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We give theoretical insight into the critical problem of a modified cavity mode of an open resonator that is
subject to a perturbation outside its cavity region. We utilize the framework of quasinormal modes (QNMs),
which are the natural mode solutions to the open boundary problem with complex eigenfrequencies. This
requires a non-Hermitian mode theory, typically using just a few dominant QNMs for resonant cavities,
which are important for solving a wide range of problems in classical and quantum optics, including cavity
quantum electrodynamics. We first highlight a fundamental problem with currently adopted formulas using QNM
perturbation theory, when perturbations are added outside the resonator structure and present a potential step for
solving this problem, connected to a regularization of the QNMs. We show several calculations of the QNMs
and regularized QNM theory for simple one-dimensional cavities as well as a practical three-dimensional cavity
structure. We first concentrate on the illustrative case of a one-dimensional dielectric barrier, where analytical
QNM solutions are possible. We study the change of the mode frequency as a function of distance between
the cavity and another smaller barrier structure (forming the outside perturbation). The results obtained from
a few QNM expansion are also compared with exact analytical solutions from a transfer matrix approach.
We show explicitly how regularization prevents a problematic spatial divergence for QNM perturbations in
the far-field region, though eventually higher-order effects and multimodes can also play a role in the full
scattering solution, and retaining a pure discrete QNM picture becomes questionable in such situations since
the input-output coupling ultimately involves reservoir modes. To investigate a more practical cavity example,
we also show results for a full three-dimensional plasmonic resonator of arbitrary shape and complex dispersion
and loss, which again displays the divergent nature of the first-order mode change predicted from regular QNM
perturbation theory, and an exponentially damped behavior from our regularized QNM theory.
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I. INTRODUCTION

Perturbation theory of open resonators is an important
topic in quantum and classical optics and has a variety of ap-
plications, such as the detection and sensing in the vicinity of
a scattering object, including plasmonic or dielectric cavities
[1–4]. The introduction of a perturbation into a resonator envi-
ronment, e.g., a metallic tip, and its change of the permittivity
values leads to a modification of the resonator’s eigenmodes
and frequencies. Alternative ways of perturbing the system
include the deformation of the scattering object or the overall
change of a material.

There are several theoretical techniques to describe these
changes in the cavity mode properties, which are usually
based on so-called modes of the universe [5–8], i.e., solu-
tions of the Helmholtz equation with vanishing boundary
conditions at |r| → ∞; or, in an approximate model, using
so-called normal modes (NMs), which are solutions of the
Helmholtz equation with fixed boundary conditions of the
associated closed resonator [9]. While the former case in-
volves a continuous set of normal modes, which are typically
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not tractable in a practical numerical simulation, the latter
approach is only reliable for very high-quality factors (Q),
namely, small radiation leakage of the resonators. Indeed,
the cavity NM approach for cavities is only rigorous in the
case of no loss since the eigenfrequencies are real, and is
thus generally ambiguous for open cavities, even for high-Q
(quality factor) resonators.

In contrast to the high-Q cavity normal mode, the usual
modes-of-the-universe approaches [5–8] deal with simple di-
electrics embedded in a much larger cavity system, where the
continuous normal modes can be analytically computed. All
modes vanish at the edge of the larger cavity system, and
the problem is Hermitian. Unfortunately, such an approach
is not practical for describing realistic three-dimensional (3D)
resonators, where one computes the discrete dissipative cavity
modes of the open resonator, with open boundary conditions,
termed “quasinormal modes” (QNMs). Computation of the
QNMs also enables one to easily include material loss and
dispersion into the cavity region. In either case (modes of the
universe or QNMs), one also must deal with the outside modes
for a general solution, especially for field quantization. This
was already made clear decades ago, e.g., in Ref. [6], where
they write “Clearly, as a first step, one must relate the field
operators inside and outside the cavity.”
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FIG. 1. Schematic of a resonator with permittivity εc(r, ω), per-
turbed by a small source with permittivity difference �εp outside of
the cavity region. The unperturbed cavity supports a set of QNMs
with eigenfunctions f̃ (0)

μ (r) and eigenwave numbers k̃(0)
μ = ω̃(0)

μ /c,
which form a complete representation of the field inside the cavity
region.

A rigorous open resonator method not only allows one to
investigate a change in the oscillation frequency of the cavity
mode, but also a change of its spectral linewidth and temporal
decay, which is not possible using a NM description (real
frequencies). The general eigensolutions to this open cavity
problem are QNMs [4,10–15], which have complex mode
frequencies. Moreover, the QNMs can also be formulated
for general dispersive and absorptive cavities, where simpler
approaches, like the modes-of-the-universe description (in its
usual form), cannot be used anymore [16].

Various QNM and open-cavity modes techniques have
been used quite extensively in recent years, presenting a pow-
erful and successful description of light-matter interactions
close or within the resonator object [4,13,14,17–21]. Such
approaches also include a generalization of well-known per-
turbation theories, which have been typically described on
the basis of NMs. In particular, this allows one to describe
perturbation inside an open cavity [22,23] or even close to an
open-cavity region for near-field optics in both linear [24,25]
and nonlinear regimes [26].

However, the spatial divergence of QNMs prevents one to
describing phenomena that happen far outside the resonator
region, as depicted in Fig. 1 (which is, of course, also problem
dependent). The divergence stems from the open boundary
conditions in combination with complex eigenfrequencies
with a negative imaginary part (assuming lossy media [27]).
Importantly, this is not just a particular problem of QNMs,
but is an intrinsic property of all open-cavity systems that are
not treated phenomenologically as closed systems with dissi-
pation added ad hoc. Apart from some very brief discussions
about this potential problem of using QNMs for perturbation
theory integrals, to our knowledge this “problem” has not
been addressed in the literature. However, since it is the most
natural way of using cavity-mode theory, it is clearly a very
important problem to try and solve.

While much progress has been made into rigorously
fixing the divergent behavior of QNMs for formulating a
well-defined Purcell factor [28,29] (i.e., the enhanced or
suppressed spontaneous emission rate of a dipole emitter),
general far-field quantities [30], and a rigorous QNM quan-
tization method [31–33]; not much has been done in terms of
a generalized perturbation theory. Similar to using a closed-
cavity approach, QNM theories also start to become invalid
in this regime, and are generally ambiguous for any perturba-
tion outside the cavity structure. In a more general view, the

same conceptional problem applies to practical cavity circuits,
such as waveguide-cavity systems, where two well-separated
open and lossy resonators may interact through a waveguide
structure (involving the propagating waveguide modes). As
recognized and discussed recently [34], this is a promising
structure for setting up a quantum network of several quantum
emitters attached to the cavities [35].

In this work, we highlight general problems with QNM
perturbation theory and apply mode regularization methods to
fix the divergent behavior as a function of distance. Although
we concentrate on two specific examples in this work, the
regularization methods are completely general and they have
already been successfully applied in other light-matter inter-
action problems, such as the calculation of a Purcell factor
for an emitter-cavity system with a large separation (i.e., the
dipole is in the region where the QNM starts to spatially
diverge) [28].

In Sec. II, we introduce some background QNM theory,
and discuss a Green function expansion in terms of QNMs
and regularized QNMs. In Sec. IV, we present the perturba-
tion theory for QNMs and highlight the inherent modeling
problem with adding perturbations outside the cavity region,
which renders current perturbation approaches ambiguous in
general. In Sec. V, we present several applications for the
one-dimensional case, including the calculation of the local
density of states (LDOS) for a single-barrier cavity as well as
the calculation of eigenfrequencies of a double-barrier cavity
system, using an exact transfer matrix approach and a first-
order perturbation theory. Additionally, we investigate the
eigenfrequencies of a fully three-dimensional cavity perturbed
by a small spherical particle. In Sec. VI, we then discuss the
whole problem from different views, and also elaborate on a
possible alternative representation of the QNM Green func-
tion (which is nondiagonal in the QNM expansion). Finally,
in Sec. VII, we give our conclusions.

In addition, we present several Appendixes, including the
equivalence of different regularized QNM approaches, the
derivation of two Green identities, and details of the contour
integration in connection with a nondiagonal form of a QNM
Green function.

II. QUASINORMAL-MODE THEORY

In this section, we present some important background
theory and properties of QNMs, formulated for QNM pertur-
bation theory.

We first consider the isolated open-cavity structure em-
bedded in a lossless background. The unperturbed QNM
eigenfunctions f̃ (0)

μ are solutions to the Helmholtz equation

{∇ × ∇ × −[
k̃(0)
μ

]2
εc(r, ω̃(0)

μ )
}
f̃ (0)
μ (r) = 0, (1)

together with open boundary conditions, i.e., the Silver-
Müller radiation conditions

r
|r| × ∇ × f̃ (0)

μ (r) → inBk̃(0)
μ f̃ (0)

μ (r), (2)

which are asymptotic relations for |r| → ∞. Here, k̃(0)
μ =

ω̃(0)
μ /c, where c is the vacuum speed of light, and ω̃(0)

μ =
ω(0)

μ − iγ (0)
μ is the unperturbed QNM eigenfrequency, which
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is a complex number due to the open boundary conditions. In
the following, we use the term “eigenfrequency” for k̃μ and
ω̃μ interchangeably (implicitly setting c = 1).

