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Polarons, which arise from the self-trapping interaction between electrons and lattice distortions in a solid,
have been known and extensively investigated for nearly a century. Nevertheless, the study of polarons continues
to be an active and evolving field, with ongoing advancements in both fundamental understanding and practical
applications. Here, we present a microscopic model that exhibits a diverse range of dynamic behavior, arising
from the intricate interplay between two excitation-phonon coupling terms. The derivation of the model is based
on an experimentally feasible Rydberg-dressed system with dipole-dipole interactions, making it a promising
candidate for realization in a Rydberg atoms quantum simulator for excitation dynamics interacting with optical
phonons. Remarkably, our analysis reveals a growing asymmetry in Bloch oscillations, leading to a macroscopic
transport of nonspreading excitations under a constant force. Finally, we demonstrate the robustness of our
findings against on-site random potential.
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I. INTRODUCTION

Polarons are quasiparticles that emerge from the coupling
between electrons (or holes) with ions of a crystalline struc-
ture in polarizable materials. The idea of electron self-trapping
due to lattice deformations dates back to Landau’s seminal
1933 paper [1], but the modern concept of a polaron as an
electron dressed by phonons was formulated in 1946 by Pekar
and developed later by Fröhlich [2], Feynman [3,4], Hol-
stein [5], and Su, Schrieffer, and Heeger [6–8]. Since their
discovery, polarons have been extensively investigated, both
theoretically and experimentally, not only in the field of con-
densed matter physics (for reviews see Refs. [9,10]), but also
in various chemical and biological contexts, e.g., in protein
propagation [11–13]. In particular, in the modeling of charge
migration in DNA molecules, it is assumed that a localized
polaron is formed in the helix near a base due to an interaction
between a charge carrier and a phonon. When a uniform elec-
tric field is applied, the polaron moves at a constant velocity
and a current flows through the chain [14–16]. The charge
carrier transport takes place due to coupling between carrier
and phonons; in contrast, in the absence of phonons, an exter-
nal constant force induces Bloch oscillations [17–19], where
the mean position of the carrier is constant while its width
periodically changes in time.

Polarons have been studied in many, seemingly different
experimental setups, ranging from ultracold ions [20–23], po-
lar molecules [24–27], mobile impurities in Bose and Fermi
gases [28–30], ultracold dipolar and Rydberg atoms [31–39],
to quantum dots on a carbon nanotube [40]. Although each
of these platforms possesses its unique strengths and benefits,
recently there has been an exceptional outburst of interest in

quantum simulation and computation with Rydberg atoms,
which provide a remarkable level of flexibility for executing
quantum operations and constructing quantum many-body
Hamiltonians [41]. While the latter can contribute to our
comprehension of the static properties of many-body sys-
tems, their main benefits are centered around exploring the
complex dynamics displayed by these systems. In partic-
ular, in the context of polarons, it has been demonstrated
that the dipole-dipole interactions between distinct Rydberg-
dressed states can result in coherent quantum transport of
electronic-like excitations [31], which can further be coupled
to optical phonons [32]. The paradigmatic one-dimensional
topological Su-Schrieffer-Heeger (SSH) model [6] describ-
ing the soliton formation in long-chain polyacetylene due
to excitation-phonon coupling, has been realized in Rydberg
arrays [42–44].

In this paper, we continue along this path and present
theoretical studies of an implementation of a microscopic
model featuring the interplay of SSH and Fröhlich electron-
phonon coupling mechanisms between optical phonons and
excitations, under the influence of an external force and dis-
order. In particular, we focus on the directional transport
of an excitation interacting with phonons. We indicate an
excitation-phonon coupling regime where the competition
between Bloch oscillations and interactions results in the
coherent transport of a well-localized wave packet over a
long distance. We show the robustness of such a coherent
transport of well-localized wave packets to the on-site ran-
dom potential, indicating that a relatively strong disorder does
not affect significantly the transport properties. Moreover, for
completeness, we consider also excitation coupling to acous-
tic phonons.
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The paper is divided into three parts. In the first part,
Sec. II, we describe the physical setup and derive the ef-
fective Hamiltonian in Rydberg-dressed atomic arrays. The
second part, described in Sec. III, focuses on the dynamics
of the system under experimentally relevant parameters. In
this section, we observe the macroscopic transport of the
center of mass and a transition between Bloch oscillations
and moving polaron regimes. In the third part, Sec. IV, we
comprehensively analyze the previously derived microscopic
model, which exhibits a rich phase diagram due to the inter-
play of two different electron-phonon coupling mechanisms.
Finally, we compare the behavior of excitations with acoustic
and optical phonons and demonstrate the robustness of our
results.

