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Motivated by recent experiments [Chen et al., Phys. Rev. Lett. 121, 113204 (2018); Chen et al., ibid. 121,
250401 (2018)], we investigate the low-lying excitation spectrum of the ground-state phases of spin-orbital-
angular-momentum-coupled (SOAM-coupled) spin-1 condensates. At vanishing detuning, a ferromagnetic
SOAM-coupled spin-1 Bose-Einstein condensate (BEC) can have two ground-state phases, namely, coreless
and polar-core vortex states, whereas an antiferromagnetic BEC supports only polar-core vortex solution. The
angular momentum per particle, longitudinal magnetization, and excitation frequencies display discontinuities
across the phase boundary between the coreless vortex and polar-core vortex phases. The low-lying excitation
spectrum evaluated by solving the Bogoliubov–de Gennes equations is marked by avoided crossings and hence
the hybridization of the spin and density channels. The spectrum is further confirmed by the dynamical evolution
of the ground state subjected to a perturbation suitable to excite a density or a spin mode and a variational
analysis for the density-breathing mode.
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I. INTRODUCTION

The experimental realization of spin-orbit (SO) coupling
marked an important milestone in the field of quantum degen-
erate Bose gases [1–3]. The SO coupling in these experiments,
coupling the spin and linear momentum of electrically neu-
tral bosons, is created by controlling the interaction between
atoms and light [1–4]. The rich ground-state phase diagram
of SO-coupled spin-1 Bose-Einstein condensates (BECs), be-
sides having stripe, plane-wave, and zero-momentum phases
[5,6], also admits half-quantum vortex [7], vortex-lattice
states [8], etc. Apart from the ground-state phase diagram,
collective excitations in trapped SO-coupled BECs—another
aspect of fundamental interest [9,10]—have been stud-
ied experimentally [11,12] as well as theoretically [13,14]
in harmonically trapped SO-coupled pseudospinor BECs.
Recently, we studied the collective excitations in a quasi-one-
dimensional SO-coupled spin-1 BEC with antiferromagnetic
interactions at zero and finite temperatures [15].

For the last few years, there has been a growing inter-
est in coupling the orbital angular momentum of atoms’
center of mass with their internal spin states using a
pair of copropagating Laguerre-Gaussian laser beams with
opposite winding numbers. Commonly known as spin-orbital-
angular-momentum (SOAM) coupling, this feature has been
independently demonstrated by two experimental groups by
coupling two [16] or three magnetic sublevels of F = 1
manifold of 87Rb atoms [17,18], thus affirming the validity
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of earlier theoretical proposals [19–24]. There also has
been an interest in theoretical models of SOAM coupling
inspired by Weyl-type SO coupling [25]. In the context
of SOAM-coupled pseudospin-1/2 BECs, polarized and
zero-momentum phases have been observed experimentally.
Besides these, stripe, annular-stripe, two-vortex molecule, and
vortex-antivortex molecule phases have also been studied the-
oretically [22,26–28]. Theoretical studies on the effects of the
ring-trapping potential on the annular-stripe phase in SOAM-
coupled pseudospin-1/2 condensate have also been carried
out [21,29].

Along with studies on equilibrium ground-state phase
diagrams, spectroscopic studies have been carried out on
SOAM-coupled pseudospin-1/2 BEC [27,30,31]. In partic-
ular, the low-lying excitation spectrum, including breathing
and dipole modes, has been studied for the half-skyrmion and
vortex-antivortex phases [27,30]. Additionally, the ground-
state phases and excitation spectrum have been studied for
pseudospin-1/2 BEC with higher-order SOAM coupling [31].

In the experimental realizations of SOAM coupling in the
spin-1 spinor BEC of 87Rb atoms [17,18], a Gaussian and a
Laguerre-Gaussian beam copropagating along the z direction
were considered, leading to an orbital angular-momentum
transfer of h̄ to the atoms. Considering a theoretical SOAM-
coupling model with an angular-momentum transfer of 2h̄
[23], the ground-state phase diagram and the dynamics ensu-
ing on sudden quench of quadratic Zeeman terms have been
studied. The different considerations of angular-momentum
transfer to the atoms yield different single-particle Hamil-
tonians and, consequently, different phase diagrams. In this
context, considering the experimentally realized SOAM cou-
pling [17,18], the detailed phase diagrams and excitation
spectrums of SOAM-coupled spin-1 BECs with polar and
ferromagnetic spin-exchange interactions have not yet been
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theoretically studied. To the best of our knowledge, collective
excitations of an SOAM-coupled spin-1 BEC have not been
studied, irrespective of the theoretical models employed. This
sets the stage for the present work. With inspiration drawn
from the experimental research reported in Ref. [18] and an
aim to bridge the research gap, our objective is to study the
excitation spectrum of the ground-state phases observed in
SOAM-coupled spin-1 BECs. The excitation spectrum, calcu-
lated by solving the Bogoliubov–de Gennes (BdG) equations,
is supported by the time evolution of the expectation of the
physical observables with an aptly chosen perturbation be-
ing added to the Hamiltonian at time t = 0. For the sake of
comprehensiveness, we additionally employ the variational
method to analytically calculate the frequency of the density-
breathing mode.

The paper is organized as follows. In Sec. II, we present
the Hamiltonian describing an SOAM-coupled spin-1 BEC
in cylindrical coordinates and the reduction to a quasi-two-
dimensional (quasi-2D) formulation through a set of coupled
Gross-Pitaevskii equations (GPEs). In Sec. III, we discuss
the ground-state phases of SOAM-coupled ferromagnetic and
polar BECs in the limit of vanishing detuning. In Sec. IV A,
we discuss the spectrum of the noninteracting SOAM-coupled
spin-1 BEC, and follow it with the collective excitations of the
interacting SOAM-coupled spin-1 BECs in IV B. In Sec. IV C,
we explore the effect of detuning on the ground-state phases
and excitation spectrum. In Sec. IV D, we study real-time
dynamics of the perturbed ground state to illustrate the en-
suing dynamics in the density and spin channels. In Sec. IV E,
the variational method to study a few low-lying modes is
discussed, followed by the summary of key results in Sec. V.