The associated QNM resonance has a real part of the fre-
quency ω(0)

μ and a half-width at half-maximum γ (0)
μ (which

comes from the imaginary part of the eigenfrequency, where
γ (0)

μ = ω(0)
μ /[2Q(0)

μ ]). Furthermore, εc(r, ω̃(0)
μ ) is the analyti-

cal continuation of the complex-valued permittivity function
εc(r, ω), that describes a spatial-inhomogeneous and (possi-
bly) dispersive resonator geometry embedded in a background
medium, with constant and real-valued refractive index nB, as
visualized in Fig. 1 (shown without an additional perturba-
tion).

When properly normalized, the QNMs can be used as a
basis to expand the transverse part of the Green function
G(r, r0, ω), which describes the light propagation from a
source point r0 to r, and is formally defined via the Helmholtz
equation[∇ × ∇ × −k2

0εc(r, ω)
]
G(r, r0, ω) = k2

0δ(r − r0), (3)

together with suitable radiation conditions, namely, Eq. (2),
for real-valued frequencies ω and k0 = ω/c. The resulting
QNM expanded form of the transverse part of the Green
function G⊥(r, r0, ω) for spatial positions inside the resonator
geometry is

G⊥(r, r0, ω) =
∑

μ

A(0)
μ (ω)f̃ (0)

μ (r)f̃ (0)
μ (r0), (4)

with A(0)
μ (ω) = ω/[2(ω̃(0)

μ − ω)], and in general, the sum runs
over all μ = 0,±1,±2, . . . with the imposed ordering 0 <

ω1 < ω2 < · · · and symmetry properties f̃ (0)
−μ = f̃ (0)∗

μ , as well

as ω̃
(0)
−μ = −ω̃(0)∗

μ . We note that although the full set of modes
including the so-called “zero mode” [36] (μ = 0) are required
for general completeness of QNMs, only a few QNMs with
μ > 0 are needed in practical situations of classical and quan-
tum optics. Indeed, this is what makes a QNM approach so
powerful.

One of the drastic consequences of the open boundary
conditions is that the QNMs spatially diverge for far-field
positions, and completeness can only be achieved within the
resonator region. Strictly speaking, this is correct only for res-
onator embedded in a spatial-homogeneous background and
completeness was only proven explicitly for certain resonator
types, e.g., of spherical shape or one-dimensional cavities
[11,16,37]. In general, for the common case of resonators
lying on substrates, branch cuts exist and the QNM basis is
incomplete (cf. Refs. [4,15] and references therein). However,
completeness is restored in advanced theories using additional
numerical modes (see Refs. [38,39], for instance). Since com-
pleteness is required for an eigenfunction expansion of the
Green function, Eq. (4) must be adapted for positions in the
background region. Otherwise, this would prevent one from
using the QNM expansion as a basis to calculate any spatial
overlap outside of the cavity region, which is necessary to
calculate frequency changes for perturbations located in the
background region.

It is noteworthy that, for the case of purely amplifying
media and where gain overcompensates the radiative loss, the
imaginary part of the QNM eigenfrequencies would change

the sign of γμ. As a consequence, the resulting gain QNMs
[27] would be spatially damped in the far field, and the di-
vergence would instead appear in the time domain. However,
treating such cases on the level of linear amplification would
not be consistent with the causality relation or (in frequency
space) the Kramers-Kronig relations of G(r, r0, ω), which
is necessary to formulate a QNM quantization formalism
[40,41].

III. QUASINORMAL-MODE REGULARIZATION

As an option to circumvent or resolve this QNM divergence
problem, one can introduce a regularization procedure of the
QNMs by exploiting an integral form of the Green function
or the field equivalence principle, where the former is related
to the well-known (classical) Dyson equation. Such regular-
ization not only prevents unphysical behavior of important
classical quantities, such as an increasing enhancement of the
spontaneous emission in the far field of a metallic antenna
[28,29], but it is also required to properly predict the radiative
dissipation in a quantized QNM theory [31–33].

It is important to note that this regularization is not just a
heuristic fix for diverging QNMs (which is sometimes mis-
understood in the literature); the regularized QNM functions
we use below are rigorously defined using only fundamen-
tal Green’s identities as well as the completeness of the
QNMs inside the resonator volume (or at the resonator bound-
ary). These QNM functions carry over the characteristics of
the (infinitely extended) background medium through a real
continuous frequency ω for each discrete QNM, which is
physically intuitive and in line with system-bath and input-
output theories, where they can be interpreted as reservoir
modes. We elaborate more on that point later. Indeed, not
using these regularized QNMs would be problematic for a
certain class of problems if one wants to keep the theory
within the framework of a few mode description, a concept
already well known in open-system quantum optics.

Next, we elaborate and give further insights on the different
QNM regularization procedures. All the methods exploit the
assumed completeness of the QNMs, and as a consequence of
the this completeness, the full (transverse) electric field E(r, t )
(of the unperturbed structure) at position r in the cavity region
can be represented as

E(r, t ) =
∑

μ

a(0)
μ (t )f̃ (0)

μ (r), (5)

where a(0)
μ (t ) = e−iω̃(0)

μ t a(0)
μ (t = 0) is the harmonic solution to

the temporal part of the wave equations.
First, we can define a regularized QNM by formulating

the analog of Eq. (1) for the Fourier transform of E(r, t ),
namely, using E (r, ω) in a scattering problem. This leads to
the following solution:

E (R, ω) = Ehom(R, ω)
(6)

+
∫

d3r �εc(r, ω)GB(R, r, ω) · E (r, ω),

where GB(R, r, ω) is the background Green function, ob-
tained from the solution of Eq. (3) with εc(r, ω) → n2

B, and
�εc(r, ω) = εc(r, ω) − n2

B restricts the spatial integral to the
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cavity volume. Since we demand consistency with the Silver-
Müller radiations conditions, the only possible homogeneous
solution is Ehom(R, ω) = 0.

Using the completeness relation of the QNMs inside the
resonator volume, we can rewrite Eq. (6) as

E (R, ω) =
∑

μ

a(0)
μ (ω)F̃(0)

μ (R, ω), (7)

where

F̃(0)
μ (R, ω) =

∫
d3r �εc(r, ω)GB(R, r, ω) · f̃ (0)

μ (r) (8)

is a function of real frequency ω. The QNM eigenfunctions
f̃ (0)
μ (r) are fundamentally connected to the above regularized

QNM functions via analytical continuation of ω into the com-
plex area, i.e., F̃(0)

μ (r, ω̃(0)
μ ) = f̃ (0)

μ (r); consequently, we also
refer to F̃μ as a “mode,” but one which is now regularized.
Note that in the one-dimensional case, for a cavity with
boundaries x = a, b, there is an interesting relation between
F̃μ(x > b, ωμ) and F̃μ(x > b, ω̃μ), namely,

F̃μ(x, ωμ) = e−γμnB(x−b)/c F̃μ(x, ω̃μ), (9)

which will be discussed in more detail in Sec. V.
In the more general three-dimensional case, a similar rela-

tion only exists for |r| → ∞, through

F̃μ(r, ωμ) → e−γμnB|r|/cF̃μ(r, ω̃μ), (10)

which is still an approximate relation since F̃μ(r, ω) contains
additional ω-dependent terms, that are not part of the expo-
nential function. If such a relation would exist for all positions
outside the resonator, one could significantly improve the
numerical calculations, as one would only need the QNM for
outside positions multiplied by e−γμnB|r|/c.

Exploiting a form of Green’s theorem, together with the
Helmholtz equation of E (r, ω) and GB(R, r, ω), one can find
an alternative expression for the Fourier transform E (R, ω)
outside the resonator region (cf. Appendix A for details):

E (R, ω) =
∑

μ

a(0)
μ (ω)F̃′(0)

μ (R, ω), (11)

with

F̃′(0)
μ (R, ω) = c2

ω2

∫
S ′

dAsGB(R, s, ω) · [n × ∇ × f̃ (0)
μ (s)

]

− c2

ω2

∫
S ′

dAs[n × ∇ × GB(s, R, ω)]t · f̃ (0)
μ (s),

(12)

where S ′ is a surface that surrounds the scattering volume
defined by �εc(r, ω), R is located outside of S ′ and the
superscript “t” denotes the transpose. We note that an implicit
condition for this form assumes that the QNMs are a valid
representation for the electric field at S ′, and thus one is
usually limited to surfaces very close to the scattering volume.
We further note that this result can also be obtained via the
field equivalence principle [42], or similarly by a near-field to
far-field transformation technique [33].