II. MODEL AND ITS HAMILTONIAN

We consider a one-dimensional chain of N equidistant Ry-
dberg atoms with lattice constant x0 and positions x j = jx0,
confined in a periodic trap, implemented either by an optical
lattice [45,46], an optical tweezer array [47–49], a Rydberg
microtrap [50], or a painted potential [51]. We assume that
the spatial motion of the atoms is suppressed by the strong
confinement of each Rydberg atom in local potential min-
ima. Although the atomic motion is frozen, it is remarkable
that such a Rydberg system can display highly nontrivial
dynamics. In particular, the induced dipole-dipole interac-
tions between distinct Rydberg-dressed states can lead to the
emergence of coherent quantum transport of electronic-like
excitations [31]. In the following, we first briefly repeat the
derivation of the Hamiltonian that characterizes the dynamics
of single excitations [31]. The purpose of this recap is to
modify the setup to incorporate nearly arbitrary on-site po-
tential terms. Next, after introducing phonons into the system
[32], we derive an effective nearest-neighbor Hamiltonian that
includes two excitation-phonon coupling terms, which we
comprehensively study in the forthcoming sections, focusing
on the dynamics in the presence of an external constant field.

A. Single-excitation Hamiltonian in arbitrary potentials

We assume that each Rydberg atom can be initially found
in one of the ground-state hyperfine levels, |g〉 or |g′〉. By
applying far-detuned dressing laser fields, with effective Rabi
frequencies �s, �p and detunings �s, �p, respectively, these
two hyperfine states can be coherently coupled to selected
highly excited Rydberg states, |s〉 or |p〉, with principal
quantum number n � 1 and different angular momenta. Con-
sequently, each atom can be found in one of the two Rydberg
dressed states [31,46,52–55], which are a slight admixture of
Rydberg states to the atomic ground states

|0〉 j ≈ |g〉 j + αs|s〉 j or |1〉 j ≈ |g′〉 j + αp|p〉 j, (1)

with αs/p = �s/p/[2�s/p] and j denoting the position of
an atom. Treating αs, αp as perturbation parameters in van
Vleck perturbation theory, Wüster et al. [31] showed that the
dipole-dipole interaction can exchange the internal states of a
neighboring pair, e.g., |1〉1|0〉2 → |0〉1|1〉2. This process can
be viewed as a hopping of an excitation from j = 1 to j = 2
lattice site, which conserves the number of excitations.

The perturbation analysis can be extended to a chain of
N atoms, where the effective Hamiltonian in the single-
excitation manifold (up to the fourth order in αs and αp) reads
[31,32]

Ĥ0 =
∑

j

n̂ j (E2 + E4 + Aj ) +
∑

j,k

A jkâ†
j âk, (2)

where â j (â†
j ) denote an annihilation (creation) operator of

excitation on site j, while

Aj = h̄α2
s α

2
p

⎛
⎝∑

k �= j

1

1 − Ū 2
k j

⎞
⎠(�s + �p), (3a)

Ajk = h̄α2
s α

2
p

Ūjk

1 − Ū 2
jk

(�s + �p), (3b)

with Ūjk = C3/[h̄|xi − x j |3(�s + �p)] and C3 quantifying the
transition dipole moment between the Rydberg states, de-
scribe perturbative dipole-dipole interactions. Finally, E2 and
E4 are constant energy shifts of the second and fourth order,
respectively,

E2/h̄ = (N − 1)α2
s �s + α2

p�p, (4a)

E4/h̄ = (N − 1)α4
s �s + α4

p�p

+ (N − 1)α2
s α

2
p(�s + �p). (4b)

Although in principle constant energy terms could be always
ignored as they do not contribute to the dynamics of excita-
tions, let us consider now a scenario where the Rabi frequency
�p depends on the atomic position on the lattice, i.e., we
assume that

�p → �p( j) ≡ �p[1 + δ�( j)], (5)

where δ�( j) is arbitrary, but small correction of the order
(αp/s)2. With this assumption, and by retaining terms up to
the fourth order, the effective Hamiltonian in Eq. (2) acquires
an additional term, namely,

Ĥ = Ĥ0 + h̄α2
p�p

∑
j

δ�( j)n̂ j . (6)

Because the term proportional to α2
pδ�( j) is of the same

order as Aj , it can be incorporated into the definition of Aj in
Eq. (3a). With this simple modification, we gained a position-
dependent effective potential term that can strongly affect the
dynamics of excitations. Although the potential term can be
tailored almost arbitrarily, from now on we consider one of its
simplest forms, i.e., we choose

