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Quantum transduction of a superconducting qubit in an electro-optomechanical
and an electro-optomagnonical system

Roson Nongthombam ,* Pooja Kumari Gupta,† and Amarendra K. Sarma‡

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India

(Received 25 May 2023; accepted 25 September 2023; published 4 October 2023)

We study the quantum transduction of a superconducting qubit to an optical photon in electro-optomechanical
and electro-optomagnonical systems. The electro-optomechanical system comprises a flux-tunable transmon
qubit coupled to a suspended mechanical beam, which then couples to an optical cavity. Similarly, in an electro-
optomagnonical system, a flux-tunable transmon qubit is coupled to an optical whispering gallery mode via a
magnon excitation in a yttrium iron garnet ferromagnetic sphere. In both systems, the transduction process is
done in sequence. In the first sequence, the qubit states are encoded in coherent excitations of phonon (magnon)
modes through the phonon-qubit (magnon-qubit) interaction, which is nondemolition in the qubit part. We then
measure the phonon (magnon) excitations, which reveal the qubit states, by counting the average number of
photons in the optical cavities. The measurement of the phonon (magnon) excitations can be performed at regular
intervals of time.
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I. INTRODUCTION

“Quantum networks” are a rapidly developing area ow-
ing to their potential applications in scaling up quantum
computers by connecting multiple quantum processors [1,2].
Recently, much research has been initiated on developing a
modular quantum computer based on linking multiple su-
perconducting chips where each chip has a few high-quality
qubits. Instead of putting more qubits onto a single chip,
which will result in high error rates and complex hardware,
creating a network of modules containing a few high-quality
qubits on a single chip is better [3–5]. This modular quantum
computing approach has lower error rates and fewer hardware
constraints. In order to connect the modules, optical fibers,
having low propagation loss in a noisy thermal environment,
are employed. The qubit operations must first be transferred to
the flying optical photons in the optical fiber. The transduction
of the qubit to the optical photon cannot be achieved directly
due to the vast separation of the frequencies between the two
(a qubit has frequency in GHz, while an optical photon has it
in THz). One way to achieve transduction is by introducing
a bosonic system as a mediator that couples both the qubit
and the optical photon, forming a hybrid qubit-boson-optical
system [6,7]. In this work, we discuss transduction in two such
hybrid systems, namely, electro-optomechanical and electro-
optomagnonic systems. The electro-optomechanical system
consists of a superconducting microwave circuit coupled to a
mechanical resonator which in turn is connected to an optical
cavity. In recent years, this hybrid system has been extensively
studied experimentally [8–12] and theoretically [13–20] for
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microwave-to-optical photon transduction. There are several
ways of coupling a transmon qubit, formed by a supercon-
ducting microwave circuit, to a mechanical resonator [21–25].
Here we consider a flux-tunable transmon qubit that is coupled
to a suspended mechanical beam [26]. The mechanical beam
is then integrated as an end mirror of an optomechanical cavity
forming the required hybrid system [17].

The hybrid electro-optomagnonic system consists of a
superconducting microwave circuit coupled to a ferromag-
netic magnon excitation [27–30], which is coupled to an
optical photon [31–35]. This hybrid system is less ex-
plored. It is mainly due to the weak coupling between the
magnon and the optical photon. However, there has been
some progress recently [36]. For example, enhancement of
magnon-photon coupling under the triple resonance condition
of input photon, magnon, and output photon is demonstrated
in [33,37]. By implementing the triple resonant condition, a
microwave-to-optical conversion based on multiple magnon
mode interaction with the optical photon mode is demon-
strated in [38]. Another theoretical study to improve the
magnon-optical coupling based on optical optical whispering
gallery mode (WGM) coupled to localized vortex magnon
mode in a magnetic microdisk is done in [39].

In this work, we construct the hybrid electro-
optomagnonical system by merging the schemes proposed
in [34] and in [37]. In the former, a flux-tunable transmon
qubit is coupled to a magnon mode formed in a µm-sized
yttrium iron garnet (YIG) sphere, while in the latter an
optical WGM interacting with magnon mode in a YIG
sphere of radius having a few hundred µm is experimentally
demonstrated. One main difficulty in realizing the proposed
hybrid system may occur due to the size gap in the YIG
spheres. However, the possibility of reducing the sphere used
in the optomagnonic case is pointed out in [37]. Assuming
this to be possible, we consider a YIG sphere of a few
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µm-sized radius that couples both the superconducting qubit
and the optical WGM present in the sphere.