Furthermore, choosing S ′ as the surface of the scattering
volume leads to the equivalence of Eqs. (11) and (7), as
shown in Appendix A. However, these representations are not

identical in a few-QNM approximation since different parts
of the QNM set will contribute differently to the overall com-
pleteness at S ′ and in V (scattering volume). Nevertheless,
as shown in Ref. [33], both regularization methods behave
similarly for far-field positions, i.e., for |R| � λ(0)

μ , where
λ(0)

μ = 2πc/(nBω(0)
μ ) is the associated wavelength of the un-

perturbed QNM.
We emphasize that while these techniques are well known

in electromagnetic theories involving scattering sources, they
do not follow a “mode” solution, which solves the source-free
problem. Thus, mixing these concepts is a highly nontrivial
step, which is for instance also required in quantum mode
theories (such as open-system cavity quantum electrodynam-
ics), where the decay and dissipation is modeled through a
reservoir with continuous degrees of freedom. These degrees
of freedom are precisely captured by ω in F̃μ(r, ω).

IV. PERTURBATION THEORY OF OPEN RESONATORS

In Sec. II, we discussed the unperturbed problem with
a single cavity supporting a set of QNMs with eigenfunc-
tions and eigenfrequencies {f̃ (0)

μ , ω̃(0)
μ }. When adding another

scattering object with volume V , yielding the permittivity
εp(r, ω) = εB + �εp(r, ω), such as a molecule or detector
object outside the cavity structures, the permittivity function
changes to ε(r, ω) = εc(r, ω) + �εp(r, ω). One could again
solve the source-free Helmholtz equation by replacing εc → ε

to obtain the full QNM eigenfunctions and eigenfrequencies
{f̃μ, ω̃μ}. However, usually, this is a very numerically demand-
ing task, especially for three-dimensional structures. It also
offers no analytical insight.

In this section, we will discuss the possibility to utilize the
regularization of QNMs for formulating a QNM framework,
where the cavity-perturbation setup, as visualized in Fig. 1,
could be tackled within the initial unperturbed QNM basis.

First, we will analyze the problem that appears when
simply using f̃ (0)

μ (r). Adopting the one-dimensional time-
independent perturbation technique from Refs. [16,43], for a
general three-dimensional system, a first-order correction to
k̃(0)
μ can be calculated in the general dispersive case as

k̃(1)
μ = − k̃(0)

μ

2

∫
d3r �εp(r, ω̃(0)

μ ) f̃ (0)
μ (r) · f̃ (0)

μ (r). (13)

To show the conceptional failure of the QNMs, in a very
simple and intuitive way, we can move a pointlike perturbation
to the very far field at Xfar and then derive the first-order per-
turbation modification (assuming a dispersionless permittivity
for the perturbation, with volume Vp):

k̃(1)
μ = − k̃(0)

μ

2
Vp�εp f̃ (0)

μ (Xfar ) · f̃ (0)
μ (Xfar )

∝ − k̃(0)
μ

2
Vp�εp einBω(0)

μ |Xfar |/cenBγ (0)
μ |Xfar |/c, (14)

whose form is a consequence of the Silver-Müller radi-
ation conditions. Although this is the currently accepted
form of QNM perturbation theories, it clearly diverges for
|Xfar| → ∞.

One heuristic approach to fix this divergence problem
would be to utilize the regularization of the QNMs outside
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FIG. 2. Schematic of a one-dimensional cavity in the x direction,
with a visualization of the regularization procedure using the surface
form. The QNM eigenfunctions f̃μ(x) form a complete set inside the
resonator region x ∈ [a, b], and propagate out as plane waves through
the outgoing boundary conditions (16). The regularization ensures a
convergent outgoing field with a real frequency ω, from which one
can associate a convergent regularized mode by taking ω → ωμ at
the real part of the complex QNM eigenfrequencies.

the resonator region (introduced in Sec. II), thus replacing f̃ (0)
μ

by F̃(0)
μ for positions r outside the resonator. Note that taking a

resonant approximation F̃(0)
μ (r, ω) → F̃(0)

μ (r, ω(0)
μ ), is needed

in this case since a ω-dependent frequency change is not in the
spirit of with a modal picture. In this way, the divergent behav-
ior of f̃ (0)

μ (r) could be circumvented, as F̃(0)
μ (r, ω(0)

μ ) takes on
a real frequency value. However, as will be shown in Sec. V,
this simple replacement is not sufficient to cover all effects
that can modify the initial QNM parameters. Nevertheless, at
least the spatial divergence from the usual QNM approach is
can be prevented.

V. APPLICATIONS

In this section, we will next show some specific examples
to demonstrate the impact of the regularization technique on
QNM perturbation theory.

A. Single-barrier problem

1. Quasinormal modes of a single barrier

We first study the problem of an unperturbed single cavity
in the form of a single barrier with constant refractive index,
spanning from x = a to b, as sketched in Fig. 2. We shall
denote the length of the cavity as L and the refractive index
of the resonator as nR.

For the simple case of a single barrier, the QNM eigenfre-
quencies can be calculated via

nRk̃(0)
μ L = μπ + i

2
ln

[
(nR − nB)2

(nR + nB)2

]
, (15)

where we made use of the outgoing boundary conditions,
which read explicitly as

∂x f̃ (0)
μ (x)

∣∣
x↗a = −iω̃μnB/c f̃ (0)

μ (a), (16a)

∂x f̃ (0)
μ (x)

∣∣
x↘b = iω̃μnB/c f̃ (0)

μ (b). (16b)

Interestingly, we observe that the “zero mode” (μ = 0) is
purely imaginary and vanishes in the lossless limit.

In the following, we choose the refractive indices nB = 1
and nR = 2π for the background and resonator, respectively.
For these parameters, we obtain the μ-independent quality

factor Q ≈ 20, resulting in an intermediate cavity finesse. We
note that there are realistic examples with even lower-Q factor,
such as the plasmonic resonator (which is commonly used in
optical sensing technologies), where we expect an even more
drastic failure from the use of a complex QNM for positions
outside the resonator region.

The associated QNM eigenfunctions, which are normal-
ized, can be derived as (cf. Ref. [15])

f̃ (0)
μ (x) = einR k̃(0)

μ (x−x0 ) + (−1)μe−inR k̃(0)
μ (x−x0 )

√
(−1)μ2L nR

, (17)

within the cavity region with center x = x0. For positions
outside the barrier, we have

f̃ (0)
μ (x > b) = e−iω̃μnB/c(x−b) f̃ (0)

μ (b), (18a)

f̃ (0)
μ (x < a) = e−iω̃μnB/c(a−x) f̃ (0)

μ (a). (18b)

In one spatial dimension, one can formulate a generalized
norm integral as

〈〈 f̃ (0)
μ | f̃ (0)

μ 〉〉 =
∫ b

a
dx ε(x)

[
f̃ (0)
μ (x)

]2

+ i
nBc

2ω̃μ

{[
f̃ (0)
μ (a)

]2 + [
f̃ (0)
μ (b)

]2}
, (19)

where we have defined a = x0 − L/2, b = x0 + L/2. For a
detailed derivation of a limiting case of one open boundary,
see Ref. [11]. For a constant permittivity ε(x) = n2

R in [a, b],
Eq. (19) reduces to 〈〈 f̃ (0)

μ | f̃ (0)
μ 〉〉 = 1, when using the solution

from Eq. (17). In the following, we will not specify the length
L of the cavity, as it simply sets the scale of the cavity prob-
lem.

2. Mode regularization and the local density of states

For the one-dimensional analysis, the special case of
Eq. (12) gives

F̃ ′(0)
μ (x, ω) = einBk0(x−b) f̃ (0)

μ (b) (20)

for x > b, and

F̃ ′(0)
μ (x, ω) = e−inBk0(x−a) f̃ (0)

μ (a) (21)

for x < a. These solutions are right- and left-propagating
plane waves with continuity conditions at the boundary, i.e.,
F̃ ′(0)

μ (x, ω)|x↗a = f̃ (0)
μ (a) and F̃ ′(0)

μ (x, ω)|x↘b = f̃ (0)
μ (b) inde-

pendent of ω. On the other hand, the regularized QNM from
the volume integral representation (8) would simplify to

F̃ (0)
μ (x, ω) = ik0

2nB
einBk0x

∫ b

a
ds �ε(s)e−inBk0s f̃ (0)

μ (s) (22)

for x > b, and

F̃ (0)
μ (x, ω) = ik0

2nB
e−inBk0x

∫ b

a
ds �ε(s)einBk0s f̃ (0)

μ (s) (23)

for x < a. In contrast to F̃ ′(0)
μ (x, ω) (obtained as a one-

dimensional limit from the surface integral representation),
F̃ (0)

μ (x, ω) (obtained as a one-dimensional limit from the vol-
ume integral representation) does not fulfill the continuity
conditions. However, again we emphasize that the full electric
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FIG. 3. Real [blue (dark)] and imaginary [orange (light)] parts
of normalized QNM f̃ (0)

μ (x) (μ = 4) for the (unperturbed) single-
barrier cavity with center x0, length L, background refractive index
nB = 1, and slab index nR = 2π , using Eqs. (17) and (18). The
gray dashed area marks the cavity region. The corresponding quality
factor is Q(0) ≈ 20 (and is identical for all μ). The dashed lines
reflect the result from a regularization outside the resonator within
a pole approximation at k = Re[k̃4], i.e., F̃ ′(0)

μ (x, ωμ) (μ = 4), using
Eqs. (20) and (21).

field (including all QNMs) is still identical within both rep-
resentations (cf. Appendix A). In the following we will use
the surface integral representation in the few-QNM approxi-
mation.