δ�( j) = 2α2
s (F j + ε j ). (7)

The first term in the parentheses being linearly proportional to
position j emulates the presence of a constant external field
F . The second term, with ε j being a random variable, gives
rise to the on-site potential disorder. Note that both terms lead
to localization of the excitation either due to Stark localization
[17] in a constant tilt F or Anderson localization [56] due to
random ε j . As explained in the next part, the situation is not
so straightforward.
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B. Excitation-phonon Hamiltonian

In this part, we relax our previous assumption that the
atoms of the array are completely immobile. Although we still
assume that no atom can move through the lattice, we now let
them vibrate in the vicinity of their local equilibrium points.
This will affect, as we shall see, the dynamics of excitations.
We consider now a scenario where an atom in the jth lattice
site and with mass m may oscillate with a frequency ω0 =√

k/m inside a local potential well, that can be approximated
by a quadratic potential

k

2
(x − jx0)2 ≡ kx2

0

2
(u j )

2, (8)

with k being the force constant and where u j denotes dimen-
sionless distortion from the local equilibrium position. The
motion of atoms can be quantized u j → û j and described by a
simple quantum harmonic oscillator. This vibrational motion
is responsible for the distortion of an atomic array and can
be considered as a phonon. Since the Hamiltonian of the
previous section describing the motion of single excitations
strongly depends on the position of atoms, phonons can prop-
agate through space due to the coupling to excitations. Before
proceeding to derive the effective Hamiltonian of the system
with phonon-excitation coupling, for clarity and simplicity we
assume that

α ≡ αs = αp, � ≡ �s = �p. (9)

Moreover, from now on we also fix the timescales and energy
scales and go to the dimensionless units by dividing all the
energy scales by 2h̄α4�.

Although the setup described in Sec. II A admits only dis-
persionless optical phonons that correspond to local vibrations
of atoms around local minima, we consider here two different
types of phonons. We proceed by writing the phononic Hamil-
tonian explicitly in terms of the dimensionless position and
momentum operators û j , p̂ j of local distortions

Ĥph =
∑

j

p̂2
j

2meff
+ meffω

2
eff

2
(û j − ηû j−1)2, (10)

with the effective dimensionless mass

meff = 2mx2
0α

4�/h̄, (11)

and the effective oscillator frequency

ωeff = ω0/(2α4�), ω0 =
√

k/m, (12)

where ω0 is the bare frequency. By changing the parameter η

in Eq. (10), diverse phonon types can be achieved. In particu-
lar, η = 0 corresponds to the aforementioned local vibrations
(i.e., dispersionless optical phonons) and η = 1 describes
acoustic phonons. These two phonon types are characterized
by the dispersion relation

εq =
{
ωeff, (optical phonons, η = 0),
2ωeff|sin(qx0/2)|, (acoustic phonons, η = 1),

(13)
which can be readily found by writing the phononic Hamilto-
nian (10) in terms of its eigenmodes

Ĥph =
∑

q

εq

(
b̂†

qb̂q + 1

2

)
, (14)

FIG. 1. Schematic illustration of all processes in the effective
Hamiltonian Ĥeff in Eq. (16), describing the dynamics of a single
excitation in a one-dimensional array of Rydberg atoms located at
x0( j + uj ), with uj being a dimensionless distortion from an equilib-
rium position. Ĥex describes a bare hopping (in the limit uj → 0) of
an excitation at site j to its neighboring sites with amplitude J0 in the
presence of a constant force F and on-site disorder ε j , see Eq. (17).
The effective hopping and on-site potential is further modified by the
phonon couplings gJ and gW , respectively, see Eq. (19).

where b̂†
q (b̂q) creates (annihilates) the phonon with quasi-

momentum q, and are related to the local dimensionless
momentum and position operators p̂i, ûi of distortion by

û j =
∑

q

1√
2Nεqmeff

(b̂q + b̂†
−q)eiq jx0 ,

p̂ j = −i
∑

q

√
εqmeff

2N
(b̂q − b̂†

−q )eiq jx0 . (15)

Having discussed the phononic degrees of freedom, we
can now write the fully effective Hamiltonian governing
the motion of single excitations coupled to phonons. The
derivation is straightforward and requires (i) the expansion
of the position-dependent coefficients [given by Eq. (3)] in
the Hamiltonian (6) of the previous section up to the first
order in û j , and (ii) dropping the next-to-nearest neighbor
contributions [57]. By following these steps, we obtain the
effective excitation-phonon Hamiltonian (cf. Fig. 1), which
consists of four parts, i.e.,

