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Spin-orbit-coupling-induced phase separation in trapped Bose gases

Zhiqian Gui,1 Zhenming Zhang,2 Jin Su ,3 Hao Lyu ,4 and Yongping Zhang 1,*

1Department of Physics, Shanghai University, Shanghai 200444, China
2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China

3Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
4Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan

(Received 14 August 2023; accepted 11 October 2023; published 27 October 2023)

In a trapped spin-1/2 Bose-Einstein condensate with miscible interactions, a two-dimensional spin-orbit
coupling can introduce an unconventional spatial separation between the two components. We reveal the physical
mechanism of such a spin-orbit-coupling-induced phase separation. Detailed features of the phase separation are
identified in a trapped Bose-Einstein condensate. We further analyze differences of phase separation in Rashba
and anisotropic spin-orbit-coupled Bose gases. An adiabatic splitting dynamics is proposed as an application of
the phase separation.
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I. INTRODUCTION

Phase separation is a generic phenomenon from classi-
cal physics to quantum physics, for example, the oil-water
separation and spin Hall effect [1]. Two-component atomic
Bose-Einstein condensates (BECs) provide a tunable plat-
form for the investigations of phase separation [2–8]. The
two components can be realized by using different atomic
species or same species with different electric hyperfine states.
Such a system features intra and intercomponent interac-
tions. When the intercomponent interactions dominate over
the intracomponent interactions, two components prefer to
be phase-separated to minimize the intercomponent interac-
tions [9,10]. The interactions for phase separation are called
immiscible. The immiscibility of two-component BECs are
completely tunable in experiments. The phase separation ef-
fect induces rich physics in quantum gases, such as the
formation of vector solitons and vortex-soliton structures, co-
herent spin dynamics, and pattern formations [11–19].

In a two-component BEC, an artificial spin-orbit coupling
can be synthesized between different hyperfine states via
Raman lasers [20–23]. Such a Raman-induced spin-orbit cou-
pling is one dimensional. Rashba spin-orbit coupling, which
is two dimensional, has also been experimentally realized in
BECs [24,25]. The implementation of spin-orbit coupling in
BECs gives rise to exotic quantum phases and rich superfluid
properties, which opens an avenue for simulating topolog-
ical matters and exploring superfluid dynamics [25–32]. In
a Raman-type spin-orbit-coupled BEC, a stripe phase [33]
can exist in miscible interactions [26,28]. In contrast, for a
Rashba spin-orbit-coupled BEC, the stripe phase may appear
in the immiscible regime [34]. Very interestingly, the authors
of Refs. [35,36] numerically found a spatially phase-separated
ground state in a Rashba-coupled and harmonically trapped
BEC with miscible interactions. Such a ground state in the
miscible regime is unexpected for the usual two-component
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BEC without spin-orbit coupling. The authors of Ref. [35]
identified that the exotic phase separation satisfies a com-
bined symmetry of parity and a spin flip. The existence of
this state is attributed to by the authors of Refs. [36,37] to
a spin-dependent force. The force is intrinsic in the presence
of Rashba spin-orbit coupling and drives the two components
moving in opposite directions. The force concept provides an
intuitive picture for the unexpected phase separation. How-
ever, its weakness is obvious. The force is proportional to
the square of the Rashba spin-orbit coupling strength. There-
fore, a large strength is expected to generate a larger spatial
separation. In contrast, the numerical results show that the
separation decreases with an increasing strength [36,37]. So
far, the physical origin of the unconventional phase separation
in the miscible regime is yet to be addressed. It calls for
an unambiguous interpretation since the phase separation has
already found a broad application in other excited states. In
Refs. [38,39], a spin-orbit-coupled bright soliton was found
to be spatially separated in the center of mass between the
two components. The dynamics of the separation in bright
solitons is analyzed by varying spin-orbit coupling strength
[40]. A spin-orbit-coupled single-vortex state, in which each
component carries a singly quantized vortex, shows spatial
separation between two components, and the separation is
inversely proportional to spin-orbit coupling strength [41].
Recently, the dynamics of the separation is triggered by a
sudden quench of spin-orbit coupling strength in a trapped
BEC [42]. All mentioned separations occur in the miscible
regime, causing a counterintuitive expectation.