II. MODEL

In this work, we consider SOAM-coupled spin-1 BECs
in which the orbital angular momentum of the center of the
mass of the atoms is synthetically coupled to their internal
spin states [16,17]. In the cylindrical coordinate system, the
noninteracting (single-particle) part of the Hamiltonian for the
spinor BEC is [17,18]

Hs =
[

− h̄2

2M

∂

r∂r

(
r

∂

∂r

)
+ L2

z

2Mr2
− h̄2

2M

∂2

∂z2
+ V (r)

]
I

+ �(r) cos(φ)Sx − �(r) sin(φ)Sy + δSz, (1)

where I is a 3 × 3 identity matrix; V (r) = Mω2
0r2/2 +

Mω2
z z2/2 constitutes the external harmonic potential to

trap the atoms of mass M; Lz = −ih̄∂/∂φ is the angu-
lar momentum operator; �(r) = �0

√
e(r/r0)e−r2/2r2

0 is the
Raman-coupling strength with �0 and r0 as the Rabi fre-
quency and the radius of the maximum-intensity (cylindrical)
surface [17,18], respectively; δ is the Raman detuning; and
Sx, Sy, and Sz are irreducible representations of the spin-1 an-
gular momentum operators. Under mean-field approximation,
the interacting part of the Hamiltonian Hint is given by [32]

Hint = c0

2
ρ + c1

2
F · S (2)

with c0 and c1 as the mean-field interaction parameters. The
total density of the system is given by ρ, F = (Fx, Fy, Fz ) is

the spin-density vector, and S = (Sx, Sy, Sz ). Since the SOAM
coupling is restricted to the radial plane, and we consider
ωz � ω0, the dominant dynamics is constrained to the same
plane with frozen axial degrees of freedom. We can then in-
tegrate out the z degree of freedom from the condensate wave
function and describe the system as quasi-2D on the radial r-φ
plane. Starting from the Hamiltonian H = Hs + Hint, in polar
coordinates, we obtain the following coupled quasi-2D GPEs
in dimensionless form:

i
∂ψ±1

∂t
= Hψ±1 + c1(ρ0 ± ρ−)ψ±1 + c1ψ

∗
∓1ψ

2
0

± δψ±1 + �(r)√
2

e±iφψ0, (3a)

i
∂ψ0

∂t
= Hψ0 + c1ρ+ψ0 + 2c1ψ+1ψ−1ψ

∗
0

+ �(r)√
2

(e−iφψ+1 + eiφψ−1), (3b)

where

H = −1

2

∂

r∂r

(
r

∂

∂r

)
+ L2

z

2r2
+ r2

2
+ c0ρ,

ρ =
∑

j=±1,0

ρ j, ρ j = |ψ j |2, ρ± = ρ+1 ± ρ−1. (4)

Under geometric renormalization, in terms of s-wave scat-
tering lengths a0 and a2 in the total spin-0 and 2 channels,
respectively, c0 and c1 take the form

c0 =
√

8πα
N (a0 + 2a2)

3aosc
, c1 =

√
8πα

N (a2 − a0)

3aosc
(5)

denoting the spin-independent and spin-dependent interac-
tions, respectively. The anisotropy parameter α = ωz/ω0 is
defined to be the trapping frequency ratio along the axial
to the radial direction, and N is the total number of atoms.
The units of length, time, energy, and energy eigenfunctions
are considered to be aosc = √

h̄/(Mω0), ω−1
0 , h̄ω0, and a−1

osc,
respectively, and

∫
rρ(r)drdφ = 1.

III. GROUND-STATE QUANTUM PHASES OF
SOAM-COUPLED SPINOR BEC

To understand the intercomponent phase relationship im-
posed by various competing terms in the Hamiltonian,
we consider a generic circularly symmetric ansatz, ψ j =
f j (r)ei(w jφ+β j ), for the component wave functions, where
w j and β j are, respectively, the phase-winding number and
constant phase associated with the radially symmetric real
function f j . The phase-dependent part of the interaction en-
ergy is minimized, provided [33]

w+1 − 2w0 + w−1 = 0, (6a)

β+1 − 2β0 + β−1 =
{

2nπ for c1 < 0,

(2n′ + 1)π for c1 > 0,
(6b)
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where n and n′ are integers. Similarly, the SOAM part of the
energy is minimized if

w+1 − w0 = 1, w0 − w−1 = 1, (7a)

β+1 − β0 = (2p + 1)π, β0 − β−1 = (2p′ + 1)π, (7b)

where p and p′ are again integers. If the conditions on the
winding numbers in Eq. (7a) are satisfied, the condition in
Eq. (6a) is satisfied too. On the other hand, conditions between
the constant phase factors in Eqs. (6b) and (7b) can be simul-
taneously satisfied for c1 < 0 only.

To further substantiate the intercomponent phase relation-
ships imposed by SOAM coupling, we extract S = Sx cos φ −
Sy sin φ [26] from the single-particle Hamiltonian Hs. In the
limit when �0 is large, the c1-dependent part of the Hamilto-
nian can be neglected, and the phase structure of the emergent
ground-state solution is mainly determined by S via its min-
imum energy eigenspinor. The normalized eigenspinor of S
with minimum eigenenergy −1 can be written as (ei(m+1)φ, −√

2eimφ, ei(m−1)φ )T /2, with m being any integer. The phase
structure of this eigenspinor is consistent with phase rela-
tions in Eqs. (7a) and (7b). With an increase in m, there is
an energy cost from the phase-dependent part of the kinetic
energy, suggesting that only small values of phase-winding
numbers may emerge. Numerical results confirm this, where
we obtain a solution corresponding to m = 0 in large �0 limit
irrespective of the nature of spin-exchange interactions. The
spinor part of the ground state in this limit tends to approach
the aforementioned eigenstate of S with m = 0.