Ĥeff = Ĥph + Ĥex + ĤJ + ĤW, (16)

where Ĥph is the phononic Hamiltonian Eq. (10)

Ĥex = J0(â†
j+1â j + H.c.) +

∑
j

( jF + ε j )â
†
j â j, (17)

describes excitations with the hopping amplitude

J0 = κ/(1 − κ2), κ = C3
/(

2h̄�x3
0

)
, (18)

experiencing an external constant force F and a local on-site
disorder ε j . Finally,

ĤJ = gJ

∑
j

(û j+1 − û j )â
†
j+1â j + H.c., (19a)

ĤW = gW

∑
j

(û j+1 − û j−1)â†
j â j, (19b)

are the notable SSH and Fröhling Hamiltonians [6,10], re-
spectively, that correspond to two different mechanisms of
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excitation-phonon couplings, with dimensionless coupling pa-
rameters

gJ = −3κ (1 + κ2)/(κ2 − 1)2, (20a)

gW = −6κ2/(κ2 − 1)2. (20b)

C. Equations of motion

The full numerical analysis of the polaron dynamics on
the many-body level is one of the most challenging com-
putational tasks due to the nonconserved total number of
phonons in the system, which prevents it from working in a
restricted, fixed particle-number Hilbert space sector of the
phononic degrees of freedom. Additionally, even without a
force F the effective Hamiltonian of the systems (16) depends,
in principle, on many parameters, namely, J0, gW , gJ , ωeff ,
and meff , making the full analysis of the system even more
challenging.

To analyze the dynamical properties of the considered
system, in the following we make the semiclassical approxi-
mation by applying the Davydov ansatz [58–64], which relies
on two fundamental assumptions: (i) treating phononic oscil-
lations classically and (ii) representing solutions as separable
states without entanglement between quantum-like excitations
and classical-like phonons. In other words, we assume that
phonons are in a coherent state and that the full wave function
is a product state of the excitation and coherent phonons
part, as

|
(t )〉 =
⎛
⎝∑

j

ψ j (t )â†
j

⎞
⎠ ⊗ (

e−i
∑

j [u j (t )p̂ j−p j (t )û j ]
)|vac〉,

(21)

where |ψ j (t )|2 is a probability of finding an excitation at a
site j, u j (t ), and p j (t ) are expectation values of phononic
position and momentum operators. The equation of motion for
ψ j (t ) and u j (t ) can be subsequently derived from a classical
conjugate variable Heisenberg equations of motions using the
generalized Ehrenfest theorem, see, for example, Ref. [13].
By following these steps, we obtain a closed set of coupled
differential equations for the excitation amplitude ψ j (t ) and
classical field uj (t ). The equations can be written in a concise
form, as

iψ̇ j = Jjψ j+1 + Jj−1ψ j−1 + Wjψ j, (22a)

ü j = −ω2
eff D[{u j}] + S[{ψ j}], (22b)

where the effective potential experienced by an excitation
Wj (t ) and the effective hopping amplitude Jj (t ) are both time-
dependent functions due to the coupling to the gradient of the
phononic field u j (t ), i.e.,

Wj (t ) = jF + ε j + gW [u j+1(t ) − u j−1(t )],

Jj (t ) = J0 + gJ [u j+1(t ) − u j (t )]. (23)

As such, both Wj (t ) and Jj (t ) are responsible for the
self-trapping of an excitation. Similarly, the phononic equa-
tion (22b) also depends on the excitation amplitude ψi(t )

through the S[{ψ j}] operator, given by

S[{ψ j}] = − gW

meff
(|ψ j+1|2 − |ψ j−1|2)

− gJ

meff
[ψ∗

j (ψ j+1 − ψ j−1) + c.c.], (24)

which acts as a time-dependent source for the phonon
field u j (t ). Finally, the phononic dispersion relation, given
by Eq. (13), is necessarily present in the phononic equa-
tion through the D[{uj}] operator

D[{u j}] =
{

u j, η = 0,

2u j − u j+1 − u j−1, η = 1,
(25)

which introduces a crucial difference in the propagation of
optical (η = 0) and acoustic (η = 1) phonons [65], which we
investigate in the next sections.