The technique used here for measuring the qubit states
from the optical photon is similar to the one employed in [10].
The idea is to first associate or encode the qubit states in the
magnon (phonon) coherent excitations and then measure these
excitations by counting the average number of the photon in
the optical cavity. Although measuring the qubit states by
detecting the optical photon count is demonstrated in [10],
our scheme exhibits two distinct features. First, the interaction
of the qubit and the magnon (phonon) commutes with the
intrinsic Hamiltonian of the qubit. In other words, the initial
state of the qubit remains the same during the interaction.
Second, due to the coherent and oscillatory evolution of the
magnon (phonon) and photon states during the interaction, we
can perform measurements of the qubit states from the photon
count at regular intervals of time.

The paper is organized as follows. We describe the two
hybrid systems under study in Sec. II. The first sequence of
the transduction process, i.e., encoding the qubit state in the
magnon (phonon) coherent excitation, is studied in Sec. III A.
The measurement of the qubit state from the optical photon
count is done in Sec. III B. Finally, we conclude by summa-
rizing our work in Sec. IV.

II. THE HYBRID SYSTEM

We first consider the hybrid electro-optomechanical sys-
tem. This hybrid system comprises a flux-tunable transmon
[formed by a SQUID loop (EJ , �J )], coupled to a mechanical
resonator [realized by suspending one arm of another SQUID
loop (EM , �M)] [26] which can oscillate out of plane. The
suspended mechanical membrane is then integrated as an end
mirror of an optical cavity forming an optomechanical cavity
[17], as shown in Fig. 1(a). The Hamiltonian of the system is
described by

Ĥeom = Ĥ0 + Ĥtm + Ĥom + Ĥd , (1)

where

Ĥ0 = h̄�câ†â + h̄ωmb̂†b̂ + h̄ωt ĉ
†ĉ − Ec

2
ĉ†ĉ†ĉĉ, (2a)

Ĥtm = h̄gtmĉ†ĉ(b̂ + b̂†), (2b)

Ĥom = h̄gomâ†â(b̂ + b̂†), (2c)

Ĥd = h̄E0
(
â + â†

)
. (2d)

Here â(â†), b̂(b̂†), and ĉ(ĉ†) are the annihilation (creation)
operators of the optical photon, the mechanical phonon,
and the transmon, respectively. Ĥ0 is the Hamiltonian of
the individual components of the hybrid system in the ab-
sence of any interactions. The transmon-mechanical resonator
interaction is described by Ĥtm, and the optomechanical in-
teraction by Ĥom. The strength of the coupling constant gom

is generally quite small (≈1 Hz). So we drive the optome-
chanical cavity to increase the coupling strength. This drive
is included in the Hamiltonian of the hybrid system as Ĥd .
The Hamiltonian Ĥom is written in the optomechanical drive
frame (�c = ωc − ωd , where ωc is the cavity frequency and
ωd is the drive frequency.). The qubit-mechanical and op-
tomechanical interactions arise from the displacement of the
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FIG. 1. (a) Schematic diagram of an electro-optomechanical sys-
tem. On application of an in-plane magnetic field Bz, the transmon
qubit formed by a SQUID loop (EJ ,�J ) is coupled to a mechanical
beam suspended at one arm of the loop (EM ,�M ) [26]. The mechan-
ical resonator is integrated as a movable plate of an optomechanical
cavity whose resonance frequency is ωc. The optomechanical cavity
is shined on by a red-detuned laser light. (b) A YIG ferromagnetic
sphere that supports both the magnon excitation and optical WGM
is placed near a flux-tunable transmon qubit formed by the loop
(EJ , �J ) [34]. An optical channel is mounted on top of the YIG
sphere. A TM-polarized light given at the input of the channel passes
the YIG sphere in a clockwise direction, and a TE-polarized light
emerges at the channel output. An in-plane magnetic field Bz, re-
sponsible for the transmon-magnon coupling, is passed through the
ferromagnetic sphere.

mechanical resonator. On application of an in-plane mag-
netic field Bz, as shown in Fig. 1(a), the displacement of
the mechanical resonator picks up a flux in the Josephson
energy. This motional-dependent Josephson energy leads to
the transmon-mechanical resonator interaction Ĥtm [26]. Note
that in addition to the third-order nonlinear interaction term,
Ĥtm, higher order nonlinear interaction terms are present as
demonstrated in [26]. Here we have excluded these higher
order corrections due to their negligible contribution to the
system dynamics. The mechanical motion of the resonator
also simultaneously alters the resonator frequency of the
optomechanical cavity, which results in the optomechanical
interaction Ĥom. We have considered a small simple harmonic
motion (SHM) displacement of the resonator.