In Fig. 3, we show precisely the difference between the
complex QNM [Eqs. (17) and (18)] and the regularized QNM
[Eqs. (20) and (21)] for the described exemplary single-barrier
cavity. By construction, the regularized QNMs are a com-
bination of the complex QNM inside the cavity region and
represent plane waves with the real frequency ωμ outside the
single barrier.

As a first test of the regularized QNM, we look at the
imaginary part of the Green function, which is important for
many calculations in optics and nanophotonics, e.g., the Pur-
cell factor, which describes the enhancement or suppression
of the spontaneous emission of an emitter placed close to the
resonator (which uses the Green function with equal space
arguments).

In terms of a QNM expansion, the Green function
G(x, xs, ω) can be written as

GQNM(x, xs, ω) =
∑

μ

Aμ(ω) f̃μ(x) f̃μ(xs) (24)

for the complex QNM form (without regularization), and

Greg
QNM(x, xs, ω) =

∑
μ

Aμ(ω)F̃μ(x, ωμ) f̃μ(xs) (25)

for the regularized QNM form, where xs is located inside the
resonator region [a, b], x > b, and Aμ = ω/[2(ω̃μ − ω)]. In
this simple geometry sample, we can compare with the exact
solution, where for xs ∈ [a, b] and x > b, then

Gexact (x, xs, ω) = A(xs, ω)einBkx = A(xs, ω)einBωx/c, (26)

FIG. 4. Imaginary part of the single-barrier propagators
G(x, xs, k = Re[k̃4]) normalized by Im[GB(xs, xs )] = 1/(2nBRe[k̃4])
with the source point xs = x0 (located in the center of the cavity)
using the exact Green function ansatz [solid orange curve, see
legend, Eq. (26)], the single QNM approximation [green dashed
curve, Eq. (24) with μ = 4], and the single QNM approximation
with regularization [black dashed curve, Eq. (25), with μ = 4]. Note
that nR = 2π , which results in a quality factor of Q ≈ 20.

where

A(xs, ω) = − i

2nRk
e−ik(nR+nB )(b−a)/2(1 + β )

× eiknR (b−a+xs ) + βe−iknR (b−a)

eiknR (b−a) − β2e−iknR (b−a)
, (27)

with β = (nR − nB)/(nR + nB).
We next concentrate on a single QNM expansion, using

the QNM μ = 4 and the parameters described in Sec. V A 1.
As shown in Fig. 4, the results using the regularized QNM
[Eq. (25)] are in very good agreement with the full analyt-
ical Green function solution on the basis of a plane-wave
expansion [without any approximation, Eq. (26)]. In con-
trast, using the expansion with f̃4 [Eq. (24)] would lead to
a divergent behavior, as shown by the green dashed curve
in Fig. 4, as expected. This example clearly highlights the
need to perform mode regularization in general, if adopting
a few-mode expansion approach (which is a requirement for
many applications in quantum optics). One should note here
that while the imaginary part of the Green function within a
single QNM approximation is in excellent agreement with the
full analytical solution for the single-barrier cavity, this is not
the case for the real part, where (in the current example) one
needs N > 100 QNMs to obtain the same level of agreement.

B. Double-barrier problem

After discussing the single-barrier problem in terms of
of QNMs and regularized QNMs, we will now turn to the
double-barrier problem, as depicted in Fig. 5. We will con-
centrate on the changes that the second barrier induces to
the eigenfrequencies of the single-barrier cavity. This will be
tackled in two different ways: (i) we will give a numerically
exact solution, utilizing a transfer matrix approach, which can
be used to derive the QNM poles directly or to extract them
from the exact transmission (or reflection) coefficient (which
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FIG. 5. Permittivity difference �ε(x) = ε(x) − εB for the
resonator-perturbation setup in one spatial dimension as function
of x. A resonator with boundaries x = −L, 0 and permittivity
difference �εc(x) = V = 4π 2 − 1 is embedded in a homogeneous
background medium with refractive index nB = 1, including a
perturbation with permittivity difference �εp = δV , with length Lp

and distance d from the cavity.

obviously has no mode approximations); (ii) we will apply the
adapted perturbation theory to the geometry of interest, where
for spatial coordinates outside the first barrier f̃ (0)

μ is replaced
by F̃ ′(0)

μ .

1. Direct solution from a transfer matrix approach

Here, we discuss an exact scattering treatment to obtain
the eigenfrequencies of the double-barrier problem, by means
of a transfer matrix approach. For this method, we adopt the
approach of calculating the transfer matrix [44,45]. Note that
completeness of the QNMs in a region within the outermost
discontinuities in n(x) = √

ε(x) has been shown elsewhere, a
thorough proof can be found in Ref. [44]. Generally, in the
spatial interval [a j−1, a j] [which marks the positions of the
discontinuities in n(x)], we define the solution to the one-
dimensional Helmholtz equation as forward and backward
traveling waves, from

E j (x, ω) = Aje
ik j x + Bje

−ik j x, (28)

with k j = n jω/c [and n(x) is piecewise constant], which are
connected via boundary conditions

E j (a j, ω) = E j+1(a j, ω), ∂xE j (a j, ω) = ∂xE j+1(a j, ω). (29)

The electromagnetic fields are chosen as transverse-electric
polarized fields [E (x, t ) = Ey(x, t )]. For now, let us assume
the general case of N slabs, so that j = 0, 1, . . . , N, N + 1
with [0 ≡ in] and [N + 1 ≡ out] as the background indices on
the left and right side, respectively. The transmission problem
is defined as (

Ain

Bin

)
= Min,out ·

(
Aout

Bout

)
, (30)

with the transfer matrix

Min,out =
(

m11(ω) m12(ω)
m21(ω) m22(ω)

)
, (31)

which connects Ain, Bin with Aout, Bout. In general, the corre-
sponding transmission and reflection functions are

t (ω) = Aout

Ain
= 1

m11(ω)
, r(ω) = Bin

Ain
= m21(ω)

m11(ω)
. (32)

In the case of outgoing boundary conditions, Ain = Bout =
0, which implies the condition

m11(ω) = 0, (33)

whose complex solutions ω̃μ are the QNM frequencies of the
problem. Moreover, these eigenfrequencies are exactly the
complex poles of the transmission and reflection functions.
An explicit expression for the matrix Min,out can be obtained
by subsequent multiplication of the transfer matrices from
j to j + 1. For the special case of two dielectric barriers
(which corresponds to three slabs), we obtain the determining
equation:

0 = β2
1,+β2

2,+ − β2
1,−β2

2,+e2ikR,1L

+ β2
1,−β2

2,−e2ikR,1Le2ikR,2Lp − β2
1,+β2

2,−e2ikR,2Lp

+ β1,+β1,−β2,+β2,−e2ikBd
[
e2ikR,1L − 1 + e2ikR,2Lp

]
− β1,+β1,−β2,+β2,−e2ikBd e2ikR,1Le2ikR,2Lp , (34)

where β1,± = nR,1 ± nB, β2,± = nR,2 ± nB, and nR,1(2) are the
refractive indices of the first (second) barrier. Although this
equation can only be solved analytically for certain condi-
tions, it can be solved numerically in an exact manner. To do
so, we will use the MPMATH package in Python [46], specifi-
cally the Muller algorithm from “mpmath.findroot.”

2. Modification to the single-barrier quasinormal mode
frequencies

For a small height of the second barrier (δ � 1), we can ap-
ply the first-order perturbation correction to obtain the QNM
eigenfrequency change:

k̃(1)
μ = − k̃(0)

μ

2
V

[
f̃ (0)
μ (0)

]2

2ik̃(0)
μ

e2ik̃(0)
μ d

[
e2ik̃(0)

μ Lp − 1
]
. (35)

In contrast, the perturbation approach using regularization is

k̃(1)
μ = − k̃(0)

μ

2
V

[
f̃ (0)
μ (0)

]2

2ik(0)
μ

e2ik(0)
μ d

[
e2ik(0)

μ Lp − 1
]
, (36)

where we have used F̃ ′(0)
μ (x, ωμ) instead of f̃ (0)

μ (x) for the
evaluation of the overlap integral inside the perturbation re-
gion. It should be noted again that we cannot strictly use
the total frequency-dependent regularized QNM F̃ (0)

μ (x, ω)
since a ω-dependent QNM frequency change would be not
meaningful, and we instead impose a pole approximation
around the real part ωμ. As was shown in Ref. [33]. for a
single resonator as well as for a hybrid cavity system, this
approximation is an excellent approximation to capture effects
for frequencies in a regime of ∼± 10γ (0)

μ , around the center
frequency ω(0)

μ .
In the following, we will compare this mode correction

(resulting in the modified eigenfrequency k̃μ ≈ k̃(0)
μ + δk̃(1)

μ )
to the full numerical solution obtained from Eq. (34).