D. Analyzed observables

Throughout this article we choose the initial conditions
ψ j (0) = δ j,0 and u j (0) = u̇ j (0) = 0 for the equations of mo-
tion, Eq. (22), that correspond to a single excitation on a
central lattice site and initially unperturbed lattice. Without
a phonon coupling and for F = 0, these initial conditions
simply correspond to a quantum particle that spreads symmet-
rically in both lattice directions characterized by a constant
Lieb-Robinson velocity [66], so that its center of mass re-
mains localized at the initial position. Contrary to the classical
case, a quantum particle on a lattice will not even move in the
presence of a constant force F , but instead it starts to perform
Bloch oscillations [67]. The situation is different in interacting
systems, either in a case of particle-particle interactions [18],
which may further lead to disorder-free many-body localiza-
tion [68–77], or in the presence of phonons, which can induce
transient polarons at the end of Bloch oscillation periods
[62,78] (see also Ref. [79]).

In this study, we investigate how the propagation of a
single excitation is influenced by the two competing phonon-
coupling mechanisms under the applied, constant force.
Specifically, we aim at answering the two following questions:
(i) how much does the excitation spread due to the coupling
with phonons and (ii) does its center of mass move in the pres-
ence of the constant force F? To respond to these questions
we focus on three simple observables that can be calculated
based on the local density measurements. First, we consider
the participation ratio (RP), defined as [80]

RP(t ) =
⎛
⎝∑

j

|ψ j (t )|4
⎞
⎠

−1

, (26)

where we assume a unit normalization of the wave function∑
j |ψ j |2 = 1. The participation ratio RP is equal to 1 where

excitation is localized on a single lattice site and equals N
when is completely delocalized over the entire lattice. The
second observable is the center-of-mass position of the wave
packet, i.e.,

x(t ) =
N/2∑

j=−N/2

j|ψ j (t )|2. (27)
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Moreover, in some cases, analyzing the ratio of the two quanti-
ties mentioned above can provide valuable insights. We define
this ratio, denoted as ξ , as

ξ (t ) = |x(t )|
RP(t )

. (28)

ξ is a quantity ranging from 0 to ξmax = N/2. The maximum
value ξmax corresponds to a moving, maximally localized,
nondispersive solution that has reached the boundary of the
system. As such, ξ can be viewed as an indicative measure for
selecting well-localized solutions moving in one direction.

Finally, it is worth mentioning that it is often not necessary
to analyze the entire time range of the above observables. In
fact, to discern various dynamic behaviors, it is usually suffi-
cient to look at RP(t ), x(t ), and ξ (t ) at the final evolution time
t f � 1. For example, large RP(t f ) (relative to the system size
N) suggests that excitation is not stable and has delocalized
over a lattice.

III. POLARON DYNAMICS: EXPERIMENTAL
CONSIDERATIONS

In this section we elaborate on the results of the previ-
ous sections and study the dynamics of a Rydberg excitation
under the presence of the external force F , solving the
equations of motion for a physically relevant range of pa-
rameters. The effective Hamiltonian (16) of the system relies
on several effective, dimensional parameters, including meff =
2mx2

0α
4�/h̄, ωeff = ω0/(2α4�), as well as J0, gJ , gW , given

by Eqs. (18) and (20). However, it is worth noting that the
later three parameters are not independent within our setup,
and their values are determined by a single parameter κ =
C3/(2h̄�x3

0 ). This provides us with significant flexibility in se-
lecting appropriate physical parameters for our convenience.
We stress that the proposed quantum simulator allows for
simulating excitation coupled to optical phonons only.

In the following, we choose the highly excited Rydberg
states |s〉, |p〉 of Ru-87 with principal quantum number n = 50
and angular momentum equal to 0 or h̄, for which C3 =
3.224 GHz × µm−3. We fix the lattice spacing x0 = 2 µm,
and the local trap frequency ω0 = 20 kHz. In the numerical
simulations, we vary the dimensionless parameter κ between
0.80–0.86, which is equivalent to the change of the de-
tuning � ∼ 234–252 MHz, and corresponds to the dressing
parameter α ∼ 0.04. Importantly, by increasing κ we also
increase the phonon coupling strength from around gJ/meff ∼
gW /meff ∼ −4.5 to gJ/meff ∼ gW /meff ∼ −8. Furthermore,
we remind the reader that in our setup only the optical
phonons (i.e., dispersionless vibrations) are experimentally
relevant and, therefore, in this section we set η = 0. Finally,
we fix the value of the force at F = 0.2, and we choose the
system size to N = 401.