In this paper, we provide the physical mechanism for the
unconventionally spin-orbit-coupling-induced phase separa-
tion. Eigenstates of a two-dimensional spin-orbit coupling
have a momentum-dependent relative phase ϕ(�k) between
the two components. Closely around a fixed momentum �k0,
the relative phase may present a linear dependence ϕ(�k) ∝
(�k − �k0) · �r0 with a constant �r0. The linear dependence is
a momentum kick to move two components relatively. The
superposition of these eigenstates distributing around �k0
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constitutes a spatially separated wave packet. The separation,
whose amplitude can be calculated, is a completely single-
particle effect of spin-orbit coupling. A weakly trapped BEC
with two-dimensional spin-orbit coupling is a perfect platform
to simulate the phase separation. The miscible interactions
force atoms to condense at a certain spin-orbit-coupled mo-
mentum state with a momentum-dependent relative phase.
Meanwhile, weak traps broaden the condensed momentum so
that the condensation occupies momentum states in a narrow
regime, which give rise to the linear dependence of the relative
phase. We numerically identify detailed features of spin-
orbit-coupling-induced phase separation in a trapped BEC
with miscible interactions by analyzing its ground states. The
phase separation matches with the single-particle prediction
when spin-orbit coupling strength dominates. We also com-
pare the separation differences between Rashba and an
anisotropic spin-orbit coupling. Finally, as an application
of the phase separation, we propose an adiabatic splitting
dynamics.

The paper is organized as follows. In Sec. II, the physical
mechanism of spin-orbit-coupling-induced phase separation
is unveiled. The separation amplitudes are predicted. From the
mechanism, we know that the separation is a single-particle
effect. In Sec. III, we identify the separated features of ground
states in a trapped BEC with Rashba spin-orbit coupling
by the imaginary-time evolution method and the variational
method. In Sec. IV, we reveal the effect of the anisotropy
of spin-orbit coupling on the phase separation. In Sec. V,
we propose an adiabatic dynamics to dynamically split two
components basing on the phase separation. For the complete-
ness of our discussion, immiscible-interaction-induced phase
separation is shown in Sec. VI. The conclusion follows in
Sec. VII.

II. SPIN-ORBIT-COUPLING-INDUCED PHASE
SEPARATION

Rashba spin-orbit-coupling-induced phase separation is a
completely single-particle effect. We reveal the physical ori-
gin of such phase separation. The Rashba spin-orbit-coupled
Hamiltonian is

HSOC = p2
x + p2

y

2
+ λ(pxσy − pyσx ), (1)

where px and py are the momenta along the x and y directions,
respectively, λ is the spin-orbit coupling strength, and σx,y are
spin-1/2 Pauli matrices. The eigenenergy of the Hamiltonian
has two bands. The lower band is

E = k2
x + k2

y

2
− λ

√
k2

x + k2
y , (2)

with associated eigenstates being

� = 1√
2

eikxx+ikyy

(
ei ϕ

2

e−i ϕ

2

)
. (3)

Since the Hamiltonian possesses continuously translational
symmetry, the eigenstates are plane waves with kx,y being
the quasimomenta along the x and y directions, respectively.
The outstanding feature is that Rashba spin-orbit coupling
generates a relative phase ϕ between the two components,

which satisfies

tan(ϕ) = kx

ky
. (4)

It is noted that (kx, ky ) = (0, 0) is a singularity, closely around
which the relative phase cannot be defined. Therefore, the
eigenstate in Eq. (3) works beyond the regime around the
singularity.

We construct a wave packet by superposing these eigen-
states

� =
∫ ∞

−∞
dkxdkyG(k − k̄)�, (5)

with the superposition coefficient G being a momentum-
dependent localized function centering around k̄. For a
straightforward illustration, we take a Gaussian distribution
as an example,

G(k − k̄) = 1

2π
√

�x�y
e− (kx−k̄x )2

2�x
− (ky−k̄y )2

2�y . (6)

The Gaussian-distributed superposition coefficient is centered
at k̄ = (k̄x, k̄y) with the packet widths

√
�x,y along the x

and y directions. If the widths are narrow, the superposition
mainly happens around k̄. Therefore, we analyze the eigen-
states around k̄, and the relative phase becomes

ϕ(k) ≈ ϕ(k̄) + (kx − k̄x )
∂ϕ

∂kx

∣∣∣∣
k̄

+ (ky − k̄y)
∂ϕ

∂ky

∣∣∣∣
k̄

, (7)

which is linearly dependent on the momenta kx,y. This is true
since expanding any continuous function around a certain
parameter point leads to dominant linear-dependence. Such
linear dependence in Eq. (7) induced a momentum kick,
generating the relative motion between the two components.
After substituting the Gaussian distribution in Eq. (6) and ϕ in
Eq. (7) into Eq. (5) and performing integration, we obtain the
wave packet