We next consider the hybrid electro-optomagnonic system.
In this system a YIG sphere having a diameter in the µm
range is placed near a flux-tunable transmon formed by a
symmetric SQUID loop (EJ ,�J ) [34]. The YIG sphere is then
mounted on an optical fiber placed just above the plane of
the SQUID loop [37], as shown in Fig. 1(b). Just like in the
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previous system, an in-plane magnetic field Bz is applied. This
field magnetizes the magnetic sphere along the z direction.
Because of this magnetization, a uniform magnetostatic mode
or Kittel mode is excited on the YIG sphere, whose magnetic
moment produces a stray field and traverse along the trans-
mon SQUID loop. Subsequently, the stray field picks up an
additional flux in the loop thereby changing the Josephson
energy and frequency of the transmon and eventually leading
to a transmon-magnon interaction (refer to [34] for further
information on the transmon-magnon interaction). On the
other hand, a TM (transverse magnetic field) polarized light
is pumped at the input of the optical waveguide. When in
resonance, this pumped light or signal is confined in the YIG
sphere forming whispering gallery mode (WGM) in the clock-
wise direction. The TM input signal then interacts with the
magnons in the magnetic sphere [37]. This interaction has two
significant features. One is that it changes the TM-polarized
input signal to a circulating TE WGM and then comes out as
a TE-polarized signal at the output. The other feature is that it
changes the input and output signal frequencies. The amount
of change in the input and output signal frequencies is equiv-
alent to that of the magnon frequency. The above two features
are the outcomes of satisfying the triple-resonance condi-
tion (refer to [33,37] for the triple-resonance condition). The
triple resonance condition is experimentally demonstrated in
a 100–300 µm size ferromagnetic sphere [37]. In our case, the
size of the sphere is considered to be around 3 µm. Although
the size we have considered here is not yet experimentally
realized for the triple resonance interaction, the possibility of
sizing down the sphere is pointed out in [37]. The effective
Hamiltonian of the hybrid electro-optomagnonic system is
described by

Ĥ ′
eom = Ĥ ′

0 + Ĥ ′
t + Ĥ ′

tm + Ĥ ′
om + Ĥ ′

d , (3)

where

Ĥ ′
0 = h̄ωv â†

v âv + h̄ωhâ†
hâh + h̄ω′

mm̂†m̂, (4a)

Ĥ ′
t = h̄ω′

t ĉ
†ĉ − Ec

2
ĉ†ĉ†ĉĉ, (4b)

Ĥ ′
om = h̄g′

om(â†
hâvm̂ + âhm̂†â†

v ), (4c)

Ĥ ′
tm = h̄g′

tmĉ†ĉ(m̂ + m̂†), (4d)

Ĥ ′
d = h̄Ev (âve−iωLt + â†

veiωLt ). (4e)

Here âv (â†
v), âh(â†

h), m̂(m̂†), and ĉ(ĉ†) are the annihila-
tion (creation) operators of the input TM optical photon, the
output TE optical photon, the magnon, and the transmon,
respectively. Ĥ ′

0 and Ĥ ′
t are the Hamiltonian of the individual

components of the hybrid system in the absence of any inter-
actions. The transmon-magnon interaction is described by Ĥ ′

tm
and the optomagnonic interaction by Ĥ ′

om. Here the interaction
term Ĥ ′

tm is for the symmetric SQUID loop. Ĥ ′
d is the optical

drive of the TM mode.

III. TRANSDUCTION

Here we discuss the quantum transduction of qubit states
to optical photons via mechanical phonons or YIG sphere
magnons. The transduction process is realized in sequence.
First, we encode the qubit states to the phonon (magnon)

excitations, and next, we measure these excitations by count-
ing the average number of photons in the optical cavity. This
section is divided into two parts. The first part discusses the
process of encoding the qubit states in the mechanical phonon
states, and in the second part, we discuss how the phonon
states, and hence the qubit states, are determined from the
optical photon number.