To characterize the transport properties of an excitation
ψi(t ), in the top panel of Fig. 2 we plot its center-of-mass
position x(t ) and the corresponding participation ratio RP(t ),
see Eqs. (26) and (27) for the respective definitions. In the bot-
tom panel, we additionally illustrate the ratio ξ = |x|/RP. All
these quantities are plotted as a function of κ , at a fixed time
t f = 2.1 TB ≈ 66, where TB = 2π/F is the Bloch oscillation
period. We find that up to κ ∼ 0.83 both x(t f ) and RP(t f ) are

FIG. 2. The top panel illustrates the center of mass motion x(t )
of an excitation (dashed blue line) under a constant, external force
F = 0.2, and the corresponding participation ratio RP(t ) (solid green
line), evaluated at the final evolution time t f , and plotted as functions
of the dimensionless parameter κ [see Eq. (16) and definitions below
it]. In the bottom panel, the ratio ξ = |x|/RP is shown. The peaks
in the plot correspond to parameter regimes where a well-localized
excitation is transferred under the influence of a constant force F .
All physical parameters have been chosen with careful consideration
of their experimental relevance, as discussed in the main text. The
time evolution range is t ∈ [0, t f ], where the final time t f is chosen
as t f = 2.1 TB = 4.2 π/F ≈ 66.

small (relative to the system size N) which corresponds to the
Bloch oscillation-like dynamics where the phonon-influence
is minimal. In contrast, phonons play important role above
κ ∼ 0.83 where the system dynamics is quite sensitive to
the choice of microscopic parameters. Within the chaotic-like
regime, the typical Bloch oscillation dynamics is completely
disrupted, as the majority of solutions become delocalized
across the lattice, leading to large values of RP(t ). However,
amidst this chaotic behavior, we also discover intervals of
stability, characterized by peaks of ξ (t f ), where a substantial
portion of the wave packet becomes well localized and ex-
hibits near-constant velocity of motion.

We illustrate those different dynamical behaviours in
Fig. 3, where the first column, i.e., Figs. 3(a) to 3(d), show
the time evolution of the excitation density |ψ j (t )|2, while
the second column [Figs. 3(e) to 3(h)] illustrates the corre-
sponding time evolution of the center-of-mass position x(t )
and the participation ratio RP(t ). In the first row (κ = 0.8),
we observe almost perfect Bloch oscillations. However, upon
closer examination, a subtle asymmetry becomes apparent,
which is evident by a nonzero x(t ). The asymmetry is en-
hanced for a higher κ = 0.83, as depicted in the second row
of Fig. 3. Finally, the last two rows of Fig. 3 illustrate the
time evolution of the excitation density in the chaotic-like
regime above κ ∼ 0.83, cf. Fig. 2, where most of the solutions
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FIG. 3. The panels illustrate the diverse dynamic behaviors ob-
served in our study. The (a)–(d) first column showcases the time
evolution of the excitation density |ψ j (t )|2 (color encoded), while
(e)–(h) the second column, panels illustrates the corresponding tem-
poral changes in the center-of-mass position x(t ) (dashed blue lines)
and the participation ratio RP(t ) (solid green lines). In the first row
(κ = 0.8), near-perfect Bloch oscillations are observed. However,
upon closer examination, a subtle yet discernible asymmetry be-
comes apparent, as indicated by the nonzero value of x(t ). This
asymmetry becomes more pronounced in the second row for a higher
κ value of 0.83. The subsequent rows of the figure provide insights
into the time evolution of the excitation density for the specific cases
of a well-localized wave function (κ = 0.834) and a spreading wave
function (κ = 0.86). These distinct parameter regimes highlight the
contrasting behavior and spatial characteristics of the excitations. All
physical parameters are the same as in Fig. 2.

are delocalized over a lattice, as in Fig. 3(d) for κ = 0.86.
In contrast, in Fig. 3(c) we illustrate a regular behavior for
κ = 0.834, which lies inside one of the aforementioned stabil-
ity windows. In this scenario, due to constructive interference
after one Bloch oscillation period, a prominent portion of
the wave function coalesces into a very narrow nondisper-
sive wave packet that moves with a nearly constant velocity.
Overall, Fig. 3 offers a comprehensive visual representation of
the dynamic phenomena investigated in this section, shedding
light on the varying dynamical behaviors and properties of the
system with increasing phonon interaction.

