as
compared against FDTD simulations. The results demonstrate
good agreement within the effective bandwidth of the transfer
function.

B. Gradually changing material properties

It is worth mentioning that this method is not limited
to temporal boundary problems, but also works for systems
where the material properties (such as permittivity) change
gradually. The temporal system under investigation here, de-
noted as S2, has the temporal permittivity profile shown in
Fig. 4(a). The output field is captured at t0 = 50T0. Over-
all, a gradually changing permittivity tends to produce very
small BW terms when compared to the temporal boundary
cases. Therefore, the curve of the transfer function is much
smoother within the effective bandwidth, as seen in Fig. 4(b).
The quantity |S(k)| is nearly constant within the effective
bandwidth, with a value around |S(k0)| = 0.84. This makes
sense physically because the medium’s permittivity is higher
at to than it is at ti. To keep the D field constant in time, the
magnitude of the E field must necessarily decrease [Fig. 3(c)].
One interesting observation is that, although there is nearly no
reflection, S(k0) is smaller than unity. This does not violate
conservation of energy because time-varying media require
an energy exchange with external sources [11,14].

At this point in the process, we again employ the ap-
plication input together with the extracted transfer function.
The calculated output correlates well with that obtained from
the FDTD simulations, as compared in Figs. 4(c) and 4(d).
However, some differences can still be observed because of
numerical error. In general, adopting a finer mesh or using
a higher order basis, namely h or p refinement, will lead to
greater accuracy for the numerical simulation [26].
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FIG. 5. System response analysis of the example considered in
Sec. III C. A temporally cascaded system. The magnitude of the
electric field is normalized to that of the input. (a) The permittivity
profile of the system which is decomposed into two subsystems.
(b) The total transfer function calculated by multiplying those of
the two subsystems. (c) The amplitude and (d) phase of the output
determined using the proposed method and FDTD simulations.

C. Cascading systems

One of the biggest advantages of the proposed approach is
that it can be easily generalized to cascading systems. If N
subsystems are “cascaded” (i.e., they appear in sequence in
time), the total system response can be expressed as

Stotal(k) =
N∏

i=1

Si(k), (8)

where Si(k) is the transfer function of the ith subsystem. It
should be noted that in Eq. (8), it is assumed that the reflec-
tion of each subsystem can be ignored. As an example, we
consider a system composed of two cascaded subsystems: S1
and S2, which are the same as those considered in Secs. III A
and III B, respectively. The permittivity profile of the entire
system is depicted in Fig. 5(a). Its transfer function Stotal(k)
is calculated as S1(k) × S2(k) which is plotted in Fig. 5(b).
Figures 5(c) and 5(d) compare the magnitudes and phases
of the output determined from the proposed method and
FDTD simulations, respectively. The results agree well over
the effective bandwidth, where the small discrepancies are
due to numerical errors in the FDTD method. This example
demonstrates that the response of a complex temporal system
can be investigated by decomposing it into multiple relatively
simpler subsystems. Comparing the examples considered in
Secs. III A 2, III B, and III C [Figs. 3(b), 4(b), and 5(b)], we
can observe that it is the abrupt change of permittivity that led
to the fluctuations in the curve of |S(k)|, while the gradual
change of permittivity only modulates its “overall” magni-
tude.

IV. CONCLUSION

In this paper, we propose a general system response anal-
ysis technique to address LSI problems in the wave-number
domain. The transfer function of an LSI system can be re-
trieved from one set of test procedures, either numerically
or experimentally. Once the transfer function is determined,
the output due to any arbitrary input can be easily found.
The validity of the formalism is guaranteed by the fact that
wave number, instead of frequency, is constant in LSI sys-
tems. Importantly, the testing process can be conducted either
numerically, based on simulations, or experimentally by uti-
lizing measurements. Compared to other similar tools such as
TTMMs, this method does not rely on a preknowledge of the
detailed property of the structure and is ideally suited to black-
box problems. This significantly broadens the capabilities of
current theoretical approaches that have been reported in the
literature. Furthermore, the transfer function of a cascaded
structure can be derived simply by multiplying those of each
subsystem. This aids in the analysis of complicated temporal
systems by allowing them to be decomposed into a series
of simpler ones. To this end, our systematic methodology is
expected to greatly facilitate future research on LSI systems.
Moreover, it can serve as a powerful tool for the analysis of
all LSI problems, analogous to the well-established frequency
domain techniques for their LTI counterparts.

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the
authors upon reasonable request.
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APPENDIX: SUPPLEMENTAL FIGURES FOR CASES
CONSIDERED IN SEC. III

Figure 6 shows a supplemental figure of a single temporal
boundary (FW and BW decoupled), Fig. 7 shows a supple-
mental figure of gradually changing material properties, and
Fig. 8 shows a supplemental figure of a cascading system.

FIG. 6. (a) The output of the application process in the spatial
domain [note that the corresponding input is shown in Fig. 2(h), and
the Fourier transform of this plot is provided in Fig. 2(k)]. (b) The
phase of the backward wave (BW) determined using the proposed
method and FDTD simulations [Fig. 2(j) in the main text shows the
phase of the forward (FW) wave]. The magnitude of the electric field
is normalized to that of the input.
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FIG. 7. The output of the (a) test and (b) application process in
the spatial domain. Comparing the test output in Fig. S2(a) and the
test input in Fig. 2(a), it can be seen that this system is reflectionless.
Notice that the Fourier transform of Fig. S2(b) is actually the result
shown in Fig. 4(c). The magnitude of the electric field is normalized
to that of the input.

FIG. 8. The output of the application process in the spatial do-
main. Note that there is no test process here [compared to the case
shown in Fig. S2(a)]. This is because the transfer function is cal-
culated by multiplying those of the two subsystems [Eq. (6) in the
main text], rather than retrieved by simulation. The magnitude of the
electric field is normalized to that of the input.
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