A. Qubit-phonon (qubit-magnon) transduction

We first consider the qubit-mechanical interaction in
the hybrid electro-optomechanical system and show how
qubit states can be encoded to the phonon excitations. The
qubit-mechanical coupling rate gtm is much larger than the
single-photon optomechanical coupling rate gom. So, if there
is no optomechanical cavity drive, we can neglect the optome-
chanical interaction in the Hamiltonian given by Eq. (2). Now
we are left with just the electromechanical part of the hybrid
system:

Ĥem = Ĥ0 + h̄gtmĉ†ĉ(b̂ + b̂†). (5)

Here the coupling constant gtm is dependent on the external
flux bias �m as [26]

gtm = g0 sin(φb), (6)

where φb = π�b
�0

and �0 = h
2e is the flux quantum. g0 is cou-

pling constant. It is dependent on the transmon impedence,
SQUID asymmetry, and applied magnetic field [26]. Next, we
enhance the coupling rate by modulating it parametrically by
applying a weak ac bias φb = φac cos(ωact ) (φac � 1) as done
in [34]:

gtm = g0φac cos(ωact ). (7)

By substituting this modulated time-dependent coupling con-
stant in the Hamiltonian (5), and then transforming the
resultant Hamiltonian in the reference frame of the ac drive
(U = eiωactb†b), we get

Ĥ ′
em = Ĥ0 + h̄g0φacĉ†ĉ(b̂ + b̂†) − ωacb̂†b̂. (8)

Here we have ignored the fast rotating terms since 2ωac �
g0φac. To do the qubit transduction, we convert the transmon
to a transmon qubit by considering only the first two energy
levels. We then let the system evolve under resonant modula-
tion (ωm = ωac). If the qubit is initially in the ground state |g〉
and the mechanical resonator is in the vacuum state |0b〉, then
after some time t , the qubit will remain in the ground state
and the mechanical resonator will change to a coherent state
|βb = ig0φact〉. Similarly, if the qubit is initially in the excited
state |e〉 and the resonator in the vacuum state, then the qubit
will remain in the excited state, and the mechanical resonator
will evolve to another coherent state |βb = −ig0φact〉 after
some time t :

|g, 0b〉0 −→ |g, βb = g0φact〉t ,
|e, 0b〉0 −→ |e, βb = −ig0φact〉t .
An overall phase term induced from the intrinsic qubit

Hamiltonian is not included as it does not contribute to the
transduction process. We see that as the system evolves, the
mechanical resonator changes from a vacuum state to a coher-
ent state, whereas the qubit state remains as it is. It is because
the interaction between the qubit and the mechanical resonator
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commute with the intrinsic Hamiltonian of the qubit. In other
words, the interaction is “nondemolition” in the qubit part.

We next consider transduction in the electro-optomagnonic
case and analyze how qubit states can be encoded to magnon
excitations. Just like in the previous case, we can neglect the
optomagnonic part and consider only the electro-magnonic
part since the single magnon-photon coupling g′

om is much less
than the transmon-magnon coupling g′

tm for no optical drive.
The electro-magnonic part is described by

Ĥ ′
em = Ĥ ′

0 + h̄g′
tmĉ†ĉ(m̂ + m̂†), (9)

where

g′
tm = g′

0
sin(φm)√| cos(φm)| , (10)

where φm = π�m
�0

and �0 = h
2e is the flux quantum. g0 is the

coupling constant, which depends on the radius of the sphere
and the distance between the sphere and the loop [34]. Similar
to the previous system, here also we enhance the coupling rate
by modulating it parametrically by applying a weak ac bias
φm = φ′

ac cos(ω′
act ) (φ′

ac � 1) as done in [34].

g′
tm = g′

0φ
′
ac cos(ω′

act ). (11)

Substituting Eq. (11) in Eq. (9) and then transforming in drive
frame (U = eiω′

actm†m) gives

Ĥ ′
em = Ĥ0 + h̄g′

0φ
′
acĉ†ĉ(m̂ + m̂†) − ω′

acm̂†m̂. (12)

The fast rotating terms are neglected for 2ω′
ac � g′

0φ
′
ac. We

now take the first two levels of the transmon and allow the
system to evolve. For resonance modulation (ω′

m = ω′
ac), we

obtain results similar to that of the electro-mechanical case:
|g, 0m〉0 −→ |g, βm = ig′

0φ
′
act〉t ,

|e, 0m〉0 −→ |e, βm = −ig′
0φ

′
act〉t .

Here |g, 0m〉0 and |e, 0m〉0 are the initial states, and |g, βm =
ig′

0φ
′
act and |e, βm = −ig′

0φ
′
act〉t are the final states of the

qubit-magnonic system after time t . An overall phase is not
included.