� = 1√
2

eik̄xx+ik̄yy

×
⎛
⎝e

− �x
2

[
x+ 1

2
∂ϕ(k̄)
∂kx

]2
− �y

2

[
y+ 1

2
∂ϕ(k̄)
∂ky

]2
+i ϕ(k̄)

2

e
− �x

2

[
x− 1

2
∂ϕ(k̄)
∂kx

]2− �y
2

[
y− 1

2
∂ϕ(k̄)
∂ky

]2−i ϕ(k̄)
2

⎞
⎠. (8)

The outstanding feature of the resultant wave packet is that the
two components have a relative position displacement. The
displacements along the x and y directions are

∂ϕ(k)

∂kx

∣∣∣∣
k̄

= k̄y

k̄2
x + k̄2

y

,
∂ϕ(k)

∂ky

∣∣∣∣
k̄

= − k̄x

k̄2
x + k̄2

y

. (9)

The nonzero displacements give rise to a phase separation
between two components. From the construction of the phase-
separated wave packets, we can see that the origin of the
phase separation is the existence of the momentum-dependent
relative phase in eigenstates and the occupation of these eigen-
states confined in a narrow momentum regime.

The Rashba spin-orbit-coupled BEC is an ideal platform
to generate such a phase-separated state. The lower band in
Eq. (2) has infinite energy minima which locate at the quasi-
momenta satisfying k2

x + k2
y = λ2; therefore, kx = λ cos(θ )
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and ky = λ sin(θ ) with θ being an angle. The interacting
atoms spontaneously choose one of the energy minima to
condense and form a BEC [33,35,36]. This means that θ is
spontaneously chosen to be a value θ̄ . In real atomic BEC
experiments, traps are inevitable. A weak harmonic trap natu-
rally broadens the BEC momentum giving rise to a Gaussian
distribution centered at (k̄x, k̄y ) = λ(cos(θ̄ ), sin(θ̄ )). Further-
more, the broadening is narrow so that Eq. (7) is satisfied.
Consequently, the Rashba-coupled BEC presents as a phase-
separated state in Eq. (8) with ∂ϕ(k)/∂kx|k̄ = sin(θ̄ )/λ and
∂ϕ(k)|/∂ky|k̄ = − cos(θ̄ )/λ. The position displacement is in-
versely proportional to the spin-orbit coupling strength λ,
which clearly indicates Rashba spin-orbit-coupling-induced
phase separation. When the strength goes to zero (λ ≈ 0), the
momentum (k̄x, k̄y) ≈ (0, 0) becomes a singularity so that the
eigenstate in Eq. (3) is not physical. Without the spin-orbit
coupling, the BEC becomes the conventional one, and there is
no phase separation between two components. If the strength
is enhanced gradually from zero, the position displacements
should continuously increase from zero to catch up with the
predicted value [sin(θ̄ )/λ,− cos(θ̄ )/λ]. When the strength λ

is large enough, the position displacements decrease towards
zero again since they are inversely proportional to λ. In this
case, the plane-wave phase (k̄xx + k̄yy) dominates, while the
relative phase in the eigenstates [Eq. (3)] is independent of
λ, i.e., tan(ϕ) = k̄x/k̄y = cot(θ̄ ). Consequently, the effect of
the relative phase is obliterated by the plane-wave phase and
phase separation disappears.

According to the above mechanism of the phase separation,
if there is no weak trap to broaden the condensed momentum,
the spin-orbit-coupled BEC cannot present the position dis-
placement. This is why a spatially homogeneous BEC with
spin-orbit coupling does not show phase separation as studied
in most literature. Nevertheless, to broaden the condensed
momentum without traps, we may consider spatially localized
excitation states, such as bright solitons and vortices. These
spatially self-trapped states naturally broaden the condensed
momentum. Therefore, the resultant phase separation between
two components in Rashba spin-orbit-coupled bright solitons
and quantum vortices, which have been numerically revealed
in Refs. [38,39,41], can be understood by a generalization
of our mechanism. Interestingly, the position displacement of
the quantum vortex is inversely proportional to the spin-orbit
coupling strength as uncovered numerically in Ref. [41], can
be explained unambiguously.

We emphasize that the spin-orbit-coupling-induced phase
separation only works for a two-dimensional spin-orbit cou-
pling. For an one-dimensional spin-orbit coupling, i.e., the
Raman-induced one, the single-particle Hamiltonian is H ′ =
p2

x/2 + λpxσz + �σx with � being the Rabi frequency due to
Raman lasers [20,23]. The lower-energy band of this system
is E = k2

x /2 − √
λ2k2

x + �2 with the eigenstates being � =
eikxx[− sin(�), cos(�)]T . Here, tan(�) = �/(λkx ), and T is
the transpose operator. It is noted that there is no momentum-
dependent relative phase in the eigenstates. Therefore, the
Raman-induced spin-orbit coupling, in principle, cannot gen-
erate the phase separation.