Various numerical techniques have been employed
in the literature to study spinor BECs in quasi-one-
dimensional, quasi-two-dimensional, and three-dimensional
settings [34–38]. In practice, we choose the finite-difference
method and choose different initial guess solutions as an
input to Eqs. (3a) and (3b) to arrive at ground-state solu-
tions. As an example, we take initial states � ∼ e−r2/2 ×
(ei(m+1)φ,−√

2eimφ, ei(m−1)φ )T /2, with different values of m.
Besides these initial states, we consider a random initial guess
where ψ j (r) are complex Gaussian random numbers.

At the outset, motivated by the experimental realization of
the SOAM-coupled BECs [17,18] using spin-1 87Rb atoms,
we validate our numerical simulations to study and emulate
the observed ground-state quantum phases of the ferromag-
netic system in the absence of detuning δ = 0 first and later
with δ �= 0. It is to be noted that in the experiments [18],
both zero and nonzero values of detuning have been con-
sidered. Similar to the experiment, we consider the 87Rb
atoms confined in an anisotropic harmonic trap with ω0 =
2π × 140 Hz and r0 = 15 µm [18]. However, we take ωz =
2π × 2400 Hz, enabling us to perform quasi-2D simulations.
Here a0 = 101.8aB and a2 = 101.4aB, with aB as the Bohr
radius [39]. The ground-state densities and phase distribu-
tions, obtained numerically by solving the coupled GPEs (3a)
and (3b) with imaginary-time propagation, for given �0 and
N , are in qualitative agreement with the experimental results.
The ground-state densities calculated for a pair of �0 val-
ues with N = 5000 are shown in Figs. 1(a) and 1(b). For
�0 = 0.25, the solutions with (+2,+1, 0) and (0,−1,−2)
phase-winding numbers are two degenerate ground states,
and with �0 = 1, the (+1, 0,−1) state is obtained as the

FIG. 1. Ground-state densities of the SOAM-coupled 87Rb spin-
1 BEC with c0 = 121.28 and c1 = −0.56 corresponding to N =
5000 for (a) �0 = 0.25 and (b) �0 = 1. The j = +1, 0, and −1
spin components carry phase-winding numbers of (a) +2, +1, and
0, respectively, and (b) +1, 0, and −1, respectively. As discussed in
the text, the various quantities in this and the rest of the figures are
dimensionless.

ground-state solution. As we vary �0 from 0 to 20, at small
�0, due to the coaction of spin-dependent interaction term
and SOAM coupling, a (+2, +1,0)-type solution appears as
the ground state. After a critical value of coupling strength
(say, �c

0), �S primarily dictates the nature of the solution to
result in a (+1, 0,−1)-type phase. The condition 〈S〉 ≈ −1
is satisfied in this latter phase for sufficiently large �0 as
shown in Fig. 2(a), which indicates that no further phase can
be expected with higher �0. We term these two phases I and II.
In contrast to 87Rb, (+1, 0,−1)-type is the single ground-state
phase for 23Na with c1 > 0. In this case too, 〈S〉 ≈ −1 at large
�0 as shown in Fig. 2(a).

Longitudinal magnetization per particle fz = ∫
Fzdr;

spin expectation per particle f = ∫ |F|dr, where |F| =√
F 2

x + F 2
y + F 2

z ; and angular momentum per particle 〈Lz〉
can be used to characterize these ground-state phases. In the
ferromagnetic domain with c0 = 121.28 and c1 = −0.56, for
�0 <= �c

0 = 0.3, i.e., in phase I, 〈Lz〉 �= 0 and increases con-
tinuously as shown in the inset of Fig. 2(a), whereas | fz| ≈ 1
and f = 1 as shown in Fig. 2(b). For �0 > �c

0, the transition
to phase II is accompanied by discontinuities in 〈Lz〉, | fz|, and
f ; whereas the former two reduce to zero, the latter becomes
less than one. In the antiferromagnetic domain, e.g., with

FIG. 2. (a) 〈S〉 as a function of SOAM-coupling strength �0 for
87Rb with c0 = 121.28 and c1 = −0.56 and 23Na with c0 = 121.35
and c1 = 3.80. Inset in (a): 〈Lz〉 for 87Rb as a function of �0. (b) | fz|
and f for 87Rb and 23Na as a function of SO coupling strength �0.
The c0 and c1 for 87Rb and 23Na are the same as those in (a).
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FIG. 3. The ground-state phase diagrams in (a) c1/c0-�0 and (b)
N-�0 planes. In (a) c0 was kept fixed at 121.28 while varying c1. In
(b) c1/c0 = −0.0046 corresponding to 87Rb.

c0 = 121.35 and c1 = 3.8, there is no phase transition with
an increase in �0, resulting in smooth behavior of the same
quantities. Here f asymptotically approaches one, whereas
| fz| and 〈Lz〉, expectantly, remain zero.

Furthermore, we calculate the ground-state phase diagrams
in the c1/c0-�0 plane, where we fix c0 = 121.28 and vary
c1, and the N-�0 plane for fixed c1/c0 = −0.0046, which
corresponds to 87Rb. The ratio c1/c0 may be manipulated
experimentally by tuning one of the scattering lengths by
optical Feshbach resonance [40]. These two are respectively
shown in Figs. 3(a) and 3(b), thus again illustrating that an
antiferromagnetic BEC has one ground-state phase in contrast
to the ferromagnetic one. It can be seen that with a decrease in
c1 (keeping c0 fixed) in the ferromagnetic phase, the domain of
phase I increases, whereas with an increase in the number of
atoms (keeping c1/c0 fixed), it decreases. Phases I and II also
have distinctive topological spin textures F = (Fx, Fy, Fz ).
For the solutions in Figs. 1(a) and 1(b), spin-textures are
shown in Figs. 4(a) and 4(b), respectively. The spin-textures
in Figs. 4(a) and 4(b) are in agreement with those reported in
Ref. [18]; at the center, F points along negative z direction
in Fig. 4(a), whereas it is zero in Fig. 4(b). The details of
the spin textures allow the identification of phases I and II
with the coreless vortex and polar-core vortex states, respec-
tively. It is to be noted in Ref. [23] that the two reported
circularly symmetric phases correspond to (−4,−2, 0)- and

FIG. 4. (a and b) Spin texture for 5000 atoms of 87Rb system
with the coupling strength �0 = 0.25 and �0 = 1, respectively. The
length of the arrows shows the projection of F(x, y) on the x-y plane,
and the color bar indicates its component along the z axis; F(x, y)
vector field lies on the x-y plane in (b).