We first consider the real part of the frequency change as
function of distance d , with results shown in Fig. 6. Again, we
choose an intermediate quality factor Q ≈ 20 for the single-
barrier cavity by setting nR = 2π . The height of the second
barrier is δV with δ = 0.01, so that one can safely assume
validity of the perturbation approach. We recognize that the
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FIG. 6. Top: Real part of (normalized) eigenfrequency difference
between the solution of the double-barrier structure (k̃μ) and the
single-barrier structure (k̃(0)

μ ) of the respective QNM with μ = 4 as
function of distance d between the two barriers, using the numerical
QNM solution, i.e., the numerically obtained eigenvalues of Eq. (34)
(solid green curve, see legend), the complex QNM first-order per-
turbation result [black dashed curve, Eq. (35)], the results from the
Lorentzian fit of t (ω) [solid blue curve, Eq. (32)], and the regularized
QNM first-order perturbation result [solid red curve, Eq. (36)]. The
first (second) barrier has a length L (Lp = 0.1L) and permittivity
difference �εc = V (�εp = δV with δ = 0.01) with V = 4π 2 −
1. Bottom: Enlargement (zoom in) of the top panel for smaller
distances d .

mode changes predicted by the full numerical pole solution
are not exponentially growing, as expected. Simultaneously,
perturbation theory using the naive expression involving the
complex QNM f̃μ fails to predict the correct frequency change
for larger distances since e2ik(0)

μ d from Eq. (36) would be re-
placed by e2ik̃(0)

μ d , leading to an exponential growth. However,
when inspecting an enlargement around smaller distances
[Fig. 6(b)], one can appreciate that the complex QNM ap-
proach agrees well with the full numerical approach. While
the regularized QNM approach leads to a convergent re-
sult of the frequency change, it does not fully recover the
results from the exact numerical approach. However, it re-
covers certain features of the multimode behavior, as will be
discussed in Sec. V B 3. Indeed, we can see that the exact
single QNM also fails to describe the full solution in this
regime.

Next, we inspect the imaginary part of the frequency
change, depicted in Fig. 7, which is related to mode dissi-
pation. Similarly to the real part of the frequency change,
the complex QNM perturbation result leads to an unphysi-
cal exponential growth of Im[k̃(1)

μ ]. The full numerical pole
solution follows an exponential growing behavior for small

FIG. 7. Top: Imaginary part of (normalized) eigenfrequency dif-
ference between the solution of the double-barrier structure (k̃μ)
and the single-barrier structure (k̃(0)

μ ) of the respective QNM with
μ = 4 as function of distance d between the two barriers, with the
same setup as in Fig. 6, using the numerical QNM solution, i.e.,
the numerically obtained eigenvalues of Eq. (34) (solid green curve,
see legend), the complex QNM perturbation result [black dashed
curve, Eq. (35)], and the regularized QNM perturbation result [solid
red curve, Eq. (36)]. Bottom: Enlargement of top panel for smaller
distances d .

distances, but it completely changes its form for d/L > 10.
While the phase relation is identical to the perturbation results,
the oscillations are clearly much more complex than simple
cosine and sine functions. Furthermore, the average value is
detuned from 0 to a positive value. This indicates further that
the distance from the single barrier also changes the pertur-
bation regime. This result is surprising and counterintuitive
since one would expect a decreasing interaction between the
two barriers for larger separations. However, there are some
possible explanations for this behavior: (1) we observe that the
numerical calculations become more unstable when increas-
ing the distance between the two barriers since the initial value
(single-barrier cavity) is expected to deviate exponentially for
the complex QNM; (2) the concept of a single-mode picture
becomes more and more vague because the increasing overlap
from other modes can cause a general change in the frequency
structure; (3) we are leaving the perturbation regime in the
view of exponentially rising mode amplitudes (which is con-
nected to the concept of complex modes).

3. Multimode effects from the full transmission coefficient

After comparing the solutions from the first-order pertur-
bation correction to the full numerical pole solution, here we
present a third method to obtain the frequency change by
applying a Lorentzian fit to the transmission coefficient t (ω)
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FIG. 8. Real part of the eigenfrequency difference between the
single-barrier cavity and the double-barrier cavity (with unperturbed
frequency k̃(0)

4 = k(0)
4 − iγ (0)

4 /c) with the same setup as in Fig. 6
using the regularized QNM perturbation result [bottom red curve, see
legend, Eq. (36)], and a fit result to the exact transmission coefficient
[blue curve, Eq. (32)] as function of distance d .

[cf. Eq. (32)] around the resonance of interest (without any
mode approximations). This will not only capture the changes
to the individual eigenfrequencies, but also the collective
effects induced by other modes. These become especially
significant for lower-Q resonators. Note that coupled-mode
effects were also investigated on the basis of the transfer
matrix approach in more general structures with more than
two barriers, allowing for complex interactions between the
modes, e.g., in Ref. [47].

In Fig. 6, we have shown the corresponding results of
the Lorentzian fit, which significantly differ from the pre-
dictions of the other methods. In Fig. 8, we show a more
detailed analysis of the Lorentzian fit, and compare it to our
proposed regularization of the QNM perturbation theory. We
concentrate on the real part of the QNM eigenfrequency, i.e.,
the corresponding peak of the transmission coefficient around
ω

(0)
4 . This is the more sensible quantity compared to the width.

There are several features, that are captured by the fit results,
which we summarize below:

(1) A first minimum appears for the frequency change,
at d/L ∼ 8, in the fit of the exact result. Note that we have
also observed the same feature for several parameters of the
perturbation, including a change in δ and Lp (as long as δ < 1).
Moreover, the particular position of the minimum is nearly
independent of these parameters, while it is very sensitive to a
change of the parameters of the single-barrier cavity, such as
nR.

(2) We observe a phase shift for d/L > 8, after passing
the first minimum location. To be precise, there is a phase

difference of exactly �φ = π/2 compared to the QNM results
(not only the regularized QNM approach).

(3) Aside from an additional oscillation, there is an overall
damping of the eigenfrequency change, which likely reflects
a multimode effect (fully captured by the transfer matrix
results), where the changes from a single-mode picture are
compensated.

A possible reason why the complex phase oscillations are
not captured by the regularization of QNMs is because one
has to impose a pole approximation to F̃ (x, ω); this will likely
remove some interference effects, which originate from other
modal contributions in the exact transmission coefficient t (ω).
In fact, this is not a failure of the regularization procedure
itself since its impact was recently underlined in a second
quantized QNM theory, in particular for the problem of de-
riving a proper input-output theory for three-dimensional and
absorptive cavities. However, in that case, the fast oscillating
terms (namely, exp[inBω(x − b)/c] for the one-dimensional
analog and x > b) were taken into account without any pole
approximation, resulting in a time retardation. In contrast, in
the noted formalism of time-independent perturbation theory,
it is simply impossible to recast these ω-dependent terms into
a temporal shift, and thus a pole approximation is applied to
the total regularized QNM function. On the other hand, we
emphasize again that from a discrete mode theory point of
view, a mode quantity that depends on the continuous variable
ω is not a meaningful quantity, and one is ultimately after a
convergent few mode theory. Consequently, one has to make
some approximations, depending upon the application and
problem at hand.

C. Three-dimensional metallic resonator

Next, we investigate a three-dimensional metallic dimer
resonator, as depicted in Fig. 9(a), where we move a small
spherical object with radius rp = 30 nm and permittivity dif-
ference �εp = 499 (nB = 1) from a near-field region of the
plasmonic dimer to the far-field region along the x direction.
Note that, more rigorously, one should also account for the
nonlocal field corrections that are enforced by the continuity
conditions of the electromagnetic field at the perturbation’s
boundary. For a (small) spherical shape, one can take into
account the nonlocal effects by replacing �εp by an effec-
tive permittivity change [48,49], i.e., �εp → 3�εpεB/(3εB +
�εp) ≡ �ε′

p. In the presented example case, we derive �ε′
p ≈

2.98.
To model the permittivity of the plasmonic dimer, we use

the Drude model

ε(ω) = 1 − ω2
p

ω(ω + iγp)
, (37)

with parameters that are somewhat similar to gold, with
a plasma frequency ωp = ωp,Au = 1.26 × 1016 (rad/s) and
γp = 3γp,Au = 4.23 × 1014 (rad/s). An efficient dipole-
scattering approach is used to get the unperturbed QNM [50],
which is performed with COMSOL [51]. The dominant mode
of the plasmonic dimer in the optical spectral range of interest
has a quality factor Q(0) ≈ 7, computed from h̄ω̃(0) = h̄ω(0) −
ih̄γ (0) = (2.0661 − 0.1477i) eV. From the results shown in
Figs. 9(b) and 9(c), we can see a clear failure of simply using
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FIG. 9. (a) Near-field QNM (arb. units) |f̃ (0)| for a gold ellipsoid
dimer with gap distance of 20 nm, as visualized schematically in
Fig. 1. The center width and length of the ellipsoid are 20 and
80 nm, respectively. Note that the z component is the dominant field
component here, though all three components are included in |f̃ (0)|.
(b) Far-field QNM |f̃ (0)| of the same dimer (also in arb. units). The
spatially diverging behavior is clearly shown in the far-field region,
starting from around 3000 nm (∼5λ(0) of the current low-Q example)
away. (c) Real and imaginary parts of the first-order perturbation
correction ω̃(1) from k̃(1) [first line of Eq. (14)]. The perturbation
region is a sphere with radius of 30 nm and the dielectric constant is
εp = 500 (�εp = εp − εB). Taking local field effect into account, we
use �εp → 3�εpεB/(3εB + �εp) ≡ �ε ′

p ≈ 2.98. The unperturbed
resonance frequency of the dimer is given the values, e.g., h̄ω̃(0) =
h̄ω(0) − ih̄γ (0) = (2.0661 − 0.1477i) eV. The black dashed line re-
flects the result of the regularization, which is obtained by replacing
f̃ (0)
μ with F̃(0)