IV. DYNAMICAL PHASE DIAGRAMS OF THE
EFFECTIVE HAMILTONIAN

In the previous sections, we derived and then analyzed
a microscopic Hamiltonian (16), governing the dynamics

of an excitation coupled to phonons through two different
mechanisms, i.e., the SSH and Fröhling Hamiltonians, see
Eq. (19). While maintaining a close connection to the experi-
mental platform, it is important to note that in the considered
Rydberg setup, the phonon coupling strengths gJ and gW

are not independent. Instead, they can both be expressed in
terms of a single parameter κ , as demonstrated in Eq. (20).
Consequently, investigating the interplay between these two
competing phonon-coupling mechanisms within the current
Rydberg platform becomes challenging. To address this lim-
itation and explore the complete phase diagram in a more
general context, in this section, we treat gJ and gW as com-
pletely independent and fix other parameters. In the initial
phase, as described in Sec. IV A, our primary objective is
to identify a stable polaron regime. Specifically, we aim to
find a regime in which an initially localized excitation does
not spread during the course of time evolution. Subsequently,
in Sec. IV B, we demonstrate the existence of stable islands
where polarons can exhibit nondispersive motion when sub-
jected to a constant force, even in the presence of substantial
disorder. Furthermore, in this part, we thoroughly examine the
quantitative differences in dynamics of optical and acoustic
phonons. In the following, we set the system size to N = 401
and solve the equations of motions in a fixed time interval
t ∈ [0, t f = 16.5]. Unless explicitly stated otherwise, we also
set meff = 0.5, ωeff = 10, and J0 = 1.

A. Polaron formation

In the preceding section, we already witnessed the emer-
gence of a nondispersive, self-trapped polaron through the
excitation-phonon coupling. Building upon this observation,
here we independently vary the two coupling strengths, gJ ,
and gW , to identify a stable polaron regime. It is worth noting
that the Hamiltonian of the system, as described by Eq. (16), is
invariant under the simultaneous transformation: u j → −u j ,
gJ → −gJ , and gW → −gW . Therefore, without loss of gen-
erality, we can assume gJ � 0.

In Fig. 4, we present a phase diagram of the participation
ratio RP calculated at the final evolution time for a broad
range of values gJ ∈ [0, 45] and gW ∈ [−16, 20]. Each panel
of Fig. 4 corresponds to distinct values of meff and η, as
specified in the figure caption. In terms of the layout, the left
(right) column corresponds to the optical (acoustic) phonons
and meff increases from top to bottom. In all panels of Fig. 4,
we observe wide regions with both extended states (warm
colors) and well-localized solutions (dark blue colors), with
the latter corresponding to stable, stationary polarons. We
discover a nontrivial dependence of the participation ratio
on both coupling strengths. Moreover, we find qualitatively
similar behavior for both types of phonon, however, the acous-
tic phonons exhibit greater dynamic stability. This is evident
from the presence of a chaotic-like region (the light blue
dotted area, compare with Fig. 2 and see the discussion in
Sec. III). Finally, we indicate that a decrease of effective mass
meff stabilizes the excitation supporting localized polaron
formation.

B. Robustness of coherent transport against disorder

In this paragraph, we focus on the parameters regime,
where a well-localized excitation can be transported
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FIG. 4. Color-encoded participation ratio RP(t f ), Eq. (26), at the
final evolution time for a broad range of coupling strengths, gJ ∈
[0, 45] and gW ∈ [−20, 20], in the presence of optical (left column,
η = 0) and acoustic phonons (right column, η = 1). Each row cor-
responds to a specific value of the effective mass meff . Panels (a),(b)
correspond to meff = 2, panels (c),(d) correspond to meff = 1, and
panels (e),(f) correspond to meff = 0.5. Across all panels, we observe
a mixture of extended states (warm colors) and well-localized, non-
spreading wave solutions (dark blue colors). Moreover, decreasing
effective mass meff narrows the delocalized phase. Despite some
differences, both types of phonons exhibit qualitatively similar be-
havior, see the discussion in the main text. The remaining parameters
used for this analysis are ωeff = 10, J0 = 1.

over a long distance. Namely, after identifying sta-
ble polaron regimes, we proceed to apply a constant
force to investigate the propagation of nonspreading
solutions.

For this analysis, we fix F = 0.2, meff = 0.5 and select
the coupling strengths within the range gJ ∈ [4, 16] and gW ∈
[8, 20]. These regions are indicated by a dashed square in
the bottom panels of Fig. 4. The results are presented in
Fig. 5. The top row of Fig. 5 illustrates the participation ratio,
RP(t f ), for both optical [Fig. 5(a)] and acoustic [Fig. 5(b)]
phonons. In both panels, we observe a shift in the boundary
between the extended and localized states due to the presence
of the applied force. However, the prevalence of dark blue
colors, indicating localized regimes, remains evident. The
bottom row of Fig. 5 displays ξ (t f ), as given by Eq. (28).