So far, we have not included the thermal environment of
the mechanical resonator, optical cavity, and transmon, which
will lead to the dissipation of the system. To include the
noisy environment, we allow the system to evolve under the
Lindblad master equation. For the electro-mechanical system

˙̂ρem = −i[Ĥem, ρ̂em] + 	L[σ̂z] + 	L[σ̂−]

+ γb(nth + 1)L[b̂] + γbnthL[b̂†], (13)

and for the electro-magnonic system

˙̂ρ ′
em = −i[Ĥ ′

em, ρ̂ ′
em] + 	L[σ̂z] + 	L[σ̂−]

+γm(n′
th + 1)L[m̂] + γmn′

thL[m̂†], (14)

where L[ô] = (2ôρ̂ô† − ô†ôρ̂ − ρ̂ô†ô)/2. Here 	 is the de-
coherence and dephasing rate of the transmon qubit, γb(γm)
is the decay rate of phonon (magnon), nth(n′

th) is the ther-
mal phonon (magnon) number, and ρ̂em(ρ̂ ′

em) is the density
operator of the qubit-mechanical (qubit-magnonic) system.
We have neglected the thermal photons of the optical cavity
due to the high frequency of the optical photon. To observe
the coherent excitations of phonon and magnon in the dissi-
pating environment, we plot the Wigner functions in Fig 2.
Here we observe that the Wigner functions of the phonon

FIG. 2. Wigner function representation of the coherent states of
phonon and magnon. In (a) and (c), the phonon and the magnon
excites to the coherent states |βb = 3i〉t and |βm = 3i〉t when the
qubit is in the ground state |g〉. The coherent states of the phonon
|βb = −3i〉t and the magnon |βm = −3i〉t when the qubit is in the
exited state |e〉 are shown in (b) and (d), respectively. The coherent
states are taken at time t = τ = (3/2π ) µs for coupling constants
g0φac = g′

0φ
′
ac = 2π MHz. The other parameters are γb/2π = 1 Hz,

nth = 400, γm/2π = 0.1 GHz, n′
th = 0.5, 	/2π = 0.1 GHz. The

colorbar shows the Wigner function values (denoted by W) of the
coherent states.

and magnon at some time τ = (3/2π ) µs and for coupling
constants g0φac = g′

0φ
′
ac = 2π MHz show a coherent state

profile. The amplitude of the coherent states when the qubit
is in the ground state is |βb = ig0φacτ 〉 = |3i〉 for the phonon
and |βm = g′

0φ
′
acτ 〉 = |3i〉 for the magnon, as shown in the

figure. On the other hand, when the qubit is in the excited
state, the coherent amplitudes are |βb = −ig0φacτ 〉 = |3i〉 and
|βm = −ig′

0φ
′
acτ 〉 = |3i〉. These changes in the amplitude of

the coherent states corresponding to the qubit ground and
excited states are similar to the ones that are observed in the
nondissipative case.

So, in both the dissipative and nondissipative qubit-
mechanical and qubit-magnonic systems, we observe that the
ground state of the qubit is encoded or associated with a coher-
ent excitation of both the phonon and magnon, and the excited
state of the qubit is encoded in another coherent excitation
of the same magnon and phonon having amplitudes exactly
opposite to that of the excitation associated with the qubit
ground state.

B. Qubit-optical photon transduction

We have seen that the state of the qubit can be encoded
in the coherent excitations of phonon and magnon. Here we
will complete the qubit transduction sequence by transferring
the phonon and magnon states to the optical photon. In the
phonon case, this can be achieved through the optomechanical
interaction, and in the magnon case, it can be achieved through
the optomagnonic interaction satisfying the triple-resonant
condition.

First, we consider the optomechanical transfer. We have
previously seen from the electro-mechanical interaction that
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the mechanical resonator can be coherently excited with dif-
ferent amplitudes depending on the initial states of the qubit.
So we first excite the mechanical resonator to coherent states
|βb = ±ig0φact〉 and then switch off the interaction g0φac by
turning off the flux bias φac. The interacting system remaining
is then the optomechanical system:

Ĥ = h̄�câ†â + h̄ωmb̂†b̂ + h̄gomâ†â(b̂† + b̂) + h̄E0(â† + â).
(15)