μ in Eq. (14) (see text).

f̃ (0) ≡ f̃ (0)
μ , where the far-field QNM |f̃ (0)|, as well as the real

and imaginary parts of the first-order perturbation correction
ω̃(1) = ck̃(1) [first line of Eq. (14)] are diverging.

In contrast to the QNM results, in Figs. 9(b) and 9(c),
we obtain the correct far-field behavior when we use the
regularized QNM fields. To obtain these regularized fields
F̃(0)

μ , we have employed an inverse Green function technique

with a dipole source in real frequency space [29], where
two different real frequencies are chosen as ω1/2 = ω(0) ±
0.25γ (0). We also note that, when using the regularized QNM
approach, the results are convergent for larger distances (x)
from the scattering object, although, for small distances both
approaches result in equal changes in frequency induced by
the perturbation. This confirms the behavior observed for the
one-dimensional examples.

We remark that for the investigated structure (metal dimer
plus a small spherical object in the far field), the results ob-
tained from Eq. (14) (dipole approximation for the field inside
the small perturbation region) are in very good agreement with
the general formula Eq. (13).

VI. DISCUSSION

The QNMs are defined as eigenfunctions of the open
boundary problem, which form a complete set within the
cavity region. The information of the “outside” is implicitly
included in the open boundary conditions. The clear advan-
tage over the so-called modes of the universe (and using
continuous normal modes) is that, while the modes of the
universe form a continuous set of modes, the QNMs form a
discrete set. The disadvantage, however, is the spatial diver-
gence of these mode eigenfunctions.

To elaborate further, in the usual treatment of open res-
onators, particularly in the field of open quantum systems,
one makes an ansatz: H = H0 + λHI , where HI is the cou-
pling element with strength λ, and H0 contains the energies
of the isolated closed system and bath. In a second-order
Born-Markov treatment of the interaction, one arrives at an
effective description of the system, where the small pertur-
bation turns into a decay rate of the system, which could in
turn be regarded as the QNM imaginary part of the eigenfre-
quency. However, in contrast to this description, the QNMs
are not restricted to small imaginary parts, and the inherent
mode dissipation leads to much richer properties of the QNMs
(such as an unconjugated form for the normalization), which
is not covered at all by the phenomenological system-bath
ansatz [43]. The unconjugated QNM expansion retains es-
sential phase information, which can give rise to few mode
Fano-type resonances [52–54] and unusual power flow from a
point dipole and quantum emitter [55].

On the other hand, regularization of the open-cavity modes
brings back in the properties of the background through
the continuous real-valued frequency ω. From a different
viewpoint, the QNMs’ basis is extended by a plane-wave
expansion of the background Green function GB, and again
becomes continuous. Thus, in order to fully describe pro-
cesses that are directly related to the “background,” e.g.,
measurements at detectors well outside of the cavity region,
it seems to be inevitable to use an expansion in terms of
propagation waves in real frequency space, even though the
whole open boundary problem is solved with QNMs on their
own. From a more practical perspective, one is often interested
in complicated background and cavity structures, such as a
waveguide-cavity system within a photonic crystal structure.
In such cases, the regularized QNMs would not be formed by
simple plane waves, but by waveguide Bloch modes, reflect-
ing the periodic structure of the photonic crystal as well as the
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waveguide properties [56]. Those cases are naturally included
by the proposed regularization approaches since there appears
no restriction to the background Green function, as long as
there exists an analytical form, e.g., the waveguide Green
function in terms of Bloch modes.

The problem of requiring additional degrees need not only
be formulated in terms of the Green function, but also in
terms of the electric field. Indeed, if we inspect the surface
integral representation of the regularization [Eq. (20)] in the
time domain, we can formulate the total electric field as

E (x > b, t ) = 2π i
∑

μ

aμ(t = 0) f̃μ(b)

×
∫ ∞

−∞
dω

e−iω(t−nB[x−b]/c)

ω̃μ − ω
. (38)

For t > 0, we can apply the residue theorem to obtain

E (x > b, t ) =
∑

μ

aμ(t ) f̃μ(b)einBω̃μ(x−b)/c

=
∑

μ

aμ(t ) f̃μ(x), (39)

for t > nB[x − b]/c and zero otherwise. Thus, this gives an-
other hint that the QNMs outside the resonator cannot be
formulated in terms of the system QNMs alone (i.e., the
QNMs inside the resonator), but they need additional degrees
of freedom. Note there is a clear difference when using the
regularization compared to simply assuming completeness of
the QNMs over all space, i.e., assuming Eq. (39) for all t > 0
and x.

The divergent behavior of the eigenfrequency change is
obviously also induced by the presence of the unconjugated
form of the QNM expansion, where f̃μ f̃μ instead of | f̃μ|2
appears in the first-order correction terms [cf. Eq. (13)]. An
interesting alternative Green function expansion, by means of
a conjugated form, can be formulated based on a fundamental
Green function relation (cf. Appendix B) through

Im[G(x, y, ω)] = nB
c

ω
[G(x, a, ω)G∗(a, y, ω)

+ G(x, b, ω)G∗(b, y, ω)] (40)

for a < x, y < b, which was recognized in Ref. [57] for the
one-dimensional case with nondispersive media. Nearly two
decades later, an analogous relation for three-dimensional
absorptive and leaky structures was found to be a necessary
representation for QNM quantization, in which a well-defined
QNM Fock space can be defined [31,32,58].

Using this knowledge from previous works, one can then
utilize the Kramers-Kronig relations

Re[G(x, x0, ω)] = 1

π
P

∫ ∞

−∞
dω′ Im[G(x, x0, ω

′)]
ω′ − ω

, (41)

where P is the Cauchy principal value of the integral, to obtain
the corresponding real part of the Green function by means of
complex contour integration techniques. This would lead to
the representation (cf. Appendix C)

G(x, x0, ω) =
∑
μη

f̃μ(x)Kμη(ω) f̃ ∗
η (x0), (42)

where

Kμη(ω) = inBcω̃μ

2

f̃μ(a) f̃ ∗
η (a) + f̃μ(b) f̃ ∗

η (b)

(ω̃μ − ω̃∗
η )(ω − ω̃μ)

. (43)

We see a clear difference over the unconjugated form, in
that a double sum over all QNMs appears. The dissipative
character is now expressed in terms of off-diagonal terms,
that depend on QNM functions on the cavity boundary. In-
deed, in the NM limit [γμ → 0 and f̃μ(a), f̃μ(b) → 0], the
off-diagonal elements of Kμη(ω) tend to zero, and we are left
with the diagonal elements

Kμ(ω) = nBcω̃μ

2

f̃μ(a) f̃ ∗
μ (a) + f̃μ(b) f̃ ∗

μ (b)

2γμ(ω̃μ − ω)
. (44)

In the lossless limit, we can precisely derive [57]

nBc
| f̃μ(a)|2 + | f̃μ(b)|2

2γμ

→ 1, (45)

for all μ, so that

Kμη(ω) → ωμ

2(ωμ − ω)
δμη (46)

and

G(x, x0, ω) →
∑

μ

ωμ fμ(x) f ∗
μ (x0)

2(ωμ − ω)
. (47)

If we now split the sum into μ = 0, μ > 0, and μ < 0, we
obtain

G(x, x0, ω) →
∑
μ>0

ω2
μ fμ(x) f ∗

μ (x0)

ω2
μ − ω2

, (48)

which is indeed identical to the NM expansion of the
Green function. Note, here we have assumed that the NM
functions have a position-independent trivial phase, so that
fμ(x) f ∗

μ (x0) = f ∗
μ (x) fμ(x0), and have used ω0 → 0.

Note that such a nondiagonal form of the Green func-
tion can also be derived for the more general case of
three-dimensional and absorptive geometries, as shown in
Appendix D. Although the conjugated form seems to remove
a potential divergent behavior, one must note that (i) the ap-
proximation to a few QNM expansion is not equally valid in
both representations, and (ii) the nondiagonal form prevents
one from adapting to the perturbation theory presented in
Ref. [43].

