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Random spin textures in turbulent spinor Bose-Einstein condensates
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We numerically investigate the stationary turbulent states of spin-1 Bose-Einstein condensates under contin-
uous spin driving. We analyze the entanglement entropy and magnetization correlation function to demonstrate
the isotropic nature of the intricate spin texture that is generated in the nonequilibrium steady state. We observe
a −7/3 power-law behavior in the spin-dependent interaction energy spectrum. To gain further insight into the
statistical properties of the spin texture, we introduce a spin state ensemble obtained through position projection,
revealing its close resemblance to the Haar random ensemble for spin-1 systems. We also present the probability
distribution of the spin vector magnitude in the turbulent condensate, which can be tested in experiments. Our
numerical study highlights the characteristics of stationary turbulence in the spinor Bose-Einstein condensate
system and confirms previous experimental findings [D. Hong et al., Phys. Rev. A 108, 013318 (2023)].
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I. INTRODUCTION

Quantum turbulence is a captivating phenomenon that
arises in superfluids, characterized by chaotic flow with in-
viscidity and quantized circulation [1–3]. The exploration of
quantum turbulence has expanded to include atomic Bose-
Einstein condensates (BECs), providing a unique platform
to study this intriguing state [4–6]. In particular, BECs with
internal spin degrees of freedom have enabled investigations
of turbulence in spinor superfluids, which exhibit multiple
velocity fields. The rich symmetries present in the order pa-
rameter manifold of spinor BECs give rise to the possibility
of unconventional topological defects and different circulation
rules [7,8], offering exciting prospects for the emergence of
novel forms of turbulence [9–17].

In a recent experiment by Hong et al. [18] using spin-
1 atomic BECs, it was observed that a stationary turbulent
state emerged under the continuous application of a radio-
frequency (rf) magnetic field. The oscillating magnetic field
induces spin rotation and mixing, coupled with the dynamic
instability of the system, leading to the formation of a
nonequilibrium steady state with an irregular spin texture.
Furthermore, in a specific driving condition, the magnitude
of turbulence of the driven BEC was maximized in the spin
sector to have an isotropic spin composition, indicating the
presence of a fully developed spin-turbulent state. The in-
vestigation of the statistical properties of such a turbulent
state presents an intriguing opportunity to explore complex
far-from-equilibrium quantum phenomena.

In this paper we present a numerical investigation focused
on the spatial structure of the spin texture in the station-
ary turbulent state of the driven BEC system. We describe
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a spin-driving scheme to generate stationary turbulence and
demonstrate its consistency with the experimental findings.
Utilizing this driving scheme, we analyze the intricate spin
texture in the nonequilibrium steady state after a prolonged
driving time. We observe a −7/3 power-law behavior in the
spectrum of the spin-dependent interaction energy [12,13] and
find that the spin state ensemble obtained by position projec-
tion is comparable to the Haar random ensemble for spin-1
systems. Our study elucidates previous experimental observa-
tions and highlights the isotropic nature and randomness of
the spin texture in the stationary turbulent state.

II. MODEL

A. Mean-field description

We consider a homogeneous two-dimensional spin-1 BEC
under an oscillating magnetic field. The magnetic field is
given by

B = [B0 + δBz(t )]ẑ + Brfx̂′ cos ωt, (1)

where the first term is a uniform bias field with temporal fluc-
tuations δBz(t ) and the second term describes the rf oscillating
field. The oscillating frequency ω of the rf field is equal to the
Larmor frequency of ω0 = gF μBB0/h̄, where gF is the Landé
g factor of the particle, μB is the Bohr magneton, and h̄ is the
Planck constant h divided by 2π . In a rotating frame, taking
the rotating-wave approximation, the mean-field Hamiltonian
of the system is given by H = H0 + Hint, with

H0 =
∫

d2r
[
�†

(
− h̄2∇2

2m
− h̄δ(t )fz + qf2

z − h̄�fx

)
�

]
,

Hint =
∫

d2r
(

gn

2
n2 + gs

2
|F|2

)
, (2)
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where � = (�1, �0, �−1)T is the wave function of the spin-1
BEC, m is the particle mass, f = (fx, fy, fz ) denotes spin-1 ma-
trices, δ(t ) = gF μBδBz/h̄, q is the quadratic Zeeman energy,
and � is the Rabi frequency of the rf driving. In addition,
Hint represents the interaction energy of the system, where gn

(gs) denotes the particle (spin) interaction coupling constant
and n = �†� (F = �†f�) is the particle (spin) density. Here
F = (Fx, Fy, Fz ), with Fx,y,z representing the magnetizations in
the x, y, and z directions, respectively. The spin interaction is
antiferromagnetic for gs > 0 and ferromagnetic for gs < 0.