In the above, we revealed the physical mechanism of
Rashba spin-orbit-coupling-induced phase separation. We
demonstrate that a weakly trapped spin-orbit-coupled BEC

satisfies the requirements of the mechanism. The quantum
phase in trapped spin-orbit-coupled BECs may be phase-
separated states. The spin-orbit-coupling-induced phase sep-
aration is a single-particle effect. The role of nonlinearity in
the BEC is to spontaneously choose one energy minimum for
condensation. In the following, we study the ground states
of a trapped spin-orbit-coupled BEC and identify features of
spin-orbit-coupling-induced phase separation.

III. RASHBA SPIN-ORBIT-COUPLING-INDUCED PHASE
SEPARATION IN TRAPPED BECS

We consider a quasi-two-dimensional spin-1/2 BEC with
Rashba spin-orbit coupling. The trap frequency ωz along the
z direction is assumed to be very large so that the dynamics
is completely frozen into the ground state of the z-directional
harmonic trap. Such a strong trap can be implemented by an
optical lattice in the z direction in experiments. After integrat-
ing the atomic state along the z direction, we are left with
a quasi-two-dimensional system. Rashba spin-orbit coupling
can be artificially implemented by an optical Raman lattice
[24], generating the Hamiltonian HSOC shown in Eq. (1). The
spin-orbit-coupled BEC is described by the following Gross-
Pitaevskii (GP) equation:

i
∂�

∂t
= (HSOC + V + Hint )�. (10)

with � = (�1, �2)T being the two-component wave function.
The harmonic trap in the x-y plane is V = 1

2ω2(x2 + y2) with
ω the dimensionless trap frequency. Hint denotes the nonlinear
interactions

Hint =
(

g|�1|2 + g12|�2|2 0
0 g12|�1|2 + g|�2|2

)
. (11)

The GP equation is dimensionless and the units of length,
time, momentum, and energy are chosen as lz = √

h̄/(mωz ),
1/ωz, h̄/lz, and h̄ωz, respectively. With the units, the in-
ter and intracomponent interaction coefficients become g =
Na

√
8π/lz and g12 = Na12

√
8π/lz. Here, N is the atom num-

ber and a and a12 are the corresponding s-wave scattering
lengths, respectively. The wave functions satisfy the normal-
ization condition,

∫
dxdy(|�1|2 + |�2|2) = 1. In numerical

calculations, experimentally accessible parameters are used.
The typical trap frequency is ωz = 2π × 200 Hz, leading to
the units of length and time lz = 0.76 µm and 1/ωz = 0.8 ms,
respectively. a ∼ 100 a0 with a0 being the Bohr radius, and
N ∼ 300, lead to g ∼ 10. The spin-orbit coupling strength can
be changed by tuning the parameters of Raman lasers in the
experiments [24].

When g > g12, the interactions are miscible. We first study
the ground states of the system in this regime by performing
the imaginary-time evolution of the GP equation. The evo-
lution is numerically implemented by the split-step Fourier
method. The window of two-dimensional space is chosen
as (x, y) ∈ [−6π, 6π ] and is discretized into a 256 × 256
grid. A typical result is shown in Fig. 1. As expected from
the prediction in the previous section, the ground state is
phase-separated. The two components are spatially separated
along the x direction, as shown by Figs. 1(a) and 1(b). The
ground state spontaneously chooses θ̄ = −π/2 so that the
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FIG. 1. Ground state of a trapped Rashba spin-orbit-coupled
BEC with miscible interactions. (a), (b) Density distributions |�1|2
and |�2|2 in coordinate space. (c), (d) Density distributions |�1|2
and |�2|2 in momentum space. The parameters are ω/ωz = 0.1,
lzλ/h̄ = 0.2, g = 12, and g12 = 8.

atoms condense at (k̄x, k̄y) = (0,−λ), which can be seen from
the momentum-space density distributions in Figs. 1(c) and
1(d). In this case, according to Eq. (9), the position displace-
ment occurs along the x direction, and the first component
shifts by 1/(2λ) on the right side and the second component
shifts oppositely by 1/(2λ) on the left side.