VII. CONCLUSIONS

We have discussed and presented different potential so-
lutions to the problem of perturbation theory for open
resonators, using QNMs, when perturbations are added out-
side the resonator (and potentially far outside the resonator).
We showed results for the (complex) frequency change of the
QNM by including a perturbation outside of the resonator
region, for (i) a one-dimensional double-barrier system, and
(ii) a three-dimensional plasmonic dimer structure. The first
example serves as our main example system since it allows
important analytical insight into the underlying physics of the
QNMs and the solutions in terms of the scattered fields.
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It was demonstrated that naively adopting the system QNM
expansion of the Green function for positions outside the res-
onator yields an unphysical exponential growth of the QNM
eigenfrequency change. This is induced by the dissipative
nature of QNMs. We also showed how a regularization of
QNMs, in terms of a function of a continuous variable for each
QNM, can remove such a divergent behavior of the QNMs.
While neither the few QNMs or few regularized QNMs con-
stitute an exact solution, or can exactly mimic the behavior
that is observed using the fit to the full solution (cf. Fig. 8),
we have shown how one can benefit from using both of these
representations. In fact, the applicability of the few regular-
ized QNM theory has a clear advantage over the fit of the
full transmission coefficient. This is because it is independent
of the incident field, and lends itself to solving both classical
and quantum optical problems, the latter of which requires
the use of quantized modes [31]. Such a combination of
complex QNMs and a regularization procedure is particularly
important for more complicated structures, such as coupled
cavity-waveguide structures and a further theory development
building upon previous works on coupled QNM frameworks
[27,59] will be an important task for future investigations.

The perturbation picture can also be understood, in the
quantum picture, as the problem of having a quantum dipole
emitter moved away from the cavity, where one needs
(requires) the regularized QNMs. To elaborate, in these ap-
plications one usually investigates the change of the emitter’s
linewidth and frequency through a (perturbative) second-order
Born-Markov approach (weak coupling) [31,60,61]. However,
in our current investigations shown here, we looked at this
from a different perspective, namely, how the cavity frequency
and linewidth change in the presence of the emitter (pertur-
bation) or, more generally, a perturbation object. Certainly,
one would expect the same kind of fix that we adopt for
the perturbed modes, i.e., a regularized cavity mode that is
inherently dissipative. Since the emitter has a finite linewidth,
its respective radiation will also diverge in space. In a quantum
perspective, there might be a deeper connection between a
quantization of dissipative QNMs and a collection of emit-
ters [62,63], where the rigorous treatment of loss leads to an
inherent coupling. In the former approach, the regularization
of QNMs (in the form that is presented here) is a crucial part
of the respective quantization procedure.
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APPENDIX A: DERIVATION OF THE SURFACE
REPRESENTATION OF THE REGULARIZED QNM FIELD

In this Appendix, we prove the equivalence of Eqs. (7) and
(11). We start with the general solution of E (R, ω) from the

scattering problem,

E (R, ω) =
∫
V ′

d3r �ε(r, ω)GB(R, r, ω) · E (r, ω), (A1)

where we have chosen V ′ as a volume that is supported by �ε,
i.e., where �ε(r) �= 0. Next, we rewrite the above equation as

E (R, ω) =
∫
V ′

d3r ε(r, ω)GB(R, r, ω) · E (r, ω)

−
∫
V ′

d3r εBGB(R, r, ω) · E (r, ω). (A2)

Using the Helmholtz equation with E (r, ω) and
GB(R, r, ω), this leads to

E (R, ω) = c2

ω2

∫
V ′

d3r GB(R, r, ω) · [∇ × ∇ × E (r, ω)]

− c2

ω2

∫
V ′

d3r[∇ × ∇ × GB(r, R, ω)]t · E (r, ω)

+
∫
V ′

d3r δ(r − R)E (r, ω). (A3)

The last term vanishes when we choose R, such that R �=
V ′. Finally, we utilize the second dyadic-vector Green’s the-
orem to reduce the volume integral to a surface integral over
S ′:

E (R, ω) = c2

ω2

∫
S ′

dAsGB(R, s, ω)] · [n × ∇ × E (s, ω)]

− c2

ω2

∫
S ′

dAs[n × ∇ × GB(r, R, ω)]t · E (s, ω).

(A4)

The important point here is that the appearing functions and
their derivatives need to be continuous in V ′, which prevents
one from extending the volume V ′, in which �ε becomes
discontinuous.

If we now assume completeness of QNMs at S ′,
we can reformulate the above expression as E (R, ω) =∑

μ a(0)
μ (ω)F̃′(0)

μ (r, ω), where F̃′(0)
μ (r, ω) is precisely the reg-

ularized QNM function from Eq. (12). We emphasize that the
same derivation holds true on the level of the Green function,
where the starting point would be

G⊥(R, r) = G⊥
B (R, r)

+
∫

d3s �ε(s)GB(R, s) · G⊥(s, r), (A5)

with an implicit dependence on ω.

APPENDIX B: PROOF OF GREEN’S IDENTITIES

Here we will prove the Green’s identity from Eq. (40). In
one spatial dimension, the Helmholtz equation of the Green
function reduces to

∂2
x G(x, x′) + ω2

c2
ε(x)G(x, x′) = −ω2

c2
δ(x − x′), (B1)
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with an implicit ω dependence for the Green function and the
permittivity. The associated conjugated form is

∂2
x G∗(x, x′′) + ω2

c2
ε∗(x)G∗(x, x′′) = −ω2

c2
δ(x − x′′). (B2)

For now, we assume a real permittivity ε(x) ∈ R without
any absorption. Note that, in principle, this is an approxima-
tion and only valid in a limited frequency range. Multiplying
the first equation with G∗(x, x′′) and the second equation with
G(x, x′), then subtracting both resulting equations and inte-
grating over [a, b], leads to

2i
ω2

c2
Im[G(x′, x′′)] =

∫ b

a
dx[∂2

x G(x, x′)]G∗(x, x′′)

− G(x, x′)[∂2
x G∗(x, x′′)], (B3)

where we have assumed x′, x′′ ∈ [a, b]. Utilizing partial inte-
gration techniques, we can reformulate Eq. (B3) as

2i
ω2

c2
Im[G(x′, x′′)] = [∂xG(x, x′)]G∗(x, x′′)|ba

− G(x, x′)[∂xG∗(x, x′′)]|ba. (B4)

Next, we use the outgoing boundary conditions to simplify
this expression as

Im[G(x′, x′′)] = nB
c

ω
[G(b, x′)G∗(b, x′′)

+ G(a, x′)G∗(a, x′′)], (B5)

which proves Eq. (40).

APPENDIX C: COMPLEX CONTOUR INTEGRATION

In this Appendix, we derive the principal value integrals
that appear in the Kramers-Kronig relations, Eq. (41), by
using the nondiagonal form of the imaginary part of the Green
function in one spatial dimension. The relevant frequency
integral can be summarized as

Tμη(ω) = P
∫ ∞

−∞
dω′ ω′

(ω′ − ω)(ω′ − ω̃μ)(ω′ − ω̃∗
η )

, (C1)

which can be solved analytically via complex contour inte-
gration. Specifically, we choose a curve C(ε), describing a
half-circle with radius R > |ω| + ε in the upper half-plane
with another smaller half-circle centered at ω with radius ε

(cf. Fig. 10). The contour shall contain the eigenfrequency ω̃∗
η.

Defining the integrand as K (ω), we write the complex
contour integration:∮

C(ε)
dz K (z)

=
∫ ω−ε

−R
dω′K (ω′) +

∫ R

ω+ε

dω′K (ω′)

+ iR2
∫ π

0
dθ

e2iθ

(Reiθ − ω)(Reiθ − ω̃μ)(Reiθ − ω̃∗
η )

− iε
∫ π

0
dφ

eiφ (ω + εeiφ )

εeiφ (ω + εeiφ − ω̃μ)(ω + εeiφ − ω̃∗
η )

.

(C2)

FIG. 10. Visualization of the contour integration in the complex
plane for the one-dimensional and nonabsorptive cases. The contour
C(ε) is enclosing the set of a half-circle in the upper half-plane with
radius R (and center point z = 0) subtracted by a smaller half-circle
in the upper half-plane with radius ε (and center point z = ω).

In the limit R → ∞, the second contribution vanishes since
it scales with 1/R. In the limit ε → 0, the fourth contribution
remains finite and gives

−iπ
ω

(ω − ω̃μ)(ω − ω̃∗
η )

. (C3)

In the limit R → ∞ and ε → 0, the sum of the first and second
contributions exactly yields the principal value of the integral
of interest. Using the residue theorem, we can calculate the
contour integral as∮

C(ε)
dz K (z) = 2iπ

ω̃∗
η

ω̃∗
η − ω̃μ

1

ω̃∗
η − ω

, (C4)

so that

Tμη(ω) = 2iπω̃∗
η(ω − ω̃μ) + iπω(ω̃μ − ω̃∗

η )

(ω̃μ − ω̃∗
η )(ω − ω̃∗

η )(ω − ω̃μ)
. (C5)

Inserting back into the Kramers-Kronig relations and com-
bining with the imaginary part of the Green function leads
to Eq. (42).