From the Hamiltonian, the dynamics of the BEC is de-
scribed by the spin-1 Gross-Pitaevskii equation (GPE)

ih̄∂t� =
(

− h̄2

2m
∇2 − h̄δfz + qf2

z − h̄�fx

+ gnn + gs

∑
α=x,y,z

Fαfα − μ

)
�, (3)

where μ is the chemical potential of the condensate. The spin-
1 BEC system has two characteristic length scales: density
and spin healing lengths ξn = h̄/

√
2mμ and ξs = γ ξn with

γ = √
gn/|gs|, respectively. The corresponding timescales are

given by tn = h̄/μ and ts = γ 2tn, respectively.

B. Numerical simulation

Based on the GPE, we numerically investigate the dynam-
ics of the BEC in the experimental situation studied in [18],
where γ = 5.3, gsn0/h = 45 Hz, and q/h = 47 Hz. We model
the field fluctuations δBz(t ) as δ(t ) = δ0 sin (ωδt + φ), with
ωδ/2π = 60 Hz, considering a typical experimental environ-
ment. In the experiment, the magnitude of field fluctuations
was estimated to be approximately 1 mG and in our numer-
ical study we set δ0/2π = 1 kHz and randomly choose φ ∈
[0, 2π ) for different simulations.1 We set �/2π = 200 Hz,
which was found to generate a fully turbulent state in the
experiment [18]. The initial state is the easy-axis polar (EAP)
state along the z axis, that is, �0 = √

n0(0, 1, 0)T, with n0 =
104/ξ 2

s . Quantum fluctuations are taken into account using the
truncated Wigner approximation [19]. We assume that each
Bogoliubov excitation mode in the EAP state with q → ∞ is
populated by half quantum [20] and add the quantum noise to
the initial state before time evolution. The size of the system
is l × l with l = 160ξs, covered by a 1024 × 1024 grid of
equally spaced points. The GPE is numerically solved using
a relaxation pseudospectral scheme [21,22]. The total particle
number N = ∫

d2r n(r) is preserved in the simulation.

III. RESULTS AND DISCUSSION

A. Emergence of stationary turbulence

Figure 1(a) displays the time evolution of the density
distributions nα,mF (r) of the spin components. Here the
index α ∈ {x, y, z} and mF ∈ {+1, 0,−1} denote the quanti-
zation axis and the Zeeman sublevel, respectively. Initially,

1The choice of φ does not affect the statistical properties of the final
turbulent state of the system.

large-wavelength spin waves develop, indicating the system’s
dynamic instability, and the spin texture evolves to a more
complicated spatial structure. After a long time, the system
maintains its complex spin texture. Note that such a complex
spin texture does not occur without quantum noise in the
initial state. It is quantum noise that triggers the dynamic
instability [23,24] of the homogeneous system with spatially
uniform parameters q, δ, and �.

In Fig. 1(b) we display the time evolution of various en-
ergies of the system, including the spin interaction energy
Es, increment of density interaction energy δEn, and kinetic
energy K , which are calculated as

Es =
∫

d2r
gs

2
|F(r)|2,

δEn =
∫

d2r
gn

2

[
n(r)2 − n2

0

]
,

K =
∫

d2r �†

(
− h̄2

2m
∇2

)
�, (4)

respectively. The spin interaction energy initially oscillates a
couple of times and then quickly converges to Es ≈ 0.42Es0

for t > 50ts. Here Es0 = Ngsn0/2 is the characteristic value
of the spin interaction energy. The damping of Es occurs
when the spin texture becomes irregular and the steady value
of Es indicates that the system enters a stationary turbulent
state.

We observe that both δEn and K continue to increase grad-
ually even after a long time. This means that while the spin
texture reaches a dynamically steady state, the magnetic-field
driving incessantly injects energy into the system, and thus the
energy transforms into kinetic energy and density fluctuations.
In a real BEC system, this would result in heating of the driven
system via energy dissipation and particle flux to a thermal
component coexisting with the condensate. In fact, in the ex-
periment carried out in [18], it was observed that the thermal
fraction of the system increases as spin turbulence is generated
and reaches a new equilibrium value due to cooling by evap-
oration for the finite depth of the trapping potential. In our
numerical simulation, the increase rate of the kinetic energy
per particle for t > 50ts is almost constant and measured to be
�K = 7.9 × 10−4μ/ts ≈ kB × 13 nK/s, which is comparable
to the estimated heating rate in the experiment. Here kB is
the Boltzmann constant. The damping rate of Es in its initial
oscillation period is estimated to be �Es ∼ (Es0/N )/50ts ≈
4 × 10−4μ/ts, consistent with �K . Our numerical model is
limited in its ability to study thermal relaxation adequately.
In this study we focus on characterizing the spatial struc-
ture of the intricate spin texture in the stationary turbulent
state.