Since gom ≈ 1 Hz is very weak, we drive the cavity with an
intense laser. Because of this strong drive, we can separate
the amplitudes of the mechanical resonator and optical cavity
into a semiclassical coherent part (β, α) and a small quantum
fluctuation (δâ, δb̂) around it, i.e., â → δâ + α and b̂ → δb̂ +
β. We substitute this separation in Eq. (15). At the steady state,
the semiclassical coherent parts are given by

α = E0

κ/2 − i�c + i(β + β∗)gom
, (16a)

β = igom|α|2
γb/2 + iωm

. (16b)

In a typical experiment, the magnitude of α is of the order
103. By retaining only the interacting term, which is multi-
plied by the factor α(|α| ≈ 103), the Hamiltonian (15) reads

Ĥom = h̄�′â†â + h̄ωmb̂†b̂ + h̄Gom(â† + â)(b̂† + b̂), (17)

where � = �c − (β + β∗)gom and Gom = gom|α| for a con-
stant phase preference of alpha. For simplicity we have
rewritten δâ to â and δb̂ to b̂. Note that while writing Eq. (17),
we have ignored all the constant terms and all the linear terms
containing â, â†, b̂, and b̂† are equated to zero [7].

The coherent state of the mechanical resonator prepared
from the electro-mechanical interaction is in the mechanical
frame ωm = ωac. So we transform the Hamiltonian (17) in
the mechanical frame. We further transform the system in the
cavity detuning frame �. Therefore, for a red-detuned laser
drive � = ωm, Eq. (17) becomes

Ĥom = h̄Gom(â†b̂ + b̂†â). (18)

Here the fast rotating terms are ignored provided Gom � 2ωm.
For studying the state transfer from mechanical phonon to
optical photon, we write the dynamics of average number of
photon and phonon in the presence of dissipation:

d〈â†â〉
dt

= −i(〈â†b̂〉 − 〈b̂†â〉)Gom − κ〈â†â〉, (19a)

d〈b̂†b̂〉
dt

= −i(〈b̂†â〉 − 〈â†b̂〉)Gom − γb〈b̂†b̂〉
+ γbnth, (19b)

d〈â†b̂〉
dt

= −(κ + γb)

2
〈â†b̂〉 − iGom(〈â†â〉

− 〈b̂†b̂〉). (19c)

By choosing the initial state of the mechanical resonator as the
coherent state |βb(0)〉 prepared from the electro-mechanical
interaction, the average number of photon in the absence of
dissipation is given by

〈â†â(t )〉 = (g0φacτ )2[1 − sin(2Gomt )] (20)

FIG. 3. Evolution of the average number of photon 〈â†â〉 in
the optical cavity. (a) In the absence of dissipation, the oscillatory
evolution of 〈â†â〉 keeps on going. When the qubit is in the ground
state, the oscillation is represented by the dashed red line, and when
the qubit is in the ground state, the oscillation is represented by the
dotted black line. The evolution of average photon number in the
presence of dissipation is shown in (b) for κ = 2Gom, (c) and (d) for
2κ = Gom. In (a), (b), and (c), κ/2π = 0.01 GHz is used, and in (d),
κ/2π = 1 MHz is used. The other common parameters are γ = 1 Hz
and nth = 400.

when the qubit is in the ground state (|βb(0)〉 = | + ig0φacτ 〉),
and

〈â†â(t )〉 = (g0φacτ )2[1 + sin(2Gomt )] (21)

when the qubit is in the excited state (|βb(0)〉 = | − ig0φacτ 〉).
Here we have taken the initial state of the cavity photon to
be |α(0)〉 = |g0φacτ 〉. The reason for choosing this particular
initial state is discussed in the Appendix. The evolution of
the average photon number is shown in Fig. 3(a). From the
figure, we observe that if we measure the average photon
number in the cavity at the interval of t = π/2Gom (starting
from t = π/4Gom), then we either detect or do not detect
the presence of photons depending on the state of the qubit.
If we detect photons in the cavity at the interval of t =
(2n + 1)π/4Gom, where n = 0, 2, 4, . . ., then we know that
the qubit is in the ground state, and if at the same interval, we
do not detect any photons, then the qubit is in the excited state.
Similarly, if we detect photons in the cavity at the interval
of t = (2n + 1)π/4Gom, where n = 1, 3, 5, . . ., then we know
that the qubit is in the excited state, and if at the same interval,
we do not detect any photons, then the qubit is in the ground
state. We have chosen the above particular intervals because
the average photon numbers at these intervals are at the maxi-
mum separation, and the qubit states can be determined more
efficiently than the other intervals.