In the presence of interactions, it is impossible to construct
an analytical wave function of the ground state from the pro-
cedure demonstrated in the previous section. Nevertheless, the
single-particle wave functions in Eq. (8) and phase-separated
results shown in Fig. 1 stimulate us to use a trial wave function
to study the phase separation by the variational method [37].
The trial wave function is assumed to be

�(x, y) = (�′
x�

′
y)

1
4

√
2π

eik̄′
yy

⎛
⎝e− �′

x
2 (x−δx )2− �′

y
2 y2

e− �′
x

2 (x+δx )2− �′
y

2 y2

⎞
⎠. (12)

Here, we assume that the atoms spontaneously condense at
(0, k̄′

y) in momentum space and therefore the phase sepa-
ration only happens along the x direction with the relative
position displacement 2δx. 1/

√
�′

x,y characterize the widths
of the wave packet along the x, y directions. The unknown
parameters k̄′

y, δx,�
′
x,y are to be determined by minimizing

the energy functional

E =
∫

dxdy�∗(HSOC + V )�

+
∫

dxdy

[
g

2
(|�1|4 + |�2|4) + g12|�1|2|�2|2

]
.

(13)

Substituting the trial wave function into the energy functional
E leads to

E = k̄′2
y

2
+ �′

x + �′
y

4

(
1 + ω2

�′
x�

′
y

)
+ 1

2
ω2δ2

x

+ λ(�′
xδx − k̄′

y)e−�′
xδ

2
x +

√
�′

x�
′
y

8π

(
g + g12e−2�′

xδ
2
x
)
.

(14)

FIG. 2. Rashba spin-orbit-coupling-induced phase separation in
a trapped BEC. The parameters are ω/ωz = 0.1, g = 12, and g12 = 8.
(a) The center of mass for the two components along the x direction
as a function of the spin-orbit coupling strength λ. The solid lines
are from the variational method and the circles are obtained by the
imaginary-time evolution of the GP equation. The dashed lines are
±1/(2λ) predicted from the single-particle model. The red (blue)
color represents the first (second) component. (b) The condensed
momentum k̄′

y as a function of λ. The red solid line and blue circles
are obtained by the imaginary-time evolution and the variational
method, respectively. The variational parameters �′

x,y are shown in
(c) and (d).

By minimizing the energy functional with respect to the un-
known parameters, ∂E/∂X = 0 (X = k̄′

y, δx,�
′
x,y), we obtain

all information of the trial wave function. The phase sepa-
ration can be characterized by the center of mass of each
component

r̄1,2 =
∫

r|�1,2(r)|2dr, (15)

with r = (x, y). In Fig. 2(a), the solid lines show x̄1,2 = ±δx

calculated from the variational method, while the results ob-
tained by the imaginary-time evolution of the GP equation are
demonstrated by the circles. We find that the results from
the two calculation methods agree very well. Without spin-
orbit coupling (λ = 0), the conventional BEC has x̄1,2 = 0
and condensates at k̄′

y = 0, as shown in Fig. 2(b). With the
growth of λ, k̄′

y always increases linearly [see Fig. 2(b)]. The
displacement of x̄ first increases drastically to a maximum
value and then declines to the predicted ±1/(2λ) obtained by
the single-particle model [see the dashed lines in Fig. 2(a)].
The dependence of the displacement on λ exactly follows the
expectation in the previous section. In the dramatic increase
regime for x̄, the variational parameters �′

x,y also change
dramatically [see Figs. 2(c) and 2(d)].

Rashba spin-orbit coupling introduces an intrinsic force

F = d p
dt

= −[[r, HSOC], HSOC]

= 2λ2(p × ez )σz, (16)

with ez being the unit vector along the z direction
and p the atom momentum. The force originates from
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FIG. 3. The center of mass of two components for a nondominant
lzλ/h̄ = 0.5. The solid lines are obtained by the variational method
and the circles are from the imaginary-time evolution of the GP
equation. The red and blue colors represent the first and second
components, respectively. (a) The center of mass as a function of the
intercomponent interaction coefficient g12. ω/ωz = 0.1 and g = 12.
(b) The center of mass as a function of the trap frequency ω. g = 12,
and g12 = 8.