APPENDIX D: THREE-DIMENSIONAL AND
ABSORPTIVE CASE

In this Appendix, we will present the derivation of the
nondiagonal QNM Green function for the more general case
of a three-dimensional and absorptive medium. This includes
a generalization of the complex contour integration presented
in Appendix C.

The fundamental Green function relation in one dimension
[i.e., Eq. (42)] is generalized to

Im[G(r, r′)]

= c2

2iω2

∫
S(V )

dAs{[ns × G(s, r)]t · [∇s × G∗(s, r′)]

− [∇s × G(s, r)]t · [ns × G∗(s, r′)]}

+
∫

V
ds εI (s)G(r, s) · G∗(s, r′) (D1)
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FIG. 11. Visualization of the contour integration in the com-
plex plane for the three-dimensional and absorptive case. The
contour C(ε) is enclosing the set of a half-circle in the upper
half-plane with radius R (and center point z = 0) subtracted by a
smaller half-circle in the upper half-plane with radius ε (and center
point z = ω).

for r, r0 ∈ V , which was more rigorously derived in Ref. [32],
by introducing a sequence of permittivity functions.

Similarly to the one-dimensional case, one can uti-
lize the Kramers-Kronig relations to obtain the corre-
sponding real part of the Green function, Re[G(r, r′, ω)],
through

Re[G(r, r′, ω)] = 1

π
P

∫ ∞

−∞
dω′ Im[G(r, r′, ω′)]

ω′ − ω
, (D2)

where, once again, P is the Cauchy principal value of the
integral. Here, we should note that, in contrast to the more
simpler nonabsorptive case, there is an additional ω kernel in
the volume integral part, namely, the imaginary part of the
permittivity εI (r, ω). Generally, ε(r, ω) is a causal function,
i.e., an analytical function in the complex upper half-plane and
has the form [64,65]

ε(r, ω) = ε∞(r) +
∑

j

σ j (r)

ω − �̃ j
, (D3)

where �̃ j are the complex poles of the material of interest with
negative imaginary part, and σ j (r) is a weighting function and
ε∞(r) = ε(r, ω → ∞) is the high-frequency limit.

Next, we first inspect the contribution associated with the
surface integral term, where one has to solve the frequency
integral

T sur
μη (ω) = P

∫ ∞

−∞
dω′ 1

(ω′ − ω)(ω′ − ω̃μ)(ω′ − ω̃∗
η )

. (D4)

This integral can be solved analytically via complex contour
integration. Specifically, we choose a curve C(ε), describing
a half-circle with radius R > |ω| + ε in the upper half-plane
with another smaller half-circle centered at ω with radius ε (cf.
Fig. 11). The contour shall contain the eigenfrequency ω̃∗

η.

Defining the integrand as K sur (ω), we manipulate the com-
plex contour integration as

∮
C(ε)

dz K sur (z)

=
∫ ω−ε

−R
dω′K sur (ω′) +

∫ R

ω+ε

dω′K sur (ω′)

+ iR
∫ π

0
dθ

eiθ

(Reiθ − ω)(Reiθ − ω̃μ)(Reiθ − ω̃∗
η )

(D5)

− iε
∫ π

0
dφ

eiφ

εeiφ (ω + εeiφ − ω̃μ)(ω + εeiφ − ω̃∗
η )

,

where we have parametrized the half-circles via z = Reiθ and
z = εeiφ , respectively. In the limit R → ∞, the third contribu-
tion vanishes since it scales with 1/R2. In the limit ε → 0, the
fourth contribution remains finite and gives

−iπ
1

(ω − ω̃μ)(ω − ω̃∗
η )

. (D6)

In the limit R → ∞ and ε → 0, the first and second con-
tributions yield exactly the principal value of the integral
of interest. Using the residue theorem, we can calculate the
contour integral as

∮
C(ε)

dz K sur (z) = 2iπ
1

(ω̃∗
η − ω̃μ)(ω̃∗

η − ω)
, (D7)

so that

T sur
μη (ω) = 2iπ (ω − ω̃μ) + iπ (ω̃μ − ω̃∗

η )

(ω̃μ − ω̃∗
η )(ω − ω̃∗

η )(ω − ω̃μ)
. (D8)

Next, we turn to the volume integral contribution, where
the appearing frequency integral is given by

T vol
μη (ω) = 1

2i
P

∫ ∞

−∞
dω′ [ω′]2[ε(r, ω′) − ε∗(r, ω′)]

(ω′ − ω)(ω′ − ω̃μ)(ω′ − ω̃∗
η )

,

(D9)

with an additional frequency-dependent permittivity function
in the numerator. Using the fact that ε(r, ω′) has the form in
Eq. (D3), we derive

T vol
μη (ω) = 2πω̃∗2

η χ (r, ω̃∗
η )(ω − ω̃μ) + πω2χ (r, ω)(ω̃μ − ω̃∗

η )

2(ω̃μ − ω̃∗
η )(ω − ω̃∗

η )(ω − ω̃μ)

−
∑

j

T vol,j
μη (ω), (D10)

where χ (r, ω) = ε(r, ω) − ε∞(r) is the susceptibility and

T vol,j
μη (ω) = 1

2i
P

∫ ∞

−∞
dω′ [ω′]2χ∗

j (r, ω′)

(ω′ − ω)(ω′ − ω̃μ)(ω′ − ω̃∗
η )

.

(D11)

Note that there is an additional pole �̃∗
j in the upper com-

plex half-plane in this expression (as visualized in Fig. 11), so
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that the residue theorem yields
∮

C(ε)
dz Kvol,j(z) = π

[�̃∗
j ]

2σ j (r)

(�̃∗
j − ω̃μ)(�̃∗

j − ω)(�̃∗
j − ω̃∗

η )

+ π
[ω̃∗

η]2χ∗
j (r, ω̃∗

η )

(ω̃∗
η − ω̃μ)(ω̃∗

η − ω)
. (D12)

Consequently, we obtain

T vol,j
μη (ω) = π

[�̃∗
j ]

2σ j (r)

(�̃∗
j − ω̃μ)(�̃∗

j − ω)(�̃∗
j − ω̃∗

η )

+ π
[ω̃∗

η]2χ∗
j (r, ω̃∗

η )

(ω̃∗
η − ω̃μ)(ω̃∗

η − ω)

+ π

2

ω2χ∗
j (r, ω)

(ω − ω̃μ)(ω − ω̃∗
η )

. (D13)

Summarizing all terms, we arrive at

T vol
μη (ω)

= 2iπω̃∗2
η εI (r, ω̃∗

η )(ω − ω̃μ) + iπω2εI (r, ω)(ω̃μ − ω̃∗
η )

(ω̃μ − ω̃∗
η )(ω − ω̃∗

η )(ω − ω̃μ)

+ π
[�̃∗

j ]
2σ j (r)

(�̃∗
j − ω̃μ)(�̃∗

j − ω)(�̃∗
j − ω̃∗

η )
. (D14)

Finally, inserting these back into the Kramers-Kronig rela-
tion (D2), we obtain

G(r, r′, ω) =
∑
μη

f̃μ(r)Kμη(ω)f̃∗
η (r′), (D15)

where Kμη(ω) = K sur
μη (ω) + Kvol

μη (ω); the surface term is de-
fined from

K sur
μη (ω) =

c2
∫
S(V ) dAs{Iμη(s) − I∗

ημ(s)}
4(ω̃μ − ω̃∗

η )(ω − ω̃μ)
, (D16)

where Iμη = [ns × f̃μ(s)]t · [∇s × f̃∗
η (s)]. The volume term is

defined from

Kvol
μη (ω) =

∫
V ds Rμη(s, ω)f̃μ(s) · f̃∗

η (s)

4(ω̃μ − ω̃∗
η )(ω − ω̃μ)

+ Mμη(ω) (D17)

with

Rμη(s, ω) = 2iω̃∗2
η εI (r, ω̃∗

η )(ω − ω̃μ)

ω − ω̃∗
η

+ 2iω2εI (r, ω)(ω̃μ − ω̃∗
η )

ω − ω̃∗
η

(D18)

and

Mμη(ω) =
∑

j

[�̃∗
j ]

2
∫

V ds σ j (r)f̃μ(s) · f̃∗
η (s)

4(�̃∗
j − ω̃μ)(�̃∗

j − ω)(�̃∗
j − ω̃∗

η )
, (D19)

which originates from the volume part of the Green’s identity.
Taking the subsequent limits of σ j → 0 and γμ → 0 (and

vanishing QNM functions on the cavity boundary and in the
background region), we again recover the usual NM expan-
sion, similar to the one-dimensional case. A formal proof
of this limit in combination with a specific inner product of
QNMs can be found in Ref. [32].
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