In the presence of dissipation, the oscillatory nature of
〈â†â(t )〉 decays with time, and in order to know the state of
the qubit by counting the photon number we require that the
optomechanical coupling rate Gom should be comparable to
the decay rate κ of the cavity. In Fig. 3(b) we show the decay
of cavity photon number for κ = 2Gom, a moderate coupling
strength. At this coupling strength, we are able to make an
efficient measurement of qubit states at just two intervals,
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FIG. 4. Probability distribution of coherent states of the optical
photon number in the presence of dissipation. (a) and (b) Distribution
when the qubit is in the ground and excited state, respectively. The
coherent states are measured at time τ = 0.075 µs. The average
photon number in (a) is 3.4 and 0 in (b).

t = 0.02 µs and t = 0.075 µs, before the number of average
photon decay to zero. At a coupling strength lower than this,
we will not be able to identify the qubit states from the optical
photon. We also plot the case when the coupling strength is
twice the decay rate in Fig. 3(c). Here more oscillations can
be seen, and hence more time intervals to measure the qubit
states. Furthermore, we can increase the time period for a
same number of oscillations by decreasing the decay rate κ

as shown in Fig. 3(d).
One could go on and find the fidelity of state transfer

of coherent state from the mechanical phonon to the optical
photon. However, in our case, it is not necessary since our
purpose of determining the qubit state is achieved by simply
counting the cavity photon number. Since we are dealing with
coherent states, we can quantify how well the measured pho-
ton number indicates that the qubit is in a particular state. In
Fig. 4 we plot the probability distribution of the coherent state
for the κ = 2Gom coupling case [Fig. 3(b)] at the measurement
time τ = 0.075 µs. We see that even when the qubit is in
the excited state, there is still some probability of not finding
any photons in the cavity. The difference in the probability
of not finding photons in the cavity when the qubit is in the
excited state (Pe = 0.035) and when it is in the ground state
(Pg = 0.999) gives the efficiency of determining the qubit
state, P = Pe − Pg = 0.964. This efficiency decreases for less
average photon number and vice versa. So we need to repeat
the counting measurement several times before concluding the
nature of the qubit state.

We now move on to the optomagnonic state transfer. Just
like in the optomechanical case, we first excite the magnon
to coherent state |βm = ±ig′

omφ′
omt〉 for some time t , and then

switch off the interaction g′
omφ′

om by turning off the flux bias
φ′

om. The remaining optomagnonic system in the drive frame
then reads

Ĥ ′
om = h̄δv â†

v âv + h̄δhâ†
hâh + h̄ω′

mm̂†m̂ + h̄Ev (âv + â†
v )

× h̄g′
om(â†

hâvm̂ + âhm̂†â†
v ), (22)

where δh = ωh − ωL and δv = ωv − ωL. We write the dynam-
ics of the system:

dm̂

dt
= −

(
γm

2
+ iω′

m

)
m̂ + ig′

omâhâ†
v, (23a)

dâv

dt
= −

(
κv

2
+ iδv

)
âv + ig′

omâhm̂† + iEv, (23b)

dâh

dt
= −

(
κh

2
+ iδh

)
âh + ig′

omâvm̂. (23c)

Here γm, κv , and κh are the decay rates of magnon, input
TM field, and output TE field, respectively. The intrinsic
magnon-photon coupling rate g′

om is of the order of 10Hz,
which is relatively very weak. We can enhance this coupling
strength up to the order of MHz by performing an optical
drive (Ev ) to the ferromagnetic sphere. After the drive, we
can separate the input field into semiclassical mean ampli-
tude (αv ) and small quantum fluctuation around it (δâv ), i.e.,
âv → αv + δâv . Substituting this separation in Eq. (23) and
writing the quantum and classical parts separately, we have

dm̂

dt
= −

(
γm

2
+ iω′

m

)
m̂ + ig′

om(âhâ†
v + âhα

∗
v ), (24a)

dâv

dt
= −

(
κv

2
+ iδv

)
âv + ig′

om(âhm̂† + αhm̂†), (24b)

dâh

dt
= −

(
κh

2
+ iδh

)
âh + ig′

omâvm̂, (24c)

and

dαv

dt
= −

(
κv

2
+ iδv

)
αv + iEv. (25)

The linear coupling terms in Eq. (24) are multiplied by a factor
of αv or α∗

v (|αv| ≈ 103) compared to the nonlinear coupling
terms. Therefore, we can neglect the nonlinear coupling terms
and retain only the linear coupling terms. The corresponding
linear Hamiltonian reads

Ĥ ′
om = h̄δv â†

v âv + h̄δhâ†
hâh + h̄ω′

mm̂†m̂

+ h̄G′
om(â†

hm̂ + m̂†âh), (26)

where G′
om = g′

om|αv|. |αv| is given by the steady value of
Eq. (25).