spin-orbit-coupling-induced anomalous velocity [43–45].
Considering the ground states shown in Fig. 2, the force oper-
ator in momentum space becomes Fx = 2λ2k̄′

yσz and Fy = 0.
The two components feel an opposite force Fx along the x
direction. The ground states must compensate for the intrinsic
force to reach equilibrium. It can be implemented by displac-
ing two components opposite to the force. Since k̄′

y < 0 in the
case shown in Fig. 2, the first component is displaced towards
to the right side and the second to the left side. The force
concept has been used in Refs. [36,37] to explain the phase
separation. Since the force is proportional to λ2, it seems that
a large displacement would be induced for a large λ. However,
as shown in Fig. 2(a), the dependence of the displacement
on λ does not follow the force. We can see that the intrin-
sic force cannot explain the phase separation in the large λ

regime.
Figure 2(a) shows that the separation follows the single-

particle prediction ±1/(2λ) when λ dominates. When λ is
weak, the displacement also depends on other parameters,
such as nonlinear coefficients and the harmonic trap. In
Fig. 3(a), we plot the displacement x̄ as a function of the
intercomponent interaction coefficient g12 for a nondominant
λ. The displacement slightly rises with an increasing g12, and
it reaches the maximum when g12 = g. If g12 > g, the inter-
actions become immiscible, leading to ground states different
from the trial wave function in Eq. (12). The dependence of
the displacement on the trap frequency is shown in Fig. 3(b).
We find that the displacement decreases as the trap frequency
increases. This is because the displacement requires more
kinetic energy in a tight trap. It is noticed that there is a slight
mismatching between the results from the variational method
(the solid line) and the imaginary-time evolution (the circles)
in Fig. 3. The origin of such mismatching is that the Gaussian
profile in the trial wave function in Eq. (12) cannot exactly de-
scribe the imaginary-time-evolution-generated wave function
as shown in Fig. 1.

IV. ANISOTROPIC SPIN-ORBIT-COUPLING-INDUCED
PHASE SEPARATION IN TRAPPED BECS

Rashba-spin-orbit-coupling-induced phase separation was
analyzed in the previous section. In the two-dimensional spin-

orbit-coupled BEC experiment [24], the spin-orbit coupling
strengths are tunable, which leads to an anisotropic cou-
pling. It was revealed that the anisotropic spin-orbit coupling
has a great impact on ground states of a spatially homoge-
neous BEC [46]. In this section, we study anisotropic-spin-
orbit-coupling-induced phase separation. The single-particle
Hamiltonian of the anisotropic spin-orbit coupling is

H ′
SOC = p2

x + p2
y

2
+ λ1 pxσy − λ2 pyσx, (17)

with the anisotropic strengths λ1 �= λ2. The lower band of
H ′

SOC is

E = k2
x + k2

y

2
−

√
λ2

1k2
x + λ2

2k2
y , (18)

with the associated eigenstates being the same as Eq. (3) but
having a different relative phase which can be written as

tan(ϕ) = λ1kx

λ2ky
. (19)

According to the mechanism of the spin-orbit-coupling-
induced phase separation, the anisotropic coupling can
generate position displacements related to the derivatives of
the relative phase. The displacements along the x and y direc-
tions are

∂ϕ(k)

∂kx

∣∣∣∣
k̄

= λ1λ2k̄y

λ2
1k̄2

x + λ2
2k̄2

y

,

∂ϕ(k)

∂ky

∣∣∣∣
k̄

= − λ1λ2k̄x

λ2
1k̄2

x + λ2
2k̄2

y

. (20)

Here, k̄ = (k̄x, k̄y) is the momentum at which the atoms
condense. The lowest-energy minima of the lower band de-
pend on the anisotropy. When λ1 < λ2, the two minima
locate at (k̄x, k̄y) = (0,±λ2) [see Fig. 4(a1)]. They locate at
(k̄x, k̄y) = (±λ1, 0) when λ1 > λ2 [see Fig. 4(b1)]. With the
miscible interactions, the BEC spontaneously chooses one
of these two minima to condense. The ground state that
spontaneously condenses at (k̄x, k̄y) = (0,−λ2) for λ1 < λ2 is
demonstrated in Figs. 4(a2) to 4(a5). We obtain ground states
by the imaginary-time evolution of the GP equation with
H ′

SOC. From the single-particle prediction in Eq. (20), the
phase separation of this ground state happens only along
the x direction, and the center of mass of the first com-
ponent is λ1/(2λ2

2) and that of the second component is
−λ1/(2λ2

2) [see the white stars in Figs. 4(a2) and 4(a3)].
The density distributions shown in Figs. 4(a2) and 4(a3)
clearly indicate the phase separation following the predic-
tions. The ground state that spontaneously condenses at
(k̄x, k̄y) = (−λ1, 0) for λ1 > λ2 is demonstrated in Figs. 4(b2)
to 4(b5). The single-particle mechanism in Eq. (20) pre-
dicts that, for this ground state, the separation happens along
the y direction and the centers of mass are ∓λ2/(2λ2

1) for
the two components [see the white stars in Figs. 4(b2)
and 4(b3)]. The results from the imaginary-time evolution
shown in Figs. 4(b2) and 4(b3) match with the single-particle
predictions.