(−2, 0,+2)-type solutions, which are different from phases I
and II in the present work.

IV. COLLECTIVE EXCITATION SPECTRUM

To study the excitation spectrum, we exploit the innate
circular symmetry of the Hamiltonian. To this end, we per-
form a local spin rotation about ẑ by the azimuthal angle -φ
to remove the φ dependence from the Hamiltonian. As a re-
sult, the order parameter � = (ψ+1, ψ0, ψ−1)T is transformed
to e−iSzφ� = (e−iφψ+1, ψ0, eiφψ−1)T , and the transformed
Hamiltonian takes the form

H =
[
−1

2

∂

r∂r

(
r

∂

∂r

)
+ (Lz + Sz )2

2r2
+ V (r)

]
I + �(r)Sx

+ Hint, (8)

where Hint = c0ρ/2 + c1F · S/2. The Hamiltonian in Eq. (8)
is circularly symmetric, and one can seek the simultaneous
eigenfunctions of H and Lz with fixed angular momentum lz =
0, 1, . . .. For example, the solutions presented in Figs. 1(a)
and 1(b) can now be seen as corresponding to lz = 1 and
0, respectively. The single-particle Hamiltonian in Eq. (1) is
symmetric under the transformation defined by an operator
R = exp(−iSxπ )K , where K is the complex-conjugation op-
erator. This implies that for any lz �= 0, there will be two
degenerate solutions connected R. For example, for lz =
1, the degenerate counterpart with lz = −1 corresponds to
(0,−1,−2) phase-winding numbers in the component wave
functions.

We use the Bogoliubov approach to study the excitation
spectrum, in which we consider the fluctuations to the ground
state by writing the perturbed order parameter as

�(r, φ, t ) = e−iμt+i(lz+Sz )φ[�eq(r) + δ�(r, t )eilqφ], (9)

where �eq(r) = [R+1(r), R0(r), R−1(r)]T is the radial part
of the order parameter with Rj as the radial wave function
corresponding to the jth spin component, μ is the chemical
potential, and lq = 0,±1,±2, . . . is the magnetic quantum
number associated with the angular momentum of the quasi-
particle excitations. The details of the BdG analysis are given
in the Appendix.

A. Noninteracting system

To understand the effect of coupling strength, we first
study the single-particle excitation spectrum. The ground-
state solution has phase-winding numbers (±1, 0) in j =
±1, 0 spin states, respectively. The excitation spectrum is
shown in Fig. 5. For �0 = 0, the nth energy level is 3(n + 1)-
fold degenerate, as the single-particle Hamiltonian is identical
with a system of three decoupled isotropic two-dimensional
harmonic oscillators. For example, excitations with energies
0 and 1 are three- and sixfold degenerate, respectively. The
SOAM-coupling lifts the degeneracies partially. For example,
for �0 �= 0, there is only one zero-energy excitation; simi-
larly, the red lines in the spectrum in Fig. 5 correspond to
nondegenerate excitations, whereas the black ones to twofold
degenerate modes. The nondegenerate modes have the mag-
netic quantum number of the excitation lq = 0, whereas
modes with twofold degeneracy have lq �= 0.
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FIG. 5. Single-particle excitation spectrum for spin-1 BEC as a
function of SOAM coupling strength ω0.

B. Interacting spin-1 BEC

Here we study the excitation spectrum (a) as a function of
�0 for fixed c0 and c1 and (b) as a function of N for fixed �0

and c0/c1 ratio. Both �0 and N can be varied in an experiment
[17,18]. As was discussed in Sec. III, for c1 < 0, both phases
I and II can appear as the ground-state phases with a variation
of either �0 or N . We primarily consider 87Rb BEC in the
following discussion.

Phase I: Here we consider c0 = 121.18 and c1 = −0.56
and vary �0. The excitation spectrum for phase I is shown
in Fig. 6(a) for lq = 0,±1 and (b) for |lq| � 2. The modes
with frequencies 1 and 2 are, respectively, dipole and density-
breathing modes in Fig. 6(a). This identification of a mode
is based on the real-time evolution of the expectation of a
suitably chosen observable, as will be discussed in the next
subsection. The presence of ferromagnetic interactions fur-
ther aids the lifting of the degeneracy, in this case between
the modes with magnetic quantum numbers ±lq, which are
degenerate at the single-particle level. We have confirmed
this, for example, by examining the excitation spectrum of
a system with c0 = 121.18 and c1 = −0.6c0 � −0.56 (not
shown here), where the nondegenerate nature of the spec-
trum is clearly seen. In phase I, there are two zero-energy
Goldstone modes corresponding to two broken continuous
symmetries, namely, gauge and rotational symmetry. The lat-
ter corresponds to the symmetry transformation generated by
Lz.

Phase II: As already mentioned in Sec. III, the transi-
tion from phase I to phase II occurs at �0 > 0.3 for c0 =
121.18 and c1 = −0.56. The transition is accompanied by
the discontinuities in the excitation spectrum. The excitation
spectrum for phase II is shown in Fig. 6(c). Here among
the low-lying modes are dipole and breathing modes corre-
sponding to both density and spin channels. Both density-
and spin-dipole modes are doubly degenerate corresponding
to magnetic quantum number lq = ±1. On the other hand,
both density- and spin-breathing modes are nondegenerate
with lq = 0. At small values of �0, the energies of the spin

FIG. 6. Low-lying excitation spectrum of 87Rb SOAM-coupled
spin-1 BEC with c0 = 121.18 and c1 = −0.56 as a function of
coupling strength �0 of phase I with (a) lq = 0, ±1 and (b) lq =
±2, ±3, ±4, . . .; among the named modes, lq = 0 for density- and
spin-breathing, lq = +1 for density-dipole, lq = −1 for spin-dipole,
lq = +2 for density-quadrupole, and lq = −2 for spin-quadrupole
modes. (c) The same for phase II, where lq = 0 for density- and spin-
breathing, lq = ±1 for density- and spin-dipole, lq = ±2 for density-
and spin-quadrupole modes. In (a) and (c), the dashed magenta line
is the variational estimate for the density-breathing mode.

modes are less than their density-mode analogues. There is a
single zero-energy mode due to the broken gauge symmetry
in this phase. Besides these modes, the density- and spin-
quadrupole modes, are also marked in the excitation spectrum
in Figs. 6(a)–6(c). As the collective excitations characterize a
systems response to small perturbations, these can be experi-
mentally studied using Bragg spectroscopy [11,12].

Additionally, the variation in SOAM-coupling strength
leads to avoided crossings between the pairs of excitations, a
few of which are identified by the black circles in Fig. 6(c).
We observe that the avoided crossing occurs between the
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FIG. 7. (a) Density fluctuations, δρ(r, φ = 0, t ), and spin-
density fluctuations, δFν (r, φ = 0, t ), with ν = x, y, z corresponding
to ωD = 1. (b–d) The same for ωSD = 0.08, ωB = 1.97, and ωSB =
0.37, respectively. The radial and time extents, along the horizontal
and vertical directions, respectively, in each subfigure are 4aosc and
5T , respectively, where T = 2π/ω is the time period of the corre-
sponding mode with ω frequency. The presence of both density and
spin fluctuations in (a)–(c) is an outcome of the avoided crossing
between the pairs of modes in the excitation spectrum shown in
Fig. 6(c).

density and spin oscillations associated with the same mag-
netic quantum number lq. In the vicinity of the avoided
crossing, the roles of the density and spin modes are in-
terchanged as shown in Fig. 6(c). We study this mode
mixing by examining the density (δρ) and spin fluctuations
(δFx, δFy, δFz ) yielded by the perturbed order parameter and
defined as

δρ = 2Re
∑

j

ψ jδψ
∗
j , (10a)

δFx =
√

2Re(ψ+1δψ
∗
0 + ψ0δψ

∗
+1 + ψ−1δψ

∗
0

+ψ0δψ
∗
−1), (10b)

δFy = −
√

2Im(−ψ+1δψ
∗
0 + ψ0δψ

∗
+1 + ψ−1δψ

∗
0

−ψ0δψ
∗
−1), (10c)

δFz = 2Re(ψ+1δψ
∗
+1 − ψ−1δψ

∗
−1), (10d)

where Re and Im denote the real and imaginary part, re-
spectively. For a pure density mode, one would expect that
δρ �= 0 and δFν = 0; similarly, for a pure spin mode, one
would expect that δρ = 0 and at least one of the δFν �=
0. The order-parameter fluctuation δ�(r, φ, t ), and hence
density and spin fluctuations, can be constructed with the
Bogoliubov quasiparticle amplitudes u and v correspond-
ing to the frequency ω of the mode as δψ j (r, φ, t ) ∝
ei(lz+ j+lq )φ[u j (r)e−iωt − v∗

j (r)eiωt ]. In the excitation spectrum
in Fig. 6(c) at �0 = 1, the density- and spin-dipole modes’

frequencies are ωD = 1 and ωSD = 0.08, respectively, and
the density- and spin-breathing modes’ frequencies are ωB =
1.97 and ωSB = 0.37, respectively. One can see that the
density-dipole, density-breathing, and spin-dipole modes en-
counter avoided crossings, whereas the spin-breathing mode
does not. This observation agrees with the density and spin-
density fluctuations evaluated along the φ = 0 line and shown
in Figs. 7(a)–7(d). For the density-dipole mode with ωD =
1, both density and spin channels are excited as is seen
from δρ(r, φ = 0, t ) and δFν (r, φ = 0, t ) in Fig. 7(a), where
ν = x, y, z. Similarly, number density, longitudinal (Fz ), and
transverse magnetization (Fx, Fy) densities oscillate in time,
corresponding to the spin-dipole mode in Fig. 7(b), and
density-breathing mode ends up exciting both the number and
transverse magnetization densities in Fig. 7(c). On the other
hand, the spin-breathing mode excites the spin channel alone
in Fig. 7(d). The density- and spin-quadrupole modes too
excite both the density and spin fluctuations, which are not
shown. This mode mixing indicated by both density and spin
fluctuations is absent in quasi-one-dimensional SO-coupled
BECs where any collective excitation yields either density
or spin fluctuations [15]. The nomenclature of the modes in
Figs. 6(a)–6(c) is consistent with the density, δρ(x, y, t ), and
longitudinal magnetization density, δFz(x, y, t ), fluctuations

FIG. 8. Density and longitudinal magnetization density fluctu-
ations at t = 0, T/4, T/2, 3T/4, and T , where T = 2π/ω with ω

as the mode frequency: (a) δρ(x, y, t ) for the density-dipole mode
with ωD = 1, (b) δFz(x, y, t ) for the spin-dipole mode with ωSD =
0.08, (c) δρ(x, y, t ) for the density-breathing mode with ωB = 1.97,
(d) δFz(x, y, t ) for the spin-breathing modes with ωSB = 0.37, (e)
δρ(x, y, t ) for the density-quadrupole mode with ωQ = 1.46, and (f)
δFz(x, y, t ) for the spin-quadrupole mode with ωSQ = 0.46. The box
size in each subfigure is 6.4aosc × 6.4aaosc.
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FIG. 9. Low-lying excitation spectrum for 87Rb spin-1 BEC with c1/c0 = −0.0046 as a function of the number of atoms N : (a and b) for
�0 = 0.3 with a phase transition from phase I to II at N = 5700 and (c) �0 = 3. (a) corresponds to the spectrum of phase I, whereas (b) and
(c) correspond to the spectrum of phase II. The different point styles in (a) signify nondegenerate modes with different lq, while in (b) and
(c), red circles, black right-pointing triangles, green down-pointing triangles, and blue squares correspond, respectively, to the modes with
lq = 0, ±1, ±2, ±3, and so on.

corresponding to density, breathing, and quadrupole modes in
Fig. 8 shown at t = 0, T/4, T/2, 3T/4, and T instants, where
T is the period of the collective excitation.

Next, we study the excitation spectrum as a function of
N for c1/c0 = −0.0046. Here first, we fix �0 to 0.3, where
a phase transition from phase I to II occurs at N = 5700.
The excitation spectrum, in this case, for phases I and II are
shown in Figs. 9(a) and 9(b). The same for �0 = 3 is shown
in Fig. 9(c), where phase II is the ground-state phase with no
phase transition. The modes in phase II are, again, either non-
degenerate or with twofold degeneracy. For SOAM-coupled
23Na BEC with c0 = 121.35 and c1 = 3.8 the excitation spec-
trum, which is not shown here, is similar to the spectrum in
Fig. 9(c), with some quantitative differences attributable to
different c1 values.

C. Nonzero detuning

In this subsection, we consider the effects of the detuning
on the phase diagram and excitation spectrum. In Fig. 10,
we show the phase diagram in the number of atoms versus
the detuning (N-δ) plane for a constant coupling strength
of �0 = 5 and c1/c0 = −0.0046 corresponding to 87Rb. We
observe that for a small value of δ, the polar-core vortex

FIG. 10. The ground-state phase diagrams in the N-δ plane for
c1/c0 = −0.0046 corresponding to 87Rb spin-1 BEC and �0 = 5.

(phase II) emerges as the ground-state solution. However, at
a critical detuning δc, a phase transition from (+1,0,-1)-type
solution (phase II) to (+2, +1,0)-type solution (phase I) oc-
curs. For example, for �0 = 5 and N = 5000 corresponding
to c0 = 121.18, c1 = −0.56, the phase transition occurs at
δc = 0.3. Phase II at smaller detuning and phase I at larger
detuning values in Fig. 10 is in qualitative agreement with
the experimental findings [18]. It is worth noting that the
presence of δ in the Hamiltonian leads to the breakdown of
the symmetry defined by R. As a result, (+2, +1,0) and
(0,-1,-2)-type solutions corresponding to lz = 1 and −1, re-
spectively, are no longer degenerate. To illustrate the effect
of detuning on the excitation spectrum, we contrast the col-
lective excitation spectrum of the condensate with N = 5000,
�0 = 5 for (a) δ = 0 and (b) δ = 0.2. The ground-state phase
in both these cases is phase II, as can be seen from the
phase diagram in Fig. 10. The excitation frequencies as a
function of lq for these two cases are shown in Figs. 11(a) and
11(b). As discussed in the Appendix, the presence of detuning
leads to the lifting of the degeneracies in the excitation spec-
trum about lq = 0. The low-lying modes have been identified
in Figs. 11(a) and 11(b). In Fig. 11(a), the density-dipole,
spin-dipole, density-quadrupole, and spin-quadrupole exhibit

FIG. 11. Collective excitation spectrum for ferromagnetic 87Rb
spin-1 BEC with interaction parameters c0 = 121.28, c1 = −0.56,
and coupling strength �0 = 5 for (a) δ = 0 and (b) δ = 0.2. The
black down-pointing triangles and green crosses denote the density
and spin modes, respectively.
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FIG. 12. (a) Center-of-mass oscillations, i.e., xcm(t ), as a func-
tion of time and (b) corresponding Fourier transform with a dominant
peak at ω = 1 for 87Rb spin-1 BEC with c0 = 121.28, c1 = −0.56,
and �0 = 1. (c) Oscillations in the mean square size of the system
r2

ms(t ) and (d) corresponding Fourier transform with a dominant peak
at ω = 1.99 for the same interaction and coupling strengths.

twofold degeneracies corresponding to ±lq. However, in the
presence of δ, all these modes become nondegenerate and are
highlighted in Fig. 11(b).

D. Dynamics

We examine the nature of low-lying collective excitations
through the time evolution of the expectation of physical
observables, which also serves to validate our calculation
of the excitation spectrum from BdG equations. Here, we
consider the Hamiltonian with an appropriately chosen time-
independent perturbation, say, H ′

s added to its single-particle
part Hs. This modifies the coupled GP Eqs. (3a) and (3b) with
an added term corresponding to H ′

s�(r, φ, t ) in each equation.
We then solve these resultant GPEs over a finite period of time
by considering previously obtained ground-state solutions as
the initial solutions at t = 0. Numerically, one needs to con-
sider a two-dimensional spatial grid over here, for which we
choose the Cartesian x-y grid.

We consider c0 = 121.28, c1 = −0.56, and �0 = 1, which
yielded the ground-state phase in Fig. 1(b), as an example set
of parameters to study the dynamics. To excite the density-
dipole mode, we take the perturbation H ′

s = λx, where λ � 1.
We then examine the dynamics of the center of mass of the
BEC via xcm(t ) = 〈x〉 = ∑

j=±1,0

∫
xρ j (x, y, t )dxdy, which is

plotted in Fig. 12(a). We also compute its Fourier transform
x̂cm(ω) to demonstrate that the dominant frequency resonates
at ω = 1 as can be seen in Fig. 12(b) and matches with
ωD = 1 in the BdG spectrum in Fig. 6(c). We could have
chosen H ′

s = λy and then calculated ycm(t ), giving us the same
excitation frequency. This is a consequence of the twofold
degeneracy in the density-dipole mode. We have checked that
this mode can also be excited by shifting the minima of the
external trapping potential. This particular way of exciting this
mode has direct relevance from an experimental point of view,
where the minima of potential can be easily shifted. Simi-

FIG. 13. (a) dx (t ) as a function of time and (b) corresponding
Fourier transform with a dominant peak at ω = 0.1 for 87Rb spin-1
BEC with c0 = 121.28, c1 = −0.56, and �0 = 1. (c) d2

x (t ) and (d) its
Fourier transform with a dominant peak at ω = 0.37 for the same
interaction and coupling strengths.

larly, to examine the excitation of the density-breathing mode
with H ′

s = λ(x2 + y2), where the relevant observable is r2 =
x2 + y2, we calculate mean square radius r2

ms(t ) = 〈r2〉 as a
function of time, which is plotted in Fig. 12(c). The Fourier
transform r̂2

ms(ω) of r2
ms(t ) reveals a dominant peak at ω =

1.99 in Fig. 12(d) which is close to the BdG result of �B =
1.97. This mode, again, can be excited by perturbing the trap
strength, which can be achieved in an experiment with ease,
thus giving access to this mode. Similarly, the spin-dipole
mode can be excited by adding a perturbation H ′ = λxSz or
λySz with xSz or ySz as the pertinent observable corresponding
to the spin-dipole mode. The two possible observables again
reflect the twofold degeneracy of spin-dipole modes. The time
variation of dx(t ) = 〈xSz〉 = ∑

j=+1,−1

∫
xρ j (x, y, t )dxdy is

shown in Fig. 13(a) and its Fourier transform in Fig. 13(b)
has a dominant peak at ω = 0.1, which corresponds to the
spin-dipole mode labeled in Fig. 6(c) with ωSD = 0.08. Sim-
ilarly, the spin-breathing mode corresponds to observable
r2Sz. In Figs. 13(c) and 13(d), we show the dynamics of
d2

r (t ) = 〈r2Sz〉, i.e., the relative difference in the mean-square
radii of the j = ±1 components and the associated Fourier
transform, respectively, with a dominant peak at ω = 0.37, in
agreement with ωSB in Fig. 6(c). The very small secondary
peaks present in Figs. 12(b) and 12(d) correspond to the spin-
dipole and spin-breathing modes, respectively. These peaks
become prominent when subjected to appropriate perturba-
tions and are observed through relevant observables, as shown
in Fig. 13. Likewise, the small peaks appearing in Figs. 13(b)
and 13(d) also signify modes present in the BdG spectrum.
Finally, the density- and spin-quadrupole modes’ frequencies
calculated from the time evolution of 〈xy〉 and 〈xySz〉 are in
agreement with the numbers in Fig. 6(c).

E. Variational analysis

For an SOAM-coupled spin-1 system, a few low-lying
modes can be studied using a time-dependent variational
method [41]. For example, to calculate the density-breathing
mode in the absence of detuning, we consider the following
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variational ansatz:

� = r

2
√

πσ (t )2
exp

[
− r2

2σ (t )2
+ iα(t )r2

]
×

⎛⎝ ei(m+1)φ

−√
2eimφ

ei(m−1)φ

⎞⎠,

(11)

where σ (t ) and α(t ) are time-dependent variational param-
eters used to denote the width of condensate and chirp of
Gaussian pulse, respectively, and m = ±1 for phase I or 0 for
phase II. The Lagrangian of the system is given by

L =
∑

j

∫
drdφ

i

2

(
ψ∗

j

∂ψ j

∂t
− ψ j

∂ψ∗
j

∂t

)
− E , (12)

where energy E is defined as

E =
∫∫ [ ∑

j

ψ∗
j

{
− 1

2r

∂

∂r

(
r

∂

∂r

)
+ L2

z

2r2
+ r2

2

}
ψ j

+ c0

2
ρ2 + c1

2
(ρ+1 + ρ0 − ρ−1)ρ+1

+ c1

2
(ρ+1 + ρ−1)ρ0 + c1

2
(ρ−1 + ρ0 − ρ+1)ρ−1

+
√

2�(r)Re(ψ∗
+1eiφψ0 + ψ∗

−1e−iφψ0)

+ 2c1Re(ψ∗
−1ψ

2
0 ψ∗

+1)

]
drdφ. (13)

For m = ±1, the (coupled) Euler-Lagrange equations are

¨σ (t ) = σ

2

⎛⎜⎝6
√

2π
√

e�0

√
1
r2

0
+ 2

σ 2

(
r7

0 − 2r5
0σ

2
)

(
2r2

0 + σ 2
)4 − 2

⎞⎟⎠
+ c0 + c1 + 10π

8πσ 3
, (14a)

α = σ̇

2σ
, (14b)

where “̇” denotes the time derivative. The equilibrium width
σ0 of the condensate satisfies

c0 + c1 + 10π

4πσ 4
0

+
6
√

2π
√

e�0

√
1
r2

0
+ 2

σ 2
0

(
r7

0 − 2r5
0σ

2
0

)
(
2r2

0 + σ 2
0

)4 = 2.

The frequency of the oscillation in width calculated by lin-
earizing Eq. (14a) about equilibrium width σ0 is

ωI
B =

[15
√

2πr4
0

√
eσ0�0

(
3r2

0 − 2σ 2
0

)√
2r2

0 + σ 2
0 + 1(

2r2
0 + σ 2

0

)5

+ 3(c0 + c1 + 10π )

8πσ 4
0

]1/2

. (15)

Similarly, for m = 0 in Eq. (11), the density breathing mode
is

ωII
B =

[15
√

2πr4
0

√
eσ0�0

(
3r2

0 − 2σ 2
0

)√
2r2

0 + σ 2
0 + 1(

2r2
0 + σ 2

0

)5

+ 3(c0 + c1 + 6π )

8πσ 4
0

]1/2

. (16)

The variationally calculated density-breathing mode’s fre-
quency agrees with the values in the BdG spectrum as
demonstrated in Figs. 6(a) and 6(c) for phases I and II, respec-
tively. As mentioned in Sec. IV D, the density-breathing mode
can be easily excited by modulating the trapping potential
strength in an experiment.

V. SUMMARY AND CONCLUSIONS

We have investigated the low-lying collective excitations of
the coreless vortex and the polar-core vortex phases supported
by the spin-1 BECs with SOAM coupling. The existence
of the two phases is seen in the full phase diagrams in the
ratio of interaction strengths versus coupling strength and
also the number of atoms versus coupling strength planes.
We have studied the excitation spectrum as a function of
two experimentally controllable parameters, namely, coupling
strength and the number of atoms. The excitation spectrums
are characterized by the discontinuities across the phase
boundary between the two phases and within a phase by
avoided crossings between the modes with the same magnetic
quantum number of excitations. The avoided crossings signal
the hybridization of the density and spin channels; the nature
of spin and density fluctuations has indeed confirmed this.
Among the low-lying modes, we identify dipole, breathing,
and quadrupole modes for density and spin channels. The
frequencies of these named modes are further validated from
the time evolution of the expectations of the physical ob-
servables when an apt time-independent perturbation is added
to the system’s Hamiltonian. An analytic estimate for the
density-breathing modes has also been obtained using the
variational analysis. Our results can serve as a benchmark
to compute the finite-temperature phase diagram and spin
dynamics. With the experimental observation of collective
excitation, dispersion (excitation energies as a function of
wave number) in Raman-induced SO-coupled BECs [11,12],
we expect that our results can also be verified in future
SOAM-coupled experiments. With the advent of box-trapping
potential [42], an interesting future direction could be to study
an SOAM-coupled BEC in such a trap with no rotational
symmetry.
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APPENDIX: BOGOLIUBOV–DE GENNES ANALYSIS

The fluctuation δ�(r, t ) to the equilibrium order parameter in Eq. (9) is δ�(r, t ) = u(r)e−iωt − v∗(r)eiωt , where u(r) and
v(r) are Bogoliubov amplitudes and ω is the excitation frequency. Linearization of the three coupled Gross-Pitaevskii Eqs. (3a)
and (3b) and the conjugate set of equations using perturbed order parameter in Eq. (9) yields the following six coupled BdG
equations:

ωu+1 =
[
−∇2

r

2
+ r2

2
+ δ + (lq + lz + 1)2

2
− μ + c0

(
2R2

+1 + R2
0 + R2

−1

) + c1
(
2R2

+1 + R2
0 − R2

−1

)]
u+1

+
[
�(r)√

2
+ R+1R0(c0 + c1) + 2c1R0R−1

]
u0 + R2

+1(c0 + c1)v+1 + R+1R0(c0 + c1)v0

+ R+1R−1(c0 − c1)u−1 + (R+1R−1(c0 − c1) + 2c1R2
0)v−1, (A1a)

−ωv+1 =
[
−∇2

r

2
+ r2

2
+ δ + (lq + lz + 1)2

2
− μ + c0

(
2R2

+1 + R2
0 + R2

−1

) − c1
(
2R2

+1 + R2
0 − R2

−1

)]
v+1

+
[
�(r)√

2
+ R+1R0(c0 + c1) + 2c1R0R−1

]
v0 + R2

+1(c0 + c1)u+1 + R+1R0(c0 + c1)u0

+ R+1R−1(c0 − c1)v−1 + [
R+1R−1(c0 − c1) + 2c1R2

0

]
u−1, (A1b)

ωu0 =
[
−∇2

r

2
+ r2

2
+ (lq + lz )2

2
− μ + c0

(
R2

+1 + 2R2
0 + R2

−1

) − c1
(
R2

+1 + R2
−1

)]
u0 +

[
�(r)√

2
− R2

+1(c0 + c1)

]
u+1

+ R+1R0(c0 + c1)v+1 + (
c0R2

0 + 2c1R+1R−1
)
v0 +

[
�(r)√

2
+ R0R−1(c0 + c1) − 2c2R+1R0

]
u−1

+ R+1R−1(c0 + c1)v−1 (A1c)

−ωv0 =
[
−∇2

r

2
+ r2

2
+ (lq + lz )2

2
− μ + c0

(
R2

+1 + 2R2
0 + R2

−1

) − c1
(
R2

+1 + R2
−1

)]
v0 +

[
�(r)√

2
− R2

+1(c0 + c1)

]
v+1

+ R+1R0(c0 + c1)u+1 + (
c0R2

0 + 2c1R+1R−1
)
u0 +

[
�(r)√

2
+ R0R−1(c0 + c1) − 2c1R+1R0

]
v−1

+ R+1R−1(c0 + c1)u−1 (A1d)

ωu−1 =
[
−∇2

r

2
+ r2

2
− δ + (lq + lz − 1)2

2
− μ + c0

(
R2

+1 + R2
0 + 2R2

−1

) + c1
(
2R2

−1 + R2
0 − R2

+1

)]
u−1

+
[
�(r)√

2
+ R0R−1(c0 + c1) + 2c1R+1R0

]
u0 + (c0 − c1)R+1R−1u+1

+ (
R+1R−1(c0 − c1) + 2c1R2

0

)
v+1 + R2

−1(c0 + c1)v−1 + R+1R0(c0 + c1)v0 (A1e)

−ωv−1 =
[

− ∇2
r

2
+ r2

2
− δ + (lq + lz − 1)2

2
− μ + c0

(
R2

+1 + R2
0 + 2R2

−1

) + c1
(
2R2

−1 + R2
0 − R2

+1

)]
v−1

+
[
�(r)√

2
+ R0R−1(c0 + c1) + 2c1R+1R0

]
v0 + (c0 − c1)R+1R−1v+1

+ (
R+1R−1(c0 − c1) + 2c1R2

0

)
u+1 + R2

−1(c0 + c1)u−1 + R+1R0(c0 + c1)u0, (A1f)

where ∇2
r = −∂2/(2∂r2) − ∂/(2r∂r), and lz = 1 for phase I and 0 for phase II. To solve coupled Eqs. (A1a)–(A1f), we use the

finite-difference method to discretize these equations over the spatial radial grid [43], thus transforming the BdG equations to
a matrix eigenvalue equation, which can be solved using standard matrix diagonalization subroutines. To discretize the BdG
equations, we used a radial grid consisting of Nr = 256 points with a radial step size of �r = 0.05, which results in a 6Nr × 6Nr

matrix eigenvalue problem. It is noted that Eqs. (A1a)–(A1f), for lz = 0 and δ = 0, remain invariant if lq �= 0 is changed to −lq
with simultaneous interchange of the j = +1 and j = −1 components. It implies that for a nonzero magnetic quantum number
of excitation (lq �= 0), ±lq excitation modes in the single-particle excitation spectrum, viz. Fig. 5, will be degenerate. For the
same reason, ±lq modes with łq �= 0 of a polar-core vortex solution are also degenerate, for example, in Fig. 6(c). In the presence
of detuning (δ �= 0) or angular momentum (lz �= 0), this invariance is not there, and as a result, ±lq excitations with lq �= 0 are
no longer degenerate in the coreless vortex phase.
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