Since the initial coherent state of the magnon prepared
from the electro-magnonic interaction is in the magnon frame,
we transform the Hamiltonian (26) in the magnon frame.
Thus, for a resonant optical drive δv = 0, the resultant Hamil-
tonian of the system in the magnon as well as the output TE
field frame of reference yields

Ĥ ′
om = h̄G′

om(â†
hm̂ + m̂†âh). (27)

Here since the interaction satisfies the triple resonance condi-
tion, we have taken δh = ω′

m or ωh = ωv + ω′
m and ignored

the fast-rotating terms provided 2ω′
m � G′

om. We see that
Hamiltonian (27) and (18) are identical. Therefore, the anal-
ysis that we have done for determining the qubit states in the
optomechanical system is also applicable here. The dissipative
and nondissipative dynamics studied in the optomechanical
system and all the plots in Figs. 3 and 4 will be similar.
The optomagnonic parameters that produce similar plots in
Fig. 3 are G′

om = 0.5κh, γm = 0.1 Mhz, κh = 0.01 GHz, and
n′

th = 0.5.

IV. CONCLUSION

In conclusion, we have studied quantum transduction of
a superconducting flux-tunable transmon qubit in two hybrid
systems: electro-optomechanical and electro-optomagnonical
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systems. The realization and advancement of quantum trans-
duction in such hybrid systems is very crucial for the
development of quantum networks, quantum internet, etc. The
transduction is done in two stages. First, the qubit states are
encoded in the coherent excitations of a mechanical phonon
or ferromagnetic sphere magnon without disturbing the qubit
state (nondemolition interaction), and in the next stage these
excitations are identified by counting the average number of
photons in the optomechanical or optomagnonic WGM cav-
ity. Because of the coherent interaction between the phonon
(magnon) and the optical photon, the average photon number
oscillates with time. The nature of the oscillation, when the
qubit is in the ground state and when it is in the excited
state, is exactly opposite. As a result, multiple measurements
of the photon number at a regular interval of time could be
made. This enables one to have information about the state
of the qubit at each interval. In the presence of dissipation,
the optomechanical and optomagnonical coupling strength
should be at least moderately strong in order to perform any
measurements before the photon number altogether decays to
zero. The required coupling strength in the optomechanical
system is extensively studied. But, in the optomagnonic sys-
tem, the required coupling regime to perform the transduction
is not yet explored. However, the possibility of obtaining
optomagnonic coupling strength up to 10 MHz is discussed
in [37]. One of the ways to reach such magnitude of coupling
is to reduce the size of the YIG sphere to a few µm, which
is comparable to the size considered in the hybrid system
proposed in this work.
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APPENDIX: NONDISSIPATIVE DYNAMICS

The analytical solution of Eq. (19) in the absence of dissi-
pation is given by

〈â†â〉 = 1
2 [|α0|2 + |β0|2 + (|α0|2 − |β0|2) cos(2Gomt )

− i(α∗
0β0 − α0β

∗
0 ) sin(2Gomt )]. (A1)

Here |α0|2 = 〈â†â〉0 and |β0|2 = 〈b̂†b̂〉0 are the initial values
of the photon and phonon (magnon). The above equation can
be further simplified by simply choosing |α0|2 = |β0|2:

〈â†â〉 = |α0|2 − Im(α∗
0β0) sin(2Gomt ). (A2)

The initial coherent amplitudes of the phonon (magnon)
is fixed at β0 = ±ig0φacτ . To keep the oscillatory part in
Eq. (A2), which is necessary for the transduction, we require
that the initial coherent amplitude of the cavity photon α0

should have a nonzero real part. Therefore, we choose α0 =
g0φacτ . The oscillation of Eq. (A2) then becomes

〈â†â〉 = (g0φacτ )2[1 − sin(2Gomt )] (A3)

when the qubit is in the excited state (β0 = −ig0φacτ ), and

〈â†â〉 = (g0φacτ )2[1 + sin(2Gomt )] (A4)

when the qubit is in the ground state (β0 = ig0φacτ ).
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