These analyses showed that the center of mass of each
component strongly depends on the ratio of the spin-orbit
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FIG. 4. The anisotropic spin-orbit-coupling-induced phase separation in a trapped BEC. The parameters are ω/ωz = 0.1, g = 12, and
g12 = 8. (a1) The lower band of H ′

SOC in Eq. (17) with lzλ1/h̄ = 0.3 and lzλ2/h̄ = 0.6. (a2) and (a4) show corresponding ground-state density
distributions of the first component |�1|2 in coordinate and momentum spaces, respectively. (a3) and (a5) are for the second component |�2|2.
(b1)–(b5) are same as (a1)–(a5) but with lzλ1/h̄ = 0.6 and lzλ2/h̄ = 0.3. In (a2), (a3), (b2), and (b3), white stars represent the center of wave
packets predicted by the single-particle model.

coupling strengths. To reveal the dependence of phase separa-
tion on λ2/λ1, we calculate ground states with a fixed λ1 and
a changeable λ2 by using the imaginary-time evolution. The
results are summarized in Fig. 5, where the circles (crosses)
represent the center of mass for the first (second) component.
For λ2 < λ1 = 1, the phase separation occurs along the y
direction and |ȳ| increases with the increase of λ2 [see red
circles and crosses in Fig. 5], while x̄ is zero [see blue circles
and crosses in Fig. 5]. When λ2 = 0, the spin-orbit coupling
becomes one-dimensional, there is no phase separation due
to the absence of the relative phase. The results change for
λ2 > λ1 = 1 and the phase separation along the x direction
is observed. In this case, the separation decreases with λ2

increasing. For a very large λ2, the separation disappears since
the spin-orbit coupling effectively turns out to be one dimen-
sional. The results in Fig. 5 demonstrate that the maximum
separation happens for λ1 = λ2 which is Rashba spin-orbit
coupling. This is also expected from the single-particle pre-
diction in Eq. (20).

V. ADIABATIC SPLITTING DYNAMICS

We showed that the ground states of a trapped BEC with
two-dimensional spin-orbit coupling and miscible interac-
tions are phase-separated. As an important application, we
study the adiabatic dynamics of the phase separation. As
pointed out by previous works, a linear coupling between the
two components favors miscibility regardless of interactions
[47,48]. Therefore, a miscible-to-immiscible transition may
occur by decreasing the coupling. The adiabatic dynamics is
stimulated by slowly switching off the linear coupling. The-
oretically, the process is described by the time-dependent GP
equation

i
∂�

∂t
= [HSOC + �(t )σx + V + Hint]�. (21)

Here, �(t )σx represents the linear coupling between the two
components and can be experimentally achieved by using
a radio-frequency coupling [6]. The time-dependent Rabi
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FIG. 5. Anisotropic-spin-orbit-coupling-induced phase separa-
tion as a function of λ2 with a fixed lzλ1/h̄ = 1. Circles are for
the first component and crosses are for the second component. The
blue (red) color represents separation along the x (y) direction. Other
parameters are ω/ωz = 0.1, g = 12, and g12 = 8.

frequency is

�(t ) = �0(1 − t/τq ), (22)

with �0 being the initial value of the linear coupling and τq

is the quench duration. At t = 0, the presence of �0 greatly
suppresses the ground-state phase separation. We obtain the
ground state by the imaginary-time evolution of Eq. (21) with
�(t ) = �0. A typical ground state is shown in the insets
of Figs. 6(a) and 6(b), and the separation between the two
components is not obvious. Using this ground state as the
initial state, we evolve the time-dependent GP equation. The

FIG. 6. Adiabatic splitting dynamics of a trapped BEC with
Rashba spin-orbit coupling by slowly switching off the linear cou-
pling. The parameters are ω/ωz = 0.1, g = 12, g12 = 8, �0/ωz = 3,
and ωzτq = 150. The red (blue) dots represent the center of mass
of the first (second) component. Insets (a), (b) [(c), (d)] are density
distributions of the first and second components at t = 0 [t = τq],
respectively.

center-of-mass x̄ for the two components is recorded during
the time evolution in Fig. 6. By decreasing the linear coupling
adiabatically, the separation between the two components
gradually increases. When it is completely switched off, i.e.,
t = τq, the separation is maximized [see the corresponding
density distributions in Figs. 6(c) and 6(d)]. The two compo-
nents can realize a dynamically spatial splitting, which move
along opposite directions. Such adiabatic splitting dynamics
are reminiscent of a kind of “atomic spin Hall effect” [49].