FIG. 5. The influence of a constant force on the propagation of
nonspreading solutions. Panels (a),(b) depict the color-encoded par-
ticipation ratio RP(t f ) for optical and acoustic phonons, respectively,
showing a shift in the boundary between extended and localized
states due to the applied force. Panels (c),(d) display color-encoded
ξ (t f ), a measure for selecting well-localized solutions propagating
in a single direction. Stable transport islands of such solutions are
observed, indicated by warm colors. Panel (c) corresponds to optical
phonons, while panel (d) corresponds to acoustic phonons. The re-
maining parameters used for this analysis are F = 0.2, meff = 0.5,
ωeff = 10, J0 = 1. While comparing with Fig. 4 mind a shifted
colorscale.

This quantity serves as a measure for selecting well-localized
solutions propagating in a single direction. We observe stable
transport islands of such solutions, indicated by warm colors.
Figure 5(c) corresponds to optical phonons, while Fig. 5(d)
corresponds to acoustic phonons.

In Fig. 6, we present an example of transportation of an
excitation coupled to phonons under an external force with-
out disorder potential W = 0. The left column presents the
time evolution of excitation density |ψi|2, while the right
column presents the evolution of the classical phonon field
|ui|. Next, in Fig. 7, we examine the robustness of the nondis-
persive moving solutions against on-site disorder ε j , as in
Eq.(16). The disorder is introduced by assuming ε j to be
a pseudorandom variable drawn from a uniform distribu-
tion in [−W/2,W/2]. Figures 7(a) and 7(b) depict the time
propagation of excitations for optical and acoustic phonons,
respectively, W = 0.6. Figure 7(c) illustrates the center-of-
mass position, while Fig. 7(d) presents the participation ratio
evaluated at the final evolution time, plotted as functions of the
disorder amplitude W . The results are averaged over 200 in-
dependent realizations of disorder. Notably, the participation
ratio for both acoustic and optical phonons remains relatively
constant, providing evidence for the robustness of the polaron
self-trapping mechanism, while the center-of-mass positions
takes place on a significant distance.
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FIG. 6. Transport of an excitation coupled to phonons under an
external force F = 0.2. Panels (a),(c) present color-encoded time
evolution of the excitation density |ψi|2, while panels (b),(d) present
color-encoded time evolution of the phonon field |ui|. The top row
corresponds to optical phonons (gW = 16, gJ = 7), while the bottom
row corresponds to acoustic phonons (gW = 17, gJ = 10).

FIG. 7. Robustness of nondispersive moving solutions against
on-site disorder, ε j ∈ [−W/2,W/2]. Panels (a),(b) display color-
encoded time evolution of the excitation density |ψi|2 for optical
(gW = 16, gJ = 7) and acoustic (gW = 17, gJ = 10) phonons, re-
spectively, disorder strength W = 0.6. Panels (c),(d) show the
center-of-mass position x(t f ) and the participation ratio RP(t f ) at the
final evolution time t f , plotted as functions of the disorder amplitude
W [top lines (circles) correspond to acoustic phonons, while bottom
lines (diamonds) to optical phonons]. Although the center-of-mass
positions decreases, a substantial macroscopic transport remains vis-
ible. The remaining parameters used for this analysis are F = 0.2,
meff = 0.5, ωeff = 10, J0 = 1.

V. SUMMARY AND CONCLUSION

In summary, we propose a quantum simulator with
Rydbeg-dressed atom arrays for SSH-Frölich Hamiltonian
allowing studies of polaron formation and dynamics. The
interplay between two competing excitation-phonon coupling
terms in the model results in a rich dynamical behavior, which
we comprehensively analyze. In particular, our findings reveal
the presence of asymmetry in Bloch oscillations allowing
coherent transport of a well-localized excitation over long
distances. Moreover, we compare the behavior of excitations
coupled to either acoustic or optical phonons and indicate
similar qualitative behavior. Finally, we demonstrate the ro-
bustness of phonon-assisted coherent transport to the on-site
random potential.

Our analysis is restricted to weak lattice distortions re-
lated to a small number of phonons per lattice site, however,
the proposed quantum simulator allows the studies of the
excitation dynamics in strong distortion limit, as well as stud-
ies of a plethora of different scenarios, such as bipolaron
and many-polaron dynamics, and investigation of the quan-
tum boomerang effect [81–83] affected by the presence of
phonons, both in a single-particle and many-body scenario.
We believe that our work opens up additional avenues for
research in Rydberg-based quantum simulators.

The data presented in this article are available [84].
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