B. Entanglement entropy

In the experiment conducted in [18], Hong et al. demon-
strated that the stationary turbulent state has balanced
populations over the three spin states, particularly for any
quantization direction. We first investigate this spin-isotropic
nature of the turbulence by calculating the entanglement
entropy of the system. The BEC system can be described as
a bipartite system consisting of spin and position. In other
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FIG. 1. Emergence of stationary turbulence in a spinor Bose-Einstein condensate. (a) Density distributions of the mF = ±1, 0 spin
components nz,mF (r) at different times. (b) Time evolution of various energies and entanglement entropy of the driven BEC: spin interaction
energy Es (blue squares), kinetic energy K (blue dash-dotted line), increment of density interaction energy δEn (blue solid line), and spin
entanglement entropy S (red circles). Here Es0 represents the characteristic spin interaction energy of the system, γ 2 = gn/gs, and S0 = ln 3
(see the text for details). The right vertical axis uses a logarithmic scale for 1 − S/S0. Three distinct stages are identified: stage I (t/ts < τ0),
where Es oscillates with low S; stage II (τ0 < t/ts < τmax), where the entropy S increases with developing irregular spin texture; and stage III
(t/ts > τmax), where the system reaches a stationary spin-turbulent state.

words, its Hilbert space can be represented as the tensor
product of the spin space HS and the position space HR2 .
According to Schmidt decomposition, the wave function of
the BEC is expressed as

�(r) =
∑

i=1,2,3

αiφi(r)ζi, (5)

where {φi(r)} and {ζi} are the uniquely determined orthonor-
mal basis sets for the position and spin spaces, respectively,
and αi are referred to as Schmidt coefficients satisfying∑3

i=1 α2
i = 1. Then the entanglement entropy of the system

is given by S = −∑3
i=1 α2

i ln α2
i . The entropy is maximized

at S0 = ln 3 when αi are all 1/
√

3, and such a state with
S = S0 is called a maximally entangled state. Note that the
population of any arbitrary spin state equals N/3 if and only if
all αi = 1/

√
3. Therefore, S = S0 signifies the isotropic spin

composition.

We show the evolution of the entropy together with other
energy quantities [Fig. 1(b)]. As the spin interaction energy
exhibits damping after a few initial oscillations, the entropy
rapidly increases and reaches S/S0 ≈ 0.99 after t ≈ 60ts,
indicating that the BEC system evolves into a maximally
entangled state. In other words, the system exhibits isotropic
spin composition, consistent with the findings of the previous
experiment [18].

According to the behavior of S(t ), we identify three stages,
namely, I, II, and III, in the emerging process of turbulence:
In I, S(t ) ≈ 0 with coherent spin oscillations; in II, S(t ) in-
creases with an irregular spin texture emerging; and in III,
S(t ) reaches a steady value close to S0, where the spin turbu-
lence is fully developed. Transition times τ0 and τmax are de-
termined as S(τ0) = 0.1S0 and the time when S is maximized,
respectively. In our numerical results, τ0 ≈ 25ts and τmax ≈
71ts. Note that the entropy is slightly reduced after τmax.
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FIG. 2. Isotropic spin texture of the turbulent spinor BEC.
(a) Magnetization and (b) mF = 0 density distributions for the α =
x, y, z directions at t = 150ts. (c) Magnetization correlation func-
tions Gα (r) and (d) density-density correlation functions Gi, j

z (r)
for i, j ∈ {+1, 0, −1} at t = 150ts. The inset in (c) shows the time
evolution of the averaged domain size d , which is determined from
Gα (di ) = Gα (0)/2. The blue shaded region indicates the standard
deviation of domain sizes dα (α = x, y, z). The white, light gray, and
dark gray shaded regions indicate stages I, II, and III as in Fig. 1(b),
respectively. The blue circle indicates the time point of t = 150ts.

C. Isotropic spin texture

In Fig. 2(a) we present the magnetization distributions
Fα (r) for the α = x, y, z directions at t = 150ts when the
spinor BEC is in a stationary turbulent state. To characterize
the spatial structure of the irregular spin texture, we analyze
the magnetization correlation function Gα (r), defined as

Gα (r) = 〈Fα (r + r′)Fα (r′)〉r′ − 〈Fα (r′)〉2
r′ , (6)

where 〈·〉r′ denotes the averaged value of r′. By angular aver-
aging for |r| = r, we obtain a one-dimensional function Gα (r)
shown in Fig. 2(c). These correlation functions decay as r
increases and remarkably they exhibit an identical profile for
all spin axes (α = x, y, z), highlighting the isotropic character
of the spin texture of the turbulent BEC. Here Gα (0) rep-
resents the variance of the magnetization along the α axis,

and for 〈Fα〉 = 0 it is related to the spin interaction energy
as Gα (0) = 1

3 (Es/Es0)n2
0.

We determine the domain size dα as the radius at half
maximum, that is, Gα (dα ) = 1

2 Gα (0). Their time evolution is
shown in the inset of Fig. 2(c). In stage III (dark gray), the
domain sizes become constant at dα ≈ ξs, providing further
evidence that the driven BEC reaches a steady state in its
spatial structure.

We further analyze the density-density correlation function
Gi, j

α (r) (i, j = +1, 0,−1), which is obtained by the angular
averaging of

Gi, j
α (r) = 〈nα,i(r + r′)nα, j (r′)〉r′ − 〈nα,i(r′)〉r′ 〈nα, j (r′)〉r′ . (7)

As observed in Gα (r), the functions Gi, j
α (r) exhibit isotropic

behavior, showing identical profiles for all the spin axes. The
results are shown in Fig. 2(d), specifically for the α = z axis.

For the special case in which the three components are
equivalent in terms of their interactions, Gi,i

α = Gintra
α and

Gi, j
α = Ginter

α for i �= j. Additionally, if the total density
is spatially uniform, i.e.,

∑
j nα, j = n0, then

∑
j Gi, j

α = 0,
yielding Ginter

α = −Gintra
α /2. Using these relations and consid-

ering Fα = nα,+1 − nα,−1, it is suggested that Gα = G1,1
α +

G−1,−1
α − 2G1,−1

α = 3Gintra
α . The numerical results shown in

Figs. 2(c) and 2(d) are qualitatively explained by this random
three-component model. However, G0,0

α is slightly higher than
G1,1

α and G−1,−1
α . We attribute this to the antiferromagnetic

interactions of the system, which induce phase separation
between the mF = 0 and mF = ±1 components, while the
mF = ±1 components remain miscible.

D. Spin energy spectrum

Turbulence is conventionally characterized by the energy
spectrum of the velocity field. In the inertial range over which
energy is transferred with negligible dissipation, a characteris-
tic scaling behavior such as the Kolmogorov −5/3 power law
has often been observed in classical and quantum fluids. In
Refs. [12,13] Fujimoto and Tsubota reported a set of numer-
ical results showing that spin turbulence can be developed in
the spin-1 condensate system and the spin interaction energy
exhibits a steady −7/3 power-law spectrum in various driv-
ing situations. They also provided an analytical argument for
its occurrence within the wave number range of kb < k < ks

[13], where ks = 2π/ξs and kb = ks/
√

2π , assuming that the
magnitude of the spin vector is small.

Motivated by these previous results, we investigate the
spin energy spectrum of our BEC system under continuous
magnetic driving. To analyze the spectrum of Es, we transform
the spin density vector F as

F(r) = 1

l

∑
k

F̃(k)eik·r (8)

and obtain the spectrum of spin interaction energy as

Es(k) = gs

2

∑
k<|k|<k+�k

|F̃(k)|2, (9)

where �k = 2π
l is a grid size in k space [13]. In Fig. 3(a) we

present the energy spectra Es(k) at different evolution times.
These results demonstrate that as energy is injected into the
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FIG. 3. Spin energy spectrum Es(k) for various times t . The x
and y axes have a logarithmic scale. The black dashed line shows
k−7/3. The exponent β was determined from a power-law fit to the
region of kb < k < ks and the inset shows β as a function of t . Gray
dash-dotted lines indicate k = kb and k = ks.

low-k region, a propagation front emerges. It is characterized
by a steep slope and progresses towards the high-k region.
Once the system reaches a stationary turbulence state for
t > τmax, we observe saturation of the energy spectrum within
the range of kb < k < ks. In particular, the spectrum exhibits a
scaling behavior that closely approximates a power-law scal-
ing with an exponent of −7/3.2

We estimate the power-law exponent β by fitting the spec-
trum in the range of kb < k < ks to a power-law function
of Es(k) = E ′

sk
β . In Fig. 3(b) the variation of β is shown

as a function of t . At t = 0, β is equal to 1 owing to the
contribution of quantum noise. In the early part of stage
II, where S undergoes a sudden increase [Fig. 1(b)], β ex-
periences a rapid decrease to the lowest value of β ≈ −4,
indicating that the energy front passes through the k win-
dow. Subsequently, β increases and eventually saturates at
β ≈ −7/3, indicating the establishment of a stationary state.
The inset also reveals a slow increase in the scaling exponent
β for larger t . This behavior arises from the accumulation
of spin energy at high k and is also linked to the observed
progressive increases of EK and δEn in Fig. 1(b). Note that
the observed −7/3 power law does not necessarily imply that
the spin interaction energy undergoes a cascade from low k
to high k, as also noted in Ref. [13]. More meticulous studies
are required to investigate the energy flow in our stationary
turbulence.

2In the stationary turbulent state, the spin energy components Eα
s =

gs
2

∫
d2r F 2

α (α = x, y, z) are well balanced and their spectra Eα
s (k)

are indistinguishable.

E. Spin state ensemble

To gain further insight into the spin randomness of the
stationary turbulent state, we adopt the concept introduced
in Refs. [25–27] and consider a projected ensemble of spin
states. As the Hilbert space of the BEC system is the tensor
product of the spin space HS and position space HR2 , through
projective position measurement of the BEC, we obtain an
ensemble E of pure spin states supported on HS,

E =
{(

n(r)

N
, ζ(r)

)}
. (10)

Here each spin state in the ensemble is associated with a local
position r, i.e., ζ(r) = 1√

n(r)
�(r), and weighted by n(r)

N , which
is the probability of finding the spin state in the BEC at posi-
tion r. This projected ensemble carries more information than
the conventional reduced density matrix [28], allowing a more
comprehensive characterization of the statistical properties of
the system. For instance, the kth momentum of the ensemble
is defined as

ρ
(k)
E = Eζ∼E [(ζζ†)⊗k]

=
∑
r∈R2

n(r)

N
[ζ(r)ζ†(r)]⊗k, (11)

where Eζ∼E denotes ensemble averaging over the elements ζ

in E [27], and then the kth moment of the arbitrary observable
O for the ensemble is expressed in terms of ρ

(k)
E as follows:

O(k) = Eζ∼E [(ζ†Oζ)k] = tr
(
ρ

(k)
E O⊗k

)
. (12)

The first moment of the ensemble corresponds to the reduced
density matrix, providing information about the expectation
values of any observable, while the second moment of the
ensemble contains information about the variance of the
observable.

Following the method described in [27], we estimate the
randomness of the spin state ensemble from its comparison to
the Haar random ensemble EHaar, which is a unitarily invariant
ensemble such that the statistics of the spin-1 system has a
maximally entropic distribution at the level of the Hilbert
space HS [26]. The distinguishability between both ensem-
bles is measured with the trace distance �(k) in their kth
moments,

�(k) ≡ 1
2

∥∥ρ
(k)
E − ρ

(k)
Haar

∥∥
1, (13)

where ‖ · ‖1 denotes the trace norm. We call the ensemble a
quantum state k-design if �(k) = 0 [29].3 In Fig. 4(b) we plot
the trace distances �(k) (k = 1, 2, 3, 4) as functions of time.
The temporal behavior of �(k) is similar to that of 1 − S/S0 in
Fig. 1(b), clearly demonstrating the spin randomization as tur-
bulence is generated in the system. In stage III, �(4) � 0.12
and the system is close to the quantum state 4-design.

To visualize the spin randomization process, in Fig. 4(a)
we present the element distribution of the ensemble E in the
coordinate space of f = ( fx, fy, fz ) = F/n at different times.

3Because of the property of trace distance that �( j) � �(k) for
any j � k [26], the quantum state k-design is also a quantum state
j-design for j � k.
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FIG. 4. Spin statistics of the turbulent spinor BEC. (a) Scatter
plots of the spin state ensemble E of the BEC in the coordinate
space of ( fx, fy, fz ) at t = 0, 34ts, and 284ts. One thousand spin states
were randomly chosen from the ensemble. The sphere indicates the
surface of | f | = 1. (b) Trace distances �(k) (k = 1, 2, 3, 4) between
the kth moments of E and the Haar random ensemble as functions of
time. The y axis has a logarithmic scale. Also shown are probability
density distributions of (c) | f | and (d) fx,y,z at t = 284ts. The dashed
lines indicate the corresponding distributions from the Haar random
ensemble. In (d) the data for fy and fz were plotted with offsets of
0.4 and 0.8, respectively, for clarity.

Initially, the elements of E are localized near f = 0 and as
time passes, they spread, eventually covering most of the
whole parameter space with | f | � 1.

The probability density of the normalized spin vector mag-
nitude | f |, PE

| f |(η = | f |), is evaluated for the ensemble E at
t = 284ts, as shown in Fig. 4(c). For comparison, we also
plot the corresponding probability density distribution of the
Haar ensemble PHaar

| f | (η) = 2η, whose derivation is provided in
Appendix A. The ensemble E has more population on small
| f |. We attribute it to the antiferromagnetic interactions of the
system, which energetically favor small | f |. When the density
fluctuations are not significant, the spin interaction energy is
related to the second moment of the spin vector magnitude as
Es ≈ Es0〈| f |2〉E from Eq. (4), with 〈| f |2〉E = ∫

dη PE
| f |(η)η2.4

We obtain 〈| f |2〉E = 0.43, which is consistent with the mea-
sured value of Es/Es0, whereas 〈| f |2〉Haar = 0.5 for the Haar

4According to Eq. (12), 〈| f |2〉E = f(2)
x + f(2)

y + f(2)
z .

FIG. 5. Effects of the quadratic Zeeman energy on the stationary
turbulent state. (a) Normalized entropy S/S0, spin interaction energy
Es/Es0, trace distances �(k) (k = 1, 2, 3, 4), and (b) domain size d as
functions of q. The quantities were evaluated at t = 150ts. The gray
shaded region in both (a) and (b) indicates that the trace distance is
not in a steady state at t = 150ts.

ensemble. We may define the spin interaction energy for the
Haar random ensemble as EHaar

s = 0.5Es0.
Additionally, we examine the probability density profile of

the spin vector component fα , PE
fα

(η = fα ). Our numerical
results are displayed in Fig. 4(d), together with the corre-
sponding density profile of the Haar ensemble PHaar

fα
(η) = 1 −

|η| (see Appendix A). In the fx,y,z = 0 region, PE
fα

is slightly
higher than PHaar

fα
, which is consistent with the observed devi-

ation of PE
| f | from PHaar

| f | in Fig. 4(c). Note that the probability

density profile PE
fα

(η) is directly accessible in experiments
through magnetization imaging of the BEC along the spin axis
α [30].

F. Quadratic Zeeman effect

In a spinor BEC system, the quadratic Zeeman energy q
introduces spin anisotropy and plays a critical role in deter-
mining the spin ground state, while also competing with the
effects of spin interactions [7]. In the previous experiment in
[18] it was observed that the characteristic length scale of
the spin texture increases as the quadratic Zeeman energy q
decreases. To further investigate the impact of q on the ran-
domness of the turbulent spin texture, we perform numerical
simulations for different q values, including the q < 0 regime
where the system’s ground state is the easy-plane polar phase
in the absence of magnetic driving.

In Fig. 5 we present our numerical results for various
q values at t = 150ts, plotting the entropy S, spin interac-
tion energy Es, trace distances to quantum state k-design
(k = 1, 2, 3, 4), and domain size d . Our observations reveal
that spin randomization becomes more efficient when q/h ≈
75 Hz, at which point S is maximized and �(k) is minimized.
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FIG. 6. Turbulence in a spinor BEC with ferromagnetic spin interactions. (a) Distributions of magnetization Fz(r) (top row) and mF = 0
spin component density nz,0(r) (bottom row) for different times. (b) Time evolution of spin interaction energy Es (blue squares), kinetic energy
K (blue dashed line), increment of density interaction energy δEn (blue solid line), and spin entanglement entropy S (red circles). The right y
axis uses a logarithmic scale for 1 − S/S0. Stages I–III are indicated by the background colors as in Fig. 1(b). (c) Spin energy spectrum Es(k)
at various times. (d) Power exponent β, determined from a fit to the data in kb < k < ks, plotted as a function of time. The red dashed line
indicates β = −7/3.

However, we also note that Es increases with increasing q,
approaching the value EHaar

s of the Haar ensemble. The size
of the domain increases as |q| decreases, in agreement with
the experimental results. It is important to mention that within
the range of −20 Hz < q/h < 15 Hz (the shaded region),
we observed that the system did not reach a steady state at
t = 150ts, indicating a longer relaxation time for small q.
Furthermore, for the specific case of q = 0, no turbulence was
generated, highlighting the critical role of q in the generation
of stationary turbulence. However, the underlying mecha-
nisms responsible for the efficiency of magnetic driving in
randomizing the spin texture remain unclear, which warrants
further investigation.

G. Ferromagnetic spin interactions

Finally, we extend our study to a case with ferromagnetic
interactions by changing the sign of gs to have gsn0/h =
−45 Hz. Here we also change the quadratic Zeeman energy
to q/h = 100 Hz because the initial EAP state with �0 =√

n0(0, 1, 0)T is dynamically unstable for gs < 0 and q <

2|gs|n0, even without magnetic driving [7,9].
In Fig. 6 we present the numerical results for the ferromag-

netic BEC system under magnetic driving. As in the previous
case with antiferromagnetic interactions, turbulence with a
complex spin texture is generated and sustained in the system
for a long time. The time evolution of many characteristic

quantities is similar to that observed in the antiferromagnetic
case, i.e., τ0 = 11ts and τmax = 114ts, and Es converges to
0.57Es0 [Fig. 6(b)]. The spin energy is higher than EHaar

s ,
which is due to the ferromagnetic interactions of the system.
The spin energy spectrum Es(k) reveals the same power-law
behavior as β ≈ −7/3 [Figs. 6(c) and 6(d)].

We also present the time evolution of the trace distances
from the Haar ensemble in Fig. 7(a), demonstrating that the
system in a stationary turbulent state is close to the quan-
tum state 4-design. The probability density distribution of the
magnitude of the density-normalized spin vector, PE

| f |(η), and
that of the normalized magnetization, PE

fα
(η), are plotted in

Figs. 7(b) and 7(c), respectively. Due to the ferromagnetic
interactions, the probability for a high | f | is higher than that
of the Haar ensemble.

Intriguingly, we observe that at | f | ≈ 0.7, PE
| f | consistently

shows similar values close to 1.4 across different signs of gS

and various values of q. Moreover, we find that the profile
can be well described by a quadratic function. To satisfy the
conditions of

∫ 1
0 dη Pfit

| f |(η) = 1 and Pfit
| f |(0) = 0, we propose

the functional form as

Pfit
| f |(η) = bη

(
η − 2

3

) + 2η, (14)

where a single parameter b characterizes the probability den-
sity profile with a fixed point of PE

| f |(
2
3 ) = 4

3 . Furthermore, the
relation Es ≈ Es0〈| f |2〉E suggests that b can be approximated
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FIG. 7. Spin statistics of the turbulent BEC with ferromagnetic
spin interactions. (a) Trace distances �(k) (k = 1, 2, 3, 4) between
the kth moments of E and the Haar random ensemble as functions
of time. The y axis has a logarithmic scale. Also plotted are the
probability density distributions of (b) | f | and (c) fx,y,z at t = 150ts.
The dashed lines indicate the corresponding distributions from the
Haar random ensemble. In the legend in (b), F and AF correspond
to the ferromagnetic and antiferromagnetic interactions, respectively.
The black circle indicates (2/3, 4/3). (c) Data for fy and fz plotted
with offsets of 0.4 and 0.8, respectively, for clarity.

as b ≈ 30(Es − EHaar
s )/Es0. Thus, b < 0 for gs > 0 and b > 0

for gs < 0, as observed, and the Haar random ensemble cor-
responds to b = 0 with Es = EHaar

s .

IV. SUMMARY AND OUTLOOK

We conducted numerical investigations to characterize the
spin texture in the stationary turbulent state of a driven
spinor BEC. Our analysis revealed several key findings. First,
through the analysis of entanglement entropy and magneti-
zation correlation functions, we demonstrated the isotropic
nature of the spin texture, highlighting its uniformity across
different spatial directions. We also observed a −7/3 power-
law behavior in the spectrum of the spin interaction energy.

To further investigate the spin randomness of the spin
texture, we derived a spin state ensemble using position
projection. Comparing this ensemble to the Haar random en-
semble, which serves as a reference for a fully random spin
state, we found that the spin state ensemble closely approxi-
mates the quantum state 4-design. This suggests a high degree
of spin randomness within the turbulent spin texture. Fur-
thermore, we examined the probability density distribution of
magnetization and discovered a peculiar functional form that
can be parametrized by the system’s spin interaction energy.

Our numerical study significantly improves our under-
standing of the characteristics of stationary spin turbulence in

the spinor BEC system and provides support for previous ex-
perimental findings. However, it is important to acknowledge
that the underlying mechanisms responsible for sustaining
turbulent states are not yet clearly understood. In particular,
it has been observed that in the absence of field fluctuations,
the system relaxes to the ground state, as discussed in [18].
Exploring an expanded parameter space of magnetic driving,
including driving strength �, field fluctuation magnitude δ0,
and frequency ωδ , would be instrumental in unraveling the
mechanisms that sustain the turbulent state under magnetic
driving.

Finally, as a possible extension of this work, we consider
a spinor condensate trapped in optical lattices. In this sce-
nario, the notion of the projected spin ensemble becomes more
relevant due to the presence of lattice sites. To mimic this
situation, we performed preliminary studies by neglecting the
kinetic energy in our numerical simulations. Surprisingly, we
observed that a random spin ensemble can still be obtained
through magnetic-field driving. This observation suggests that
the chaotic nature of the periodically driven spin-1 system
plays a crucial role in the generation of the random spin
ensemble [31,32], providing an interesting prospect for future
experimental investigations.
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APPENDIX A: HAAR RANDOM ENSEMBLE
AND MAGNETIZATION DISTRIBUTIONS FOR A

SPIN-1 SYSTEM

According to Ippoliti and Ho [26], the distribution of the
projected ensemble is called a Haar random ensemble (i.e.,
a uniformly or unitarily invariant ensemble) if the statistics of
the system has a maximally entropic distribution not just at the
level of expectation values of local observables, but also at the
level of the Hilbert space. Owing to the Schur-Weyl duality,
the kth moment of the Haar ensemble is given by

ρ
(k)
Haar =

∫
φ∼Haar(HS )

dφ(φφ†)⊗k (A1)

= 2

∑
π∈Sk

Perm(π)

(k + 2)!
, (A2)

where Sk is the symmetric group on k elements. Here Perm(π)
is a representation of π ∈ Sk on k replicas of the Hilbert space
HS, which permutes the tensor products as Perm(π)|φ1〉 ⊗
· · · ⊗ |φk〉 = |φπ−1(1)〉 ⊗ · · · ⊗ |φπ−1(k)〉 [27,33].
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Using Eq. (A2), f(k)
z for the Haar ensemble is expressed as follows, with the spin states defined as |+〉 = (1, 0, 0)T , |0〉 =

(0, 1, 0)T , and |−〉 = (0, 0, 1)T , giving fz = |+〉〈+| − |−〉〈−|:
f(k)
z,Haar = tr

(
ρ

(k)
Harrf

⊗k
z

)
= 2

(k + 2)!
tr

(∑
π∈Sk

Perm(π)(|+〉〈+| − |−〉〈−|)⊗k

)

= 2

(k + 2)!

k∑
j=0

(−1) j

(k − j)! j!

∑
π,π′∈Sk

tr[Perm(π ◦ π′)(|+〉〈+|)⊗(k− j) ⊗ (|−〉〈−|)⊗ jPerm(π′−1)]

= 2

(k + 2)!

k∑
j=0

(−1) j

(k − j)! j!

∑
π,π′∈Sk

tr[Perm(π′−1 ◦ π ◦ π′)(|+〉〈+|)⊗(k− j) ⊗ (|−〉〈−|)⊗ j]

= 2

(k + 2)!

k∑
j=0

(−1) j

(k − j)! j!

∑
π′′,π′∈Sk

tr[Perm(π′′)(|+〉〈+|)⊗(k− j) ⊗ (|−〉〈−|)⊗ j]

= 2
ord(Sk )

(k + 2)!

k∑
j=0

(−1) j

(k − j)! j!

∑
π′′∈Sk

tr[Perm(π′′)(|+〉〈+|)⊗(k− j) ⊗ (|−〉〈−|)⊗ j]

= 1 − (−1)k+1

(k + 2)(k + 1)
. (A3)

From the relation

f(k)
z =

∫ 1

−1
PE

fz
(η)ηkdη, (A4)

where PE
fz

(η) is the probability distribution of fz for the en-
semble E , the result of Eq. (A3) provides the bilateral Laplace
transform of the probability distribution as B{PHaar

fz
}(s) =

2(cosh s − 1)/s2, where B{h}(s) = ∫ ∞
−∞ h(η)e−ηsdη, yielding

PHaar
fz

(η) = (1 − |η|)�(1 − |η|), (A5)

where � is the step function. Given that the Haar ensemble is
isotropic, the expression is generalized to an arbitrary α axis.
Using the relation of Eq. (B3), we obtain the probability dis-
tribution of the spin vector strength | f | for the Haar ensemble
as

PHaar
| f | (η) = 2η, 0 � η � 1. (A6)

APPENDIX B: RELATION OF PROBABILITY DENSITIES

When the ensemble is isotropic in the spin direction, i.e.,
f(k)
α = f(k)

z for all α and k, the following relation holds:

〈| fz|k〉E =
∫ 1

0
2PE

fz
(η)ηkdη

= 1

4π

∫ 1

η=0

∫ π

θ=0
PE

| f |(η)|η cos θ |k2π sin θ dθ dη

= 1

k + 1

∫ 1

η=0
PE

| f |(η)ηkdη = 1

k + 1
〈| f |k〉E . (B1)

Then the unilateral Laplace transforms, related to the moment-
generating function, of the two probability density functions
can be expressed as

2L
{
PE

fz

}
(s) + 2s

d

ds
L

{
PE

fz

}
(s) = L

{
PE

| f |
}
(s), (B2)

where L{h}(s) = ∫ ∞
0 h(η)e−ηsdη. Taking the inverse Laplace

transformation, we obtain

2PE
fz

(η) − 2
d

dη

[
ηPE

fz
(η)

] = PE
| f |(η),

d

dη
PE

fz
(η) = − 1

2η
PE

| f |(η) (B3)

for η � 0. This is the general relation where the ensemble is
isotropic.

For the probability function Pfit
| f |(η) in Eq. (14), Eq. (B3)

yields

d

dη
Pfit

fα (η) = −1

2
bη −

(
1 − 1

3
b

)
, 0 � η � 1. (B4)

Given that
∫ 1
−1 Pfit

fα
(η)dη = 1 and Pfit

fα
(−η) = Pfit

fα
(η) for |η| �

1, we obtain

Pfit
fα (η) = −b

4
(1 − |η|)2 +

(
1 + b

6

)
(1 − |η|). (B5)
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