VI. IMMISCIBLE-INTERACTIONS-INDUCED
PHASE SEPARATION

In all of the above, the interactions are miscible (g >

g12), which support atoms to condense at a particular
momentum state. On the other hand, immiscible interac-
tions (g < g12) prefer a spatial separation between the two
components to minimize the intercomponent interactions pro-
portional to g12. In the presence of spin-orbit coupling,
the immiscible-interaction-induced phase separation presents
interesting features [35,36,50]. In Fig. 7, we show two differ-
ent kinds of immiscible-interaction-induced phase-separated
ground states with different values of spin-orbit coupling
strength λ. For λ = 0.5, the ground state obtained by the
imaginary-time evolution is a half-quantum vortex state which
was first revealed in Refs. [35,50]. The first component dis-
tribution has a Gaussian shape [see Figs. 7(a1) and 7(a3)],
and the second component is a vortex with a winding number
w = 1 [see Figs. 7(a2) and 7(a4)]. The first component is
filled in the density dip of the second one, forming a spa-
tial separation along the radial direction. For λ = 1.5, the
ground state becomes a stripe state, which was first revealed in
Refs. [33,34]. The ground state condenses simultaneously at
two different momenta [see Figs. 7(b3) and 7(b4)]. Such mo-
mentum occupation generates spatially periodic modulations
in density distributions [Figs. 7(b1) and 7(b2)]. Meanwhile,
the stripes of the two components are spatially separated.

We emphasize that phase separations induced by spin-orbit
coupling and immiscible interaction have different physi-
cal origins. The spin-orbit-coupling-induced phase separation
only works for a two-dimensional spin-orbit coupling. How-
ever, phase separations were also studied for a BEC with
a one-dimensional spin-orbit coupling, the mechanism of
which is different. In the pioneering spin-orbit-coupled ex-
periment, the experimentalists observed a spatial separation
between two dressed states with a Raman-induced spin-orbit
coupling [20]. The spin-orbit coupling generated two en-
ergy minima whose occupations can be considered as two
dressed states. In the dressed state space, the atomic inter-
actions turned to be immiscible between the two dressed
states in the presence of the Rabi frequency. The phase
separation happened in the dressed state space due to im-
miscibility. In addition, the authors of Ref. [47] revealed
the existence of phase separation in a spin-1 BEC with
the Raman-induced spin-orbit coupling. The single-particle
Hamiltonian of the system is H = (px + λ′Fz )2/2 + �′Fx +
εF 2

z . Here, Fx,y,z are the spin-1 Pauli matrices, λ′ is the spin-
orbit coupling strength, �′ is the Rabi frequency, and ε is
the quadratic Zeeman shift. The spinor interactions include
the density-density part with the coefficient c0 and spin-spin
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FIG. 7. Immiscible-interaction-induced phase-separated ground states in a trapped BEC with Rashba spin-orbit coupling. The parameters
are g = 4, g12 = 8 and ω/ωz = 0.1. (a1)–(a4) When lzλ/h̄ = 0.5 the ground state is a half-quantum vortex state. (a1) [a(3)] and (a2) [(a4)]
are the coordinate (momentum) space density distributions of the first and second components, respectively. (b1)–(b4) When lzλ/h̄ = 1.5 the
ground state is a stripe state. (b1) [b(3)] and (b2) [(b4)] are the coordinate [momentum] space density distributions of the first and second
components, respectively.

part with the coefficient c2. In particular, a very negative
quadratic Zeeman shift ε = −λ2/2 was considered. With such
a large negative ε, the occupation in the second component
can be eliminated. The spinor only occupies the first and third
components. Interestingly, the spinor interactions between the
first and third components are immiscible for a negative spin-
spin interaction (c2 < 0). Different phase-separated states
between the first and third components are due to immiscible
interactions [47].

VII. CONCLUSION

In summary, we revealed the physical mechanism of spin-
orbit-coupling-induced phase separation. The mechanism,
which is very different from the conventional immiscible-
interaction-induced separation, is a complete single-particle

effect of spin-orbit coupling. We analyzed the separation fea-
tures in a trapped BEC with Rashba spin-orbit coupling and
miscible interactions and studied the effects of the anisotropy
of spin-orbit coupling on the separation. All features can be
explained by the single-particle mechanism. As an interesting
application of the phase separation, we propose an adia-
batic dynamics that can dynamically split two components
